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Olivier Hébert5, and Vincent Savolainen1,*
1Department of Life Sciences, Imperial College London, Ascot, United Kingdom
2Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
3Royal Society for the Protection of Birds, Pavilion View, Brighton, Bedfordshire, United Kingdom
4NERC Biomolecular Analysis Facility (NBAF) Department of Animal & Plant Sciences, University of Sheffield, Sheffield, United Kingdom
5Waco me Wela Association, Tribu de Luecila, Lifou, New Caledonia

*Corresponding author: E-mail: v.savolainen@imperial.ac.uk.
yThese authors contributed equally to this work.

Accepted: August 2, 2015

Data deposition: This project has been deposited at GenBank/EBI under the accession LAII00000000 (Zosperops lateralis genome) and

at Sequence Read Archive (SRA) under the accession SRP061359 (RAD-sequencing reads); CytB accession numbers listed in supplementary

table S1, Supplementary Material online.

Abstract

Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and ErnstMayr referred to them as the

“great speciator.” The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its

members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops

lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of

rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye

genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second,

we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and

restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In

accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative

to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic

histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved

in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes

and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird

radiation.
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Introduction

One of the most striking biodiversity patterns is that certain
groups of organisms have more species than others. However,
the underlying causes for the uneven distribution of diversity
are just being unraveled for a few taxa (Hughes and Eastwood
2006; Brawand et al. 2014). Among terrestrial vertebrates,
birds are the most diverse with about 10,000 species (Del
Hoyo et al. 2011), and within birds, diversity is also highly
skewed, from just five species of kiwis (order Apterygiformes)

to half of the entire bird species richness found within passer-
ines (order Passeriformes). One of the most diverse passerine
families is Zosteropidae, with over 120 species from 12
genera, of which the white-eyes (genus Zosterops) have the
highest number of representatives. White-eyes are among the
largest avian genera, with about 80 described species found
throughout Africa, Australasia, and the Southern Pacific ocean
(Van Balen 2008; Clements et al. 2014). Indeed, Zosterops is
one of the fastest diversifying lineages of terrestrial vertebrates
(Moyle et al. 2009; Valente et al. 2010; Jetz et al. 2012), hence
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the group has been considered one of the “great speciators”
(Diamond et al. 1976).

White-eyes are exceptional island colonizers; they are the

group of passerines that has colonized more islands worldwide,

and have thus been a model of choice for studying rapid spe-

ciation, phenotypic evolution, and genetic changes following

the colonization of new environments (Black 2010; Clegg

2010; Milá et al. 2010; Melo et al. 2011; Cox et al. 2014). In

particular, one of the key outstanding questions regarding

white-eye evolution is what is known as the paradox of the

great speciator (Diamond et al. 1976): Despite the extraordinary

dispersal ability of white-eyes, a substantial degree of differen-

tiation generally occurs across islands, with a large proportion of

species or subspecies being single island endemics (Mees 1957;

Melo et al. 2011). For all these reasons, white-eyes are an ideal

group of birds to disentangle the genomic underpinning of

species diversification; however, genome-scale data for these

taxa have been lacking (Bourgeois et al. 2013).

A particularly interesting species of white-eye to study mi-

croevolution and diversification is the silvereye, Zosterops

lateralis. One of the most widely distributed species of

Zosterops, the silvereye occurs in mainland Australia and has

naturally colonized several islands and archipelagos in the

South Pacific, including New Caledonia, Vanuatu, Fiji,

Tasmania, and New Zealand. The silvereye displays extensive

genetically based phenotypic variation across numerous is-

lands (Clegg, Degnan, Kikkawa, et al. 2002; Clegg, Degnan,

Moritz, et al. 2002) and is considered to be a species complex

consisting of multiple subspecies and allopatric forms that vary

in body size and other morphological characters (Clegg,

Degnan, Moritz, et al. 2002). Although molecular phyloge-

netic studies have shed light on the patterns of microevolution

in the silvereye (Clegg and Phillimore 2010), genome-wide

resources have not been available.

Here, we present a high-quality reference genome of the

silvereye and use it as a model to address hypotheses as to

why white-eyes have diversified so dramatically. In combina-

tion with whole genome resequencing and restriction site as-

sociated DNA (RAD; Baird et al. 2008) data for other white-eye

species, we examine the genetic underpinning of rapid diver-

sification in the genus. We conducted genomic analyses at

different taxonomic levels.

To investigate what differentiates the genome of Zostero-

pidae from those of other bird families, we use a comparative

genomics approach. We can formulate several hypotheses as

to why white-eyes have diversified so dramatically compared

with other bird clades. For example, there have been several

studies linking substitution rates, phenotypic change, and spe-

cies diversity (Lanfear et al. 2010; Hugall and Stuart-Fox 2012);

we would therefore expect white-eyes to have particularly

high rates of DNA evolution. Genomic innovations and evo-

lutionary flexibility may arise from gene gains or losses (Lynch

2000; Brawand et al. 2014). We may also find genes contrib-

uting to reproductive isolation or affecting dispersal abilities to

evolve more frequently under positive selection in white-eyes

relative to other avian taxa (Melo et al. 2011).

In order to study interspecific patterns of genomic differ-

entiation within Zosterops, we compared the genomes of dif-

ferent species of white-eyes, focusing on the white-eye taxa of

the island of Lifou near New Caledonia (fig. 1). The subspecies

of silvereye whose reference genome we sequenced

(Zosterops lateralis melanops) is endemic to Lifou, where it

co-occurs sympatrically with two other endemics: Zosterops

minutus and Zosterops inornatus (Mees 1957). These Lifou

white-eyes exhibit the largest body size differences found in

Zosterops, with Z. minutus being the smallest, Z. lateralis mel-

anops intermediate in size, and Z. inornatus being one of the

largest species of white-eye (Mees 1957; Black 2010). In order

to investigate the pattern, common in the genus, of striking

interspecific phenotypic divergence evolving in an oceanic

island context within short evolutionary time frames, we

used RAD markers of multiple individuals of Z. minutus and

Z. inornatus. We also compared the demographic dynamics of

the three sympatric Lifou species by means of coalescent anal-

yses at the genome level.

Finally, we investigated genomic evolution of white-eyes at

an even finer taxonomic and temporal scale by comparing the

genomes of two silvereye subspecies. We contrast the

genome of the subspecies of silvereye endemic to Lifou to

the resequenced genome of a closely related subspecies—

Zosterops lateralis nigrescens—that occurs on two nearby is-

lands, Ouvéa and Maré (fig. 1). The two subspecies exhibit

striking differences in the color of head plumage, which is

green in Z. lateralis nigrescens and black in Z. lateralis mela-

nops (Mees 1957). By comparing genomes below the species

level, we aim to characterize the pattern of differentiation

occurring in shallow time that may be responsible for the

high diversity of allopatric forms in the silvereye.

In summary, the objectives of this study are to present the

first reference genome of a species of white-eye (silvereye)

and compare it with 1) genomes of other bird families, in

order to investigate the genomic underpinning of rapid speci-

ation in white-eyes; 2) RAD sequences of other species within

the genus Zosterops, in order to identify patterns of genomic

evolution that may be linked to body size differentiation in the

three sympatric endemic taxa of Lifou island, and whole

genome resequencing for investigating their past demo-

graphic dynamics; and 3) the resequenced genome of a dif-

ferent subspecies of silvereye in order to characterize genomic

differentiation that may be associated with intraspecific phe-

notypic differences.

Materials and Methods

Field Collections and Measurements

We obtained blood samples and morphometric data for

white-eyes that inhabit the Loyalty Islands Archipelago,
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110 km northeast of New Caledonia (fig. 1b). We collected

individuals from the three white-eye taxa of Lifou (167�300E,

20�450S), all of which are endemic to the island: The Lifou

silvereye (Z. lateralis melanops), the small Lifou white-eye

(Z. minutus), and the large Lifou white-eye (Z. inornatus).

We additionally collected a different subspecies of silvereye

(Z. lateralis nigrescens) found in Ouvéa Island (166�300E,

20�300S) and also in the Loyalty Islands. Birds were caught

using mist nets during October–December 2011; blood sam-

ples were taken via venipuncture from the subbrachial wing

vein of each bird and stored either in 95% ethanol, Queen’s

lysis buffer, or RNAlater. To avoid resampling, birds were

ringed using colored rings. A total of 176 Z. minutus, 87 Z.

lateralis melanops, 64 Z. inornatus, and 6 Z. lateralis nigrescens

were caught. For each bird, we took the following morpho-

logical measurements: Culmen length, depth, and width

(to anterior and posterior of nostril); length of the tarso-

metatarsus; flattened wing chord length; maximum tail

length; head to bill tip length; and body mass. In order to

summarize variation in morphology, we performed a multi-

variate analysis using R.

Genomic DNA Extraction and Genome Sequencing

Genomic DNA was extracted from blood using Qiagen

DNeasy Blood and Tissue kits (Qiagen, Inc., USA), from one

individual of the silvereye Z. lateralis melanops. The quality and

quantity of genomic DNA were assayed using gel electropho-

resis and fluoroscence measurements (Qubit). Genome se-

quencing was performed at BGI, Hong Kong, using an

Illumina HiSeq 2000 sequencer. Five paired-end fragment li-

braries were generated with small insert sizes of 2� 170,

1� 500, and 2�800 bp plus four longer jumping libraries

with insert sizes of 3� 2,000 and 1�5,000 bp. Sequence

reads were filtered for quality control as follows. We discarded

reads with more than 10% of ambiguous bases or poly-As in

the short libraries (170, 500, and 800 bp), and 20% in the

long libraries (2 and 5 kb). Reads with more than 40% of low-

quality bases (Illumina Q-value<7) for the short libraries and

30% of low-quality bases for the long libraries were discarded.

Reads with adapter contamination (i.e., reads with more than

10 bp aligned to the adapter sequence with no more than 3

bp mismatch allowed) were discarded. Fragment library reads

where paired-end reads overlapped by more than or equal to

10 bp (10% mismatch allowed) were discarded. Finally, iden-

tical paired-end reads, likely resulting from polymerase chain

reaction (PCR) duplicates, were discarded.

Genome Assembly and Quality Check

Genome assembly was performed using ALLPATHS-LG (Broad

Institute of MIT and Harvard), a graph-based assembler that

has been shown to produce high-quality assemblies for

medium- to large-sized genomes (Gnerre et al. 2011). We

used version 44.837 with the default parameters, except

that the Haploidify option was set to “true,” as recommended

for diploid data sets in order to deal with high heterozygosity

(switching this option to “false” was found to produce a

lower quality assembly). Sequencing depth was obtained by

mapping the cleaned fragment reads back to the genome

assembly using SOAP2 (Li, Yu, et al. 2009).

A k-mer analysis approach was used to calculate genome

heterozygosity and identify repetitive regions. In brief, this

method utilizes short sequences of varying length (kbp,

FIG. 1.—Plot of the first two axes from a principal component analysis based on morphological traits measured in sympatric Zosterops species from Lifou

Island (a) and geographical location of the Loyalty islands and distribution of the four white-eye taxa studied here (b).

Cornetti et al. GBE

2682 Genome Biol. Evol. 7(9):2680–2691. doi:10.1093/gbe/evv168 Advance Access publication September 2, 2015



17 bp in our case) from the cleaned short insert size sequence

reads. Using a 1-bp sliding window the frequency distribution

of each k-mer should be normally distributed, with deviations

from this a result of heterozygosity, sequencing error, and

repeat regions in the genome.

The genome Guanine-Cytosine (GC) content was also cal-

culated to check for possible sequencing bias of potential

contamination.

Genome Annotation

Repetitive sequences in the Zosterops genome were identified

and masked with RepeatMasker 4.0.5 (Smit et al. 2010) and

RepBase (Jurka et al. 2005) using repeat regions from the

chicken genome as a reference. The MAKER 2.10 pipeline

(Cantarel et al. 2008) was used for genome annotation with

a combined strategy of homology-based and ab initio gene

prediction approaches. For the homology-based approach,

we aligned protein sequences from chicken, turkey, and

zebra finch to the translated nucleotide sequences from

Zosterops using TBLASTN (Kent 2002) and Exonerate (Slater

and Birney 2005). For the ab initio approach, the SNAP soft-

ware (Korf 2004) was used to generate a consensus gene set

with evidence-based quality values. Only genes with

Annotation Edit Distance (AED) score less than 1 were ex-

tracted for further analysis.

The final list of genes was then annotated using BLASTP

(Camacho et al. 2009) against the NCBI (National Center for

Biotechnology Information) nonredundant protein database

with matches restricted to the four avian species used for

comparative genomics (chicken, turkey, zebra finch, peregrine

falcon) with an e-value threshold of 1�10�5. BLAST2GO

(Conesa et al. 2005) was then used to extract gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes anno-

tations for our genes.

Orthologous Identification

To identify orthologous sequences between avian species, we

downloaded the available coding sequences (CDS) of chicken

(GCA_000002315.2), turkey (GCA_000146605.1), zebra

finch (taeGut3.2.4), and peregrine falcon (http://www.car-

diff.ac.uk/people/view/81128-bruford-flsw-mike, last accessed

September 2015). We performed a reciprocal best-hit BLAST

(BLASTN) using an e-value threshold of 1�10�6 implemented

in BLAST + version 2.2.28 (Camacho et al. 2009).

Positive Selection and Gene Ontology Enrichment
Analysis

To assess the selective pressures acting on the orthologous

genes between Zosterops and the other four avian species,

we compared the nonsynonymous with synonymous substi-

tution ratio (dn/ds ratio) using likelihood methods imple-

mented in PAML v.4.7 (Yang 2007). Accurate estimates of

dn/ds ratio requires high-confidence sequence alignments,

as misalignment errors can potentially result in the false pos-

itive detection of positive selection (Jordan and Goldman

2012). To generate such alignments, the genes were first

translated into protein sequences and then aligned using

four different assemblers (MAAFT, MUSCLE, KALIGN, and

T_COFFEE) with M-COFFEE (Wallace et al. 2006), part of the

T-COFFEE package v.11.0 (Notredame et al. 2000). Consensus

alignments from the four different methods were trimmed so

that only amino acid residues aligned in identical positions by

all assemblers were retained (quality = 9). The trimmed protein

alignments were subsequently reverse translated into nucleo-

tide alignments using the original sequences. The heuristic

algorithm of MAXALIGN (Gouveia-Oliveira et al. 2007) was

then used to identify gap-rich sequences, which may repre-

sent paralogous gene sequences. In such cases, these align-

ments were discarded. To estimate dn/ds ratio for each avian

branch in the phylogeny, we ran the “free-ratio” model for a

concatenate alignment of the retained genes. Branch-site

tests were used to detect episodic positive selection acting

on specified “foreground” branches compared with the

“background” avian phylogeny (Zhang et al. 2005). Each of

the five terminal branches of the phylogeny was individually

assigned as foreground branches for the alternative and null

models. To ensure convergence of the likelihood methods, all

CODEML analyses were ran independently three times with

the lowest likelihood value retained (Yang and Dos Reis 2011).

Significant positive selection for the site and branch-site

models was inferred using log-likelihood ratio tests between

the alternative and null models corrected for multiple testing

(false discovery rate [FDR]< 0.05; Benjamini and Hochberg

1995). For genes with evidence of positive selection, Bayes

Empirical Bayes method was used to assess the significance

of the dn/ds ratio at each codon position (posterior probabil-

ity> 95%; Yang 2007).

The genes potentially evolving under positive selection in

the silvereye were used for an enrichment analysis, using the

hypergeometric test implemented in GOstat (Falcon and

Gentleman 2007).

Genome-Based Phylogeny Reconstruction

We used the 4-fold degenerated sites from genes that did not

show evidence of positive selection to build a phylogenetic

tree. We used JModelTest 2.1 (Darriba et al. 2012) and iden-

tified that GTR + I was the best-fit model based on the Akaike

Information Criterion (AIC). Using this substitution model, a

maximum-likelihood tree was built using RAxML version 8

(Stamatakis 2014). To date the tree and calculate substitution

rates, we used the software MCMCtree from PAML 4.7 (Yang

2007). Because the GTR model is not available in MCMCtree,

we used HKY instead. We ran 200,000 iterations (sampling

every 2 iterations until the program reached 100,000 samples)

after a burn-in of 50,000. We used the age range of the fossil

of Vegavis, an extinct bird related to ducks and geese, to set a
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uniform prior for the root of our phylogenetic tree, that is,

between 66 and 86.5 Ma (Benton and Donoghue 2007).

Gene Gains and Losses

The perl script treefam_scan.pl implemented in TreeFam (Li

et al. 2006) was used to group protein sequences into gene

families. A birth/death process was then modeled in CAFE 3.0

(Han et al. 2013) to estimate gene gains and losses, using an

ultrametric tree obtained from MCMCtree. In order to provide

an accurate birth/death parameter over the tree (lambda), we

removed the gene families that were present in only one spe-

cies, plus four with large size or variance, as required in CAFE.

Possible genome assembly and annotation errors were cor-

rected using the “errormodel” command in the Python

script caferror.py.

Detailed Phylogenetic Analyses of Zosterops

To determine whether the three Lifou taxa are the result of a

single or multiple colonization events, and to infer when the

Loyalty islands were colonized by Zosterops, we constructed a

dated phylogenetic tree of all species of Zosterops from the

southwest Pacific region surrounding New Caledonia, includ-

ing taxa that went extinct in historical times. For this we down-

loaded mitochondrial DNA data (cytochrome B, ND2, ND3,

and ATPase) from GenBank (Phillimore et al. 2008; Black

2010; Black, Clegg, Phillimore, Owens, unpublished data).

GenBank accession numbers are provided in supplementary

table S1, Supplementary Material online. We also sequenced

the ND3 gene for some of our own samples of Loyalty island

Zosterops, using the PCR protocol described in Black (2010).

Phylogeny reconstruction and divergence dating were con-

ducted in BEAST v1.8.0 (Drummond et al. 2012) using the

best model of molecular evolution as selected using the AIC

in JModelTest 2.1 (GTR + I + G, Darriba et al. 2012). We per-

formed divergence dating using an estimated rate of molec-

ular evolution derived from mitochondrial cytochrome B gene

sequences in Passeriformes of 2.07%/Myr (Weir and Schluter

2008). We applied a Bayesian relaxed uncorrelated clock

model and ran 4 independent chains for 30 million genera-

tions with a birth–death tree prior.

Whole Genome Resequencing

DNA was extracted from one individual for each of the fol-

lowing three taxa: Z. minutus, Z. inornatus, and Z. lateralis

nigrescens (Ouvéa Island) and used for library preparation.

One paired-end library was constructed with insert size of

500 bp and sequenced on Illumina HiSeq at BGI, Hong

Kong. Sequence reads were quality filtered as previously de-

scribed for the reference genome of Z. lateralis melanops.

RAD Sequencing

We genotyped 2 pools of 10 individuals of Z. minutus and

Z. inornatus using RAD sequencing to determine the genomic

basis of body size variation. Single-end (100 bp) RADpool li-

braries containing an equal amount of DNA for each sample

per species, prepared with SbfI as restriction enzyme, were

processed at Floragenex (University of Oregon High Through-

put Sequencing Facility). Reads retained after quality control

were aligned to the Z. lateralis melanops genome using

Bowtie2 (Langmead and Salzberg 2012) to obtain SAM

format alignments. The “view” command in SAMTOOLS

0.1.18 (Li, Handsaker, et al. 2009) was used to convert align-

ments from SAM to BAM formats and remove ambiguously

mapped reads. SAMTOOLS “mpileup” command was then

used for generating the input file for POPOOLATION2 (Kofler

et al. 2011). POPOOLATION2 was applied for calculating allele

frequency differences between Z. inornatus and Z. minutus.

For this we set the minimum count of minor allele to 6 and

minimum and maximum coverage to 50 and 200, respec-

tively. Fst-sliding.pl perl script was used to identify single nu-

cleotide polymorphisms (SNPs) highly differentiated between

species with a sliding window of one. The effect of low cov-

erage on Fst estimates was inspected with the Fisher’s exact

test (Fisher 1922) using the fisher-test.pl script from POPOO-

LATION2. P values were corrected for multiple testing. The

significant highly divergent SNPs (Fst>0.7, FDR<0.05) were

mapped on Z. lateralis melanops genome using the perl script

SNPdat_v1.0.5.pl (Doran and Creevey 2013).

Demographic Reconstruction

Historical inferences of effective population size (Ne) for

Zosterops taxa were inferred using the pairwise sequentially

Markovian coalescent model (PSMC; Li and Durbin 2011). We

used SAMTOOLS 0.1.18 (Li, Handsaker, et al. 2009) to gen-

erate diploid consensus sequences for each individual with the

parameter -C50 to reduce the effect of reads with excessive

mismatches. Before running PSMC we converted the diploid

sequences into the required format using the perl script

fq2psmc.pl. The PSMC model was run for the three Lifou

Zosterops taxa with default parameters, 0.5 years as genera-

tion time (Moyle et al. 2009) and our previously estimated

mutation rate. Reliability of our estimates in Ne fluctuation

was evaluated using a bootstrap test run 100 times for each

individual using the 100 simulated data sets. For this the ge-

nomes were split into small fragments and then randomly

sampled, with replacement, using the script splitfa.pl.

Plumage Divergence in Zosterops lateralis

We compared the reference genome of Z. lateralis melanops

(black head plumage) with genome resequencing of the clo-

sely related subspecies Z. lateralis nigrescens (green head

plumage). Reads retained after quality control were synchro-

nized with the reference genome using mpileup command in
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SAMTOOLS and variants were called with “bcftools.” SNPs

obtained were then annotated on Z. lateralis melanops

genome using the perl script SNPdat_v1.0.5.pl (Doran and

Creevey 2013).

Results and Discussion

The Silvereye Genome

High-quality bird genomic data are rapidly accumulating

(Jarvis et al. 2014; Zhang et al. 2014), allowing researchers

to address a variety of questions regarding avian evolution

that were problematic to tackle prior to the genomic revolu-

tion. By presenting the first reference genome for a species of

white-eye, we aim to provide a valuable genomic resource for

complementing and stimulating new research on various

topics in avian biology. We generated 108 Gb of raw

Illumina HiSeq high-throughput DNA sequencing data (sup-

plementary table S2, Supplementary Material online), repre-

senting approximately 80X coverage of the estimated

genome size for a congeneric species (Z. pallidus, 1.35 Gb;

Wright et al. 2014). After filtering raw reads for quality con-

trol, genome assembly resulted in 80,536 contigs and 2,951

scaffolds with a total length of 1.036 Gb, suggesting a cover-

age of 64X, and with an N50 of 3.5 Mb and 22.9 Kb for

scaffolds and contigs, respectively (supplementary fig. S1

and table S3, Supplementary Material online). The good qual-

ity of the genome was confirmed by k-mer and GC content

analyses (supplementary figs. S2 and S3, Supplementary

Material online). These genomic data have been deposited

to GenBank/EBI under the accession LAII00000000.

Comparisons with Other Bird Families

We annotated 20,247 genes in the silvereye genome using

both homology assessment with avian species and de novo

predictions (Cantarel et al. 2008), resulting in a slightly higher

number of genes than other birds (table 1). The proportion of

repetitive elements was similar to that observed in other avian

species and accounted for 5.61% of the genome (supplemen-

tary table S4, Supplementary Material online). A reciprocal

best-hit BLAST (e-value<10�6) approach identified 6,730 po-

tentially orthologous genes among CDS of the five species

analyzed. Further analyses using multiple assemblers and re-

moving putative paralogs resulted in high-quality consensus

alignments of 3,682 orthologous genes. From the 1,511

genes that did not show evidence of positive selection (see

below), we obtained 254,348 4-fold degenerate sites that

were used to build a phylogenetic tree and calculate substitu-

tion rates. The tree, calibrated with a fossil for the zebra finch–

chicken split (Benton and Donoghue 2007), showed

divergence times between species in concordance with previ-

ous phylogenetic analyses (Zhan et al. 2013). Furthermore, our

tree shows that zebra finch and silvereye diverged approxi-

mately 23 Ma (34-12 My, 95% confidence interval [CI]), more

recently than previously identified (44.7 My, fig. 2 and supple-

mentary fig. S4, Supplementary Material online; Jetz et al.

2012). The degenerate sites were also used to calculate sub-

stitution rates: As expected from our hypotheses, we found

that the branch leading to the silvereye had the highest sub-

stitution rate (3.16�10�9 substitutions/site/year). However,

note that because of the relatively deep split between the

silvereye and the zebra finch, some of the substitutions that

have accumulated along the branch leading to Zosterops may

have arisen before this genus split from its sister genus. We

also confirmed that the substitution rates were lowest in the

falcon (1.76� 10�9, as reported by Zhan et al. 2013), while

turkey, chicken, and zebra finch presented intermediate rates

(1.99, 1.88, and 2.25�10�9 substitutions/site/year, respec-

tively; supplementary table S5, Supplementary Material

online).

Gene duplication is considered one of the main genetic

sources for evolutionary innovations, having been shown to

fuel biological diversification and speciation (Lynch 2000;

Brawand et al. 2014). Over 90% of genes for each species

were classified into families, with an average of 2.15 loci per

gene family (supplementary table S6, Supplementary Material

online). Again, as we expected, the branch leading to the

silvereye showed the highest frequency of gene duplication,

with an average of 0.30 genes gained per family (table 2). This

is indicative of a conspicuous high rate of gene duplication in

this part of the tree, with 133 families showing significant

changes in gene numbers (FDR< 0.05; 127 gains and 6

losses; fig. 2 and table 2). Gene gains were observed in

gene families involved in biological processes such as cell ad-

hesion (teneurin, cadherin), cell/cell interaction (ephrin, fibro-

nectin), locomotion (myosin, nesprin), and signal transduction

(tyrosine kinase, glutamate receptor; supplementary table S7,

Supplementary Material online).

To look for possible positive selection acting upon ortholo-

gous genes identified across avian genomes, we calculated

the ratio of nonsynonymous to synonymous substitutions

(dn/ds) on a set of highly reliable genes (3,682, 55% of ortho-

logous genes). Branch-specific dn/ds ratio in the silvereye lin-

eage was above average (0.173), albeit not the highest (fig. 2),

but nevertheless indicating accelerated functional evolution in

Zosterops. Because the branch leading to Zosterops is rela-

tively long (~20 Ma), the signature of selection acting at the

start of this branch may have been lost by subsequent neutral

evolution. The calculations of dn/ds ratios for each individual

locus across the phylogeny showed that the branch leading to

the silvereye had the highest number of genes potentially

evolving under positive selection (990 genes with dn/ds>1,

P<0.05; 881 genes with FDR<0.05), of which 525 are

unique to this lineage (table 3).

Among the genes under positive selection along the branch

leading to the silvereye, we conducted GO enrichment anal-

yses, which, after correcting for multiple testing (FDR<0.20),

detected that 11 “biological processes,” 15 “cellular
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components,” and 27 “molecular functions” were signifi-

cantly enriched (supplementary table S8, Supplementary

Material online). We found that 9 of the 11 enriched biological

processes were related to actin filament-based or regulation

of actin polymerization/depolymerization processes

(FDR<0.20, supplementary table S8, Supplementary

Material online, and list of genes in table 4). Actin, one of

the major cytoskeletal components in eukaryotic cells, pro-

vides a link to both dispersal abilities and reproductive isolation

(Rayment et al. 1993; Pollard and Cooper 2009). First, actin,

together with other molecules (i.e., troponin; table 4), plays a

key function in muscle contraction, and thereby in flight. High

frequency of muscle contractions is necessary to produce

enough power to overcome air resistance and enable flight,

especially for small-sized birds (Biewener 2011). Second, actin

polymerization occurs during sperm capacitation followed by

a rapid depolymerization during the acrosome reaction in

mammals (Breitbart et al. 2005). Actin polymerization is reg-

ulated by actin-related protein 2 (Lee et al. 2013), while destrin

or gelsolin is involved in its depolymerization (table 4; Howes

2001; Finkelstein et al. 2013). Positive selection on genes re-

lated to actin poly/depolymerization supports the idea that

reproductive proteins evolve rapidly during the establishment

of reproductive barriers that lead to speciation (Swanson and

Vacquier 2002). Hence, we suggest a plausible mechanism by

which actin-related genes may facilitate island colonization

(through muscle enhancement) while erecting reproductive

barriers (through fertilization incompatibility), thus providing

a potential solution to the paradox of the great speciator.

Although speculative, these results indicate that pleiotropy

and evolutionary flexibility might hold the key to rapid speci-

ation in white-eyes.

Our comparison of Zosterops with other bird families con-

sistently supports the view that white-eye genomes likely pre-

sent unusual evolutionary flexibility relative to the other avian

lineages included in our analyses, a feature that may have

provided the necessary source material for rapid speciation

and phenotypic differentiation. Although we acknowledge

that including a wider range of avian genomes will be required

in order to confirm this hypothesis, it is clear that our results

FIG. 2.— Phylogeny and genome evolution in white-eyes relative to other birds. On the left, genome-based phylogenetic tree showing time scale in

million years before present, rate of gene gains (+) and losses (�) per million year (above branch), substitution rate (substitution/site/year�10�9; below

branch, left), and branch-specific dn/ds ratio (below branch, right). On the right, mitochondrial DNA-based phylogenetic tree of the white-eyes of Lifou,

Ouvéa, and Maré, showing time scale in million years before present, geographic distribution, body mass (above branch), and phenotypes (photos, O.

Hébert).

Table 1

Summary Statistics of Bird Genomes

Genome

Assembly

Size (Gb)

Percentage

GC Content (%)

Number of

Genes

Percentage of Repetitive

Elements (%)

Scaffold Length

(N50, Mb)

Platform

Zebra finch 1.196 41.3 18,204 7.10 10.00 Sanger

Chicken 1.031 41.2 16,354 8.56 7.07 Sanger

Peregrine falcon 1.174 41.7 16,263 4.30 3.89 Hiseq 2000

Turkey 1.061 40.5 16,496 7.49 1.50 GAII, 454

Silvereye 1.036 41.1 20,247 5.61 3.50 Hiseq 2000
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are consistent with “high evolvability” in Zosterops. Future

work should not only aim at a broader scope in the sampling

of avian lineages, but also at clearly pinpointing the key genes

involved, with a specific focus on actin-related genes that we

found to be of particular relevance.

Comparisons within Zosterops

For our analyses of genome differentiation between different

species of Zosterops, we focused on the white-eyes of Lifou

island, where three species occur in sympatry, whereas most

islands tend to support only one or two species (Gill 1971).

Our morphometric analyses revealed that the three Lifou taxa

exhibit significant, striking differences in body size: Z. minutus

has an average body mass of 9 g (7–11 g, 95% confidence

interval), the silvereye 14 g (13–16 g), and Z. inornatus 22 g

(19–25 g) (supplementary table S9, Supplementary Material

online). These are exceptional in terms of body size differ-

ences, including the two extremes in the genus: Z. minutus,

being the smallest, and Z. inornatus being the largest, both are

found in sympatry (Mees 1957; Black 2010). The phylogenetic

reconstruction including complete sampling of the entire di-

versity of white-eyes in the southwest Pacific region (Black

2010) showed that Z. lateralis melanops, Z. minutus, and

Z. inornatus have independently colonized Lifou, therefore

excluding sympatric speciation on Lifou (supplementary fig.

S5, Supplementary Material online). Calibrating the tree

with the estimated rate of molecular evolution for mitochon-

drial sequences of passeriformes, we found that Z. inornatus

was the first colonizer of the island (1.50 Ma, 0.95–2.07 Ma

95% highest posterior density interval), followed by Z. minu-

tus 1.15 Ma (0.74–1.58) and Z. lateralis (less than 0.5 Ma; sup-

plementary fig. S5, Supplementary Material online). This is

consistent with the idea that avian body size tends to

change following island colonization (Clegg and Owens

2002; Frentiu et al. 2007).

In order to gain insights into a typical pattern of genomic

differentiation in the white-eye radiation, we searched for the

genomic underpinning of body size differences in the Lifou

taxa. Our phylogenetic analysis revealed that Z. minutus and

Z. inornatus diverged about 2.06 Ma (1.67–2.47), suggesting

that the significant divergence in body size between these

Table 4

List of Genes in the Silvereye that are Both Potentially Evolving Under

Positive Selection and Significantly Enriched for Biological Processes

Transcript ID Gene Description

ENSGALT00000039770 Spectrin, alpha, nonerythrocytic 1

(alpha-fodrin, SPTAN1)*

ENSGALT00000002199 Gelsolin (GSN)*

ENSGALT00000014276 Actin-related protein 2 (ACTR2)*

ENSGALT00000018647 Villin 1 (VIL1)*

ENSGALT00000014113 Destrin (actin depolymerizing

factor, DSTN)*

ENSGALT00000015293 Capping protein (actin filament)

muscle Z-line, alpha 2 (CAPZA2)*

ENSGALT00000045497 ADP-ribosylation factor 6 (ARF6)*

ENSGALT00000004183 Adapter molecule crk*

ENSGALT00000044680 Neurotrophin 3 (NTF3)*

ENSGALT00000002214 Troponin C type 1 (TNNC1)*

ENSGALT00000009894 Formiminotransferase

cyclodeaminase (FTCD)

ENSGALT00000039415 Lactate dehydrogenase A (LDHA)

ENSGALT00000008125 Prostaglandin-endoperoxide

synthase 2 (PTGS2)

ENSGALT00000015194 Degenerative spermatocyte

homolog 1 (DEGS1)

ENSGALT00000019819 ELOVL fatty acid elongase 6 (ELOVL6)

ENSGALT00000002022 Basigin (BSG)

NOTE.—Asterisk indicates genes involved in actin filament-based or regulation
of actin polymerization/depolymerization processes.

Table 2

Comparison of the Evolution Gene Families in Avian Genomes

Zebra finch Silvereye Falcon Chicken Turkey

Number of gene family 7,854 7,885 7,745 7,916 7,603

Average expansion (mean number of genes

gained [+] or lost [�] per family)

+0.023 +0.297 �0.188 �0.052 +0.049

Families showing an expansion 1,272 1,785 445 559 1,127

Families remained constant 5,623 5,712 5,894 6,598 616

Families showing a contraction 1,313 712 1,870 1,052 922

Gene gained per million year 55.30 77.61 8.24 22.36 45.08

Gene lost per million year �57.09 �30.96 �34.63 �42.08 �36.88

Table 3

Number of Genes Potentially Evolving under Positive Selection (See

Methods for Details)

Species P Value FDR Bonferroni Exclusive

Silvereye 990 881 576 525

Chicken 140 59 40 24

Falcon 437 342 235 183

Turkey 542 489 369 271

Zebra finch 588 466 302 240
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species has evolved recently. This clade (i.e., including Z. min-

utus and Z. inornatus) split from the Z. lateralis clade 2.77 Ma

(2.41–3.14) (supplementary fig. S5, Supplementary Material

online). We genotyped pools of ten individuals of Z. minutus

and Z. inornatus using RAD sequencing with the aim of iden-

tifying genomic regions with high level of divergence between

the two species. We detected 5,245 SNPs with high diver-

gence (Fst>0.7) and significant differences in allele frequency

(Fisher’s exact test, FDR< 0.05). We did not do a GO enrich-

ment analysis, but instead mapped these SNPs onto the silver-

eye genome; we found that 185 of them are within the exons

of 162 genes. Despite RAD sequences representing a small

portion of the genome, we nevertheless identified 5 genes

among these 162 that are potentially good candidates under-

lying body size divergence, being involved in signal transduc-

tion (“inositol 1,4,5-trisphosphate receptor type 2 and 3”,

both with a key role in metabolism and growth) and structural

(“collagen 6A3” and “17A1”), as well as tissue (“keratin type

I”) development (supplementary table S10, Supplementary

Material online).

We also conducted a genome-wide coalescence analysis in

order to estimate fluctuation in effective population sizes of

the three Lifou taxa, which may be indicative of past interspe-

cific interactions in a context of sympatry. Our reconstruction

revealed that these taxa have experienced contrasting demo-

graphic histories. In particular, during the last 100,000 years,

Z. inornatus and Z. minutus underwent population expansions

while the silvereye saw a reduction (fig. 3). About 25,000

years ago the effective population size of Z. inornatus was

reduced by half, while that of Z. minutus increased and that

of the silvereye shrank. Although the low-depth coverage of

the resequenced genomes could have an effect on the esti-

mated effective population sizes, the demographic dynamic

patterns should not be affected by coverage (Miller et al.

2012). The contrasting demographic trends observed for the

three sympatric species of Lifou could be due to high inter-

specific competition in Zosterops. The reconstructed demo-

graphic trajectories might be compatible with a dynamic

scenario of successive island colonizations followed by com-

petitive exclusion, which potentially set the stage for the strik-

ing divergence in body size between the three sympatric

species that we observe today.

Our analyses of white-eye genomes of different species

from Lifou island reveal that high levels of interspecific differ-

entiation have accumulated in short evolutionary time frames

and that multiple genomic regions appear to have been linked

to body size divergence. In addition, the detected signal of

strong contrasting past demographic fluctuations supports a

scenario of negative competitive interactions within a single

island, thus providing insights into why only fewer than

two species of Zosterops tend to co-occur in a single island

Table 5

List of Plumage-Linked Genes in Various Bird Orders with Indication of Numbers of Nonsynonymous Substitutions in Zosterops lateralis nigrescens

When Compared with Zosterops lateralis melanops

Gene Number of Nonsynonymous

Substitutions

Reference Pathway

Tyrosinase 9 Xu et al. (2013), Wang et al. (2014) Melanin

Tyrosinase-related protein 1 1 Xu et al. (2013) Melanin

Microphthalmia-associated transcription factor 1 Wang et al. (2014) Melanin

Cluster of differentiation 36 3 Walsh et al. (2012) Carotenoids

Beta-carotene 15,150-monooxygenase 1 1 Walsh et al. (2012) Carotenoids

StAR-related lipid transfer 39 Walsh et al. (2012) Carotenoids

Endothelin receptor B 3 Ekblom et al. (2012) Melanin

Endothelin receptor B2 7 Kinoshita et al. (2014) Melanin

Agouti-related peptide 1 Li et al. (2011), Yoshihara et al. (2012) Melanin

G-protein coupled receptor 143 2 Shi et al. (2012) Melanin

Paired box protein-3 1 Li et al. (2011) Melanin

Cyclin-dependent kinase inhibitor 5 Hellström et al. (2010) Melanin

FIG. 3.—Demographic history of the white-eyes of Lifou island based

on coalescence analyses of their genomes. The bold lines show population

sizes through time, with 100 bootstrap analyses indicated by thin lines.

Orange: Zosterops lateralis melanops; red: Zosterops inornatus; green:

Zosterops minutus.
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(Gill 1971). Denser taxonomic sampling of the white-eye clade

that includes Z. minutus and Z. inornatus, combined with

higher depth of coverage of genomic sequence data for

these taxa may reveal precisely what regions are linked to

the remarkable body size differentiation between these closely

related bird species.

Within-Species Comparisons

The two subspecies of silvereye (Z. lateralis melanops and

Z. lateralis nigrescens) diverged less than half a million year

ago (supplementary fig. S5, Supplementary Material online)

and exhibit no differences in body size (fig. 1a), but striking

differences in head color (supplementary fig. S6,

Supplementary Material online). The alignment of the rese-

quenced Z. lateralis nigrescens genome to the Z. lateralis mel-

anops reference genome revealed 3,700,336 SNPs, 124,105

of which mapped to exonic gene regions and 25,374 of them

resulted in nonsynonymous substitutions. The 6,737

Zosterops genes containing at least one nonsynonymous sub-

stitution were blasted against the chicken CDS gene set.

Among the BLAST best-hits (e-value< 10�6), we found that

12 genes were related to bird feather color through the mel-

anin or carotenoid synthesis pathway (table 5); none of them

resulted to be under positive selection. Of particular interest

was MIFT, known to affect melanin synthesis and the color of

bird plumage (Wang et al. 2014), and which was truncated by

a stop codon in Z. lateralis nigrescens. Although more detailed

analyses would be necessary to obtain exhaustive conclusions,

our analysis highlights some genomic regions that can provide

a good primer for further tests of the genetic basis of green

and black-headed plumage color in the silvereye, which may

in the future help explain more widely patterns of melanism in

white-eyes and other birds.

In conclusion, we have conducted a set of genomic analy-

ses at different taxonomic scales in order to gain insights into

the genetic basis of fast diversification in white-eyes. Given

that Zosterops is one of the most rapidly diversifying lineages

of birds (Moyle et al. 2009; Jetz et al. 2012), we hope that the

silvereye genome will help shed light on the drivers of species

radiations, as well as on the ability of birds to colonize and

adapt to newly invaded environments. Although our study has

provided some clues as to how the paradox of the great

speciator may be solved, for example, through the rapid evo-

lution of actin-related genes, further analyses including multi-

ple individuals from the many islands colonized by Zosterops

would be welcome in the future.

Supplementary Material

Supplementary figures S1–S6 and Tables S1–S10 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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