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Rhizosphere microorganisms are essential parts in maintaining soil ecological

functions. Reforestation using genetically modified trees might have great

potential to enhance tree production in biotic and abiotic stress, however,

their long-term impact on rhizosphere microorganisms is scant. In this study,

we studied soil enzyme activities and composition of rhizosphere

microorganisms in 2-year-old transgenic PaGLK overexpression (OE),

repressed expression (RE) and wild-type (WT) poplar (P. alba × P.berlinensis).

The root exudates of PaGLK transgenic poplar (P.alba × P. berlinensis) were

analyzed by liquid chromatography-mass spectrometry (LC-MS). The results

showed that there were significant difference for soil sucrase, urease, catalase,

neutral protease and cellulase between the transgenic and WT lines at different

growth periods. Alpha diversity analysis showed that bacterial community

abundance and diversity for RE lines were significantly lower than WT (p <
0.05), while RE lines for fungi were significantly higher than WT lines. At the

genus level, Burkholderia was the dominant group of rhizosphere bacterial

community, and the relative abundance for RE was significantly higher thanWT.

Tomentella was the dominant group for fungi community. Serendipita for RE

was significantly higher thanWT andOE. Mainmetabolite contents of (S)-ACPA,

geniposidic acid, agnuside, hydroquinone and pyranocoumarins were

significantly different among transgenic lines. These results suggest that

transgenic activities have effects on root exudates, rhizosphere soil enzyme

activities and soil microbial community composition, but long term effects need

to be further investigated.
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Introduction

Soil microorganisms maintain soil ecological functions and

play an important role in participating plant growth, soil

nutrients and formation of humus. In rhizosphere, soil

microorganisms and plant roots are closely interacted in

competitive and cooperative way to form a complex

equilibrium relationship (Philippot et al., 2013). Plants

produce organic matters by photosynthesis and release them

into the soil in the form of root exudates or mucus to provide

nutrients for soil microorganisms; whereas rhizosphere soil

microorganisms decompose the organic matters released by

plants and return them to the soil in the form of inorganic

matter, which promotes the nutrient cycle of the ecosystem

(Lynch&Whipps., 1990).

In recent years, the reforestation of genetically modified trees

has become a controversial topic of interest, due to concerning

foreign gene expression products altering enzymic activity of

rhizosphere soil and microbial community composition,

Previous studies have been reported in transgenic maize,

cotton and other crops, and the effects of foreign gene

products on rhizosphere soil microorganisms were

inconclusive (Yasin et al., 2016; Ahamd et al., 2017; van Wyk

et al., 2017). Some transgenic plants inhibit the growth of some

microorganisms in the soil through root exudates, and promote

the survival and reproduction of other microorganisms, resulting

in favorable soil for plant growth (Phour et al., 2020). Bt

transgenic cotton (G. hirsutum), CrylAc + CpTI transgenic

cotton and Cry1Ie transgenic maize (Zea mays L.) showed

that there were no significate differences for diversity and

composition of rhizosphere soil microbial community with

non-transgenic plant (Zhang et al., 2015; Jingang et al., 2018;

Li et al., 2018). In forestry, transgenic genetic poplar, such as

insect resistant transgenic poplar, has been approved and become

possibility of deployment (Jing et al., 2004; Guifeng et al., 2006;

Guifeng et al., 2006; Zhou et al., 2018). More transgenic poplars

are still in the stage of trial and environmental risk assessment

(Lu et al., 2014; Zhu et al., 2016; Hu et al., 2017). Five years of field

monitoring of the Bt transgenic 741 poplar showed that the

introduction of the Bt gene has neither affected the stability of

arthropod communities nor the rhizosphere soil

physicochemical properties and microbial community

structure (Zuo et al., 2018). Other studies on transgenic

poplar such as transgenic Bt Poplar and transgenic populus ×

euramericana ‘Guariento’ showed that the introduction of

exogenous sources had limited effect on the composition of

rhizosphere soil bacterial or fungal communities (Bonadei

et al., 2010; Fan et al., 2020; Huang et al., 2022).

In our previous study, we used the male strain of a male

triploid hybrid poplar, P. alba × P. berlinensis to produce PaGLK

overexpression (OE) and repressed expression (RE) lines by

Agrobacterium mediated leaf disk method (Li et al., 2021).

Golden 2-like (GLK) is mainly involved in plant chloroplast

development, affecting leaf color or other functions (Yeh et al.,

2022). Leaf chlorophyll content in OE was significantly higher,

while leaf chlorophyll content in RE was significantly lower than

theWT. Leaf color of RE lines was bright yellow green. Therefore,

we expect that RE could become a new cultivar for urban

ornamental tree. As GMO regulatory requirements, we need

to carry out biosafety evaluation for the transgenic PaGLK

poplar. In this study, we characterized the soil enzyme activity

and microbial community in the rhizosphere soil, in order to

define the impact of transgenic PaGLK poplar hybrid (P. alba ×

P. berlinensis) on rhizosphere microorganisms.

Materials and methods

Plant materials

The Wild type poplar (WT) material used is P.alba ×

P.berolinensis, grown on MS solid medium with MS + 0.5 mg/

L 6-BA + 0.02 mg/L NAA. The transgenic poplar plants

overexpressing PaGLK (OE1, OE2, and OE3, hygromycin as a

selection agent) grown on MS solid medium with MS+0.5 mg/L

6-BA+0.02 mg/L NAA+200 mg/L Cef+10 mg/L Hyg. The

transgenic poplar plants repressed expression PaGLK (RE1,

RE2 and RE3, Glufosinate ammonium as a selection agent)

grown on MS solid medium with MS + 0.5 mg/L 6-BA +

0.02 mg/L NAA + 200 mg/L Cef + 1 mg/L Glufosinate

ammonium. The above tissue culture subculture plants were

preserved in our laboratory. The rootless seedlings were cultured

in the rooting medium (1/4 MS + 0.5 mg /L IBA) for about

30 days. The seedlings were transplanted to the seedling tray in

mid-April 2019. The plant substrate was soddy soil: black soil:

vermiculite (v/v) = 4:3:3, which was placed in the plastic shed for

conventional water and fertilizer management. The highly

consistent plants were selected in mid-May and transplanted

to the 21 cm × 21 cm flower pot. The substrate was soddy soil:

river sand: black soil (v/v) = 2:1:1, and the plastic tray was placed

under the pot. A total of 40 plants grew at the Birch Breeding Base

located at 126°64′E and 45°72′Nof Northeast Forestry University

in Harbin, Heilongjiang Province. It belongs to the continental

monsoon climate in the middle temperate zone. The annual

average precipitation is 569.1 mm. The precipitation is mainly

concentrated from June to September, and the frost free period is

168 days. There are four distinct seasons. The annual average

temperature is 5.6°C, the highest monthly average temperature is

23.6°C, and the lowest monthly average temperature is −15.8°C.

Soil sampling

Soil samples were collected from rhizosphere of transgenic

OE lines (OE1, OE2, OE3), RE lines (RE1, RE2, RE3) and WT

lines. Sampling was done on the day 15th in each month of July,
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August and September 2020. Each line had three biological

replications with a total of 21 plants. Soil samples with three

samples per plant were collected under 5cm from soil surface.

Soil samples were air-dried at laboratory for further analysis of

soil enzyme activity. Plant samples were collected on 3 September

2020, 21. After removing the floating soil, the manual soil

sampler was used to collect the roots with soil down to the

middle layer of the flowerpot. Three places were sampled in each

pot. The loose soil was gently shaken off, and evenly mixed for

testing. The roots with soil attached were put into zipper bags

before measuring the composition of rhizosphere microbial

community.

Determination of soil enzyme activity

Soil enzyme activity was determined by spectrophotometric

method. The air-dried soil samples were passed through a 50-

mesh sieve, and the assay tubes and standard tubes were set up

using soil urease (S-UE), soil cellulase (S-CL), soil catalase

(S-CAT), soil sucrase (S-SC) and soil neutral protease

(S-NPT) kits (Suzhou Comin Biotechnology Co., Ltd.), and

finally, the extracted supernatant was measured at the

wavelengths of 578, 620, 240, 510 and 680 nm respectively,

and repeated for 3 times. The values were counted in Excel

and calculated as graphs, and SPSS software was used for

ANOVA and multiple comparisons.

Determination of rhizosphere microbial
community composition

Root sample was placed in 0.85% NaCl sterile solution

triangular flask, shaking at 200 rpm/min for 15 min, then the

root was discarded. Soil suspension in 2 ml was collected in

centrifuge tube and centrifuged at 10000 rpm / min at 4°C for

10 min. After discarded supernatant, soil precipitation was

collected with 6 tubes per sample. Total DNA of soil

microorganisms was extracted from soil sample by DNeasy

PowerSoil Kit (QIAGEN Group). High-throughput sequencing

was done by Shanghai Personal Biotechnology Co.,Ltd. for

bacterial 16S and fungal ITs database construction.

DADA2 method was used for primer removal, quality

filtering, denoising, splicing and chimerism removal. Each de

duplication sequence generated after quality control was called

ASVS (amplitude sequence variants). QIIME2 (2019.4) was used

for alpha diversity and species composition analysis.

Determination of root exudates

The shoots collected from tissue culture transgenic OE, RE

and WT plants were cultured in the rooting medium. After

25 days, the shoots with the same growth status (2 plants per

tube, 15 tubes per line) were collected in 50 ml centrifuge tubes.

Then, 15 ml sterile deionized water was added and cultured at

25 ± 2°C for 30 days under light/dark cycle of 16 h/8 h. The

culture solution was collected in every 10 days, and another 15 ml

of sterile deionized water was added. Then, the collected root

culture solution was stored at −80°C. After three collections,

samples were sent to Shanghai Hoogen Biotechnology Co., Ltd.

for GC-MS analysis. As for chromatographic condition,

ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm,

1.7 μm, Waters, United States) was used. For mass

spectrometry, electrospray ion source (ESI) and data were

collected in positive and negative ion modes. The samples

were separated by UHPLC and analyzed by Q-Exactive

quadrupole-electrostatic field orbital trap high resolution mass

spectrometer (Thermo Fisher Scientific, United States).

Results

Enzyme activity in rhizosphere soil of
transgenic poplar

The five enzyme activities in rhizosphere soil of transgenic

PaGLK poplar OE, RE lines, and WT were presented in

Figure 1. In mid-July, the five soil enzyme activities in

rhizosphere soil of OE and RE lines were lower than those

of the WT, however, there were few exceptions: urease activities

for RE1 and RE3, catalase activities for RE1, cellulase activities

for RE2, and neutral protease activities for OE1. In particular,

the rhizosphere soil enzyme activities of OE lines were the

lowest, except neutral protease activities of OE1. Sucrase and

urease for OE were 54.11% and 41.46% lower than WT,

respectively. In general, the average activity of OE was lower

than WT. The catalase and cellulase were 1.12% and 29.09%

lower than WT, respectively. As plant grew, cellulase decreased.

However, other four soil enzyme activities showed an

increasing trend.In mid-August, the urease activity

(Figure 1B) of the transgenic lines was significantly lower

than WT, the catalase activity (Figure 1C) of the OE showed

a higher trend than WT, and the neutral protease activity

(Figure 1D) of the RE was significantly higher than WT.

Characteristics of bacterial and fungal
communities in rhizosphere of transgenic
poplar

The diversity of microbial community of rhizosphere soil for

transgenic poplar are shown in Figure 2. There are 971 genera for

bacterial communities in the rhizosphere (Figure 2A).

Burkholderia was a dominant group for all transgenic lines,

except OE1. The relative abundance of this genus in RE lines
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was significantly higher thanWT, while the relative abundance of

OE lines was significantly lower than WT.

There were 466 genera in the rhizosphere soil fungal

community of the tested lines at the genus level (Figure 2B).

Tomentella was a dominant group of the rhizosphere fungal

community for all transgenic lines. Tomentella for WT was

57.13% which was the highest, while Tomentella for OE and

RE decreased to varying degrees (Figure 2B). In addition, it was

also found that Sphaerosporella for OE increased significantly,

and the average value was 24.20% higher than WT and 33.83%

higher than RE. Serendipita for RE lines was significantly higher

than the WT and OE.

Changes of bacterial and fungal
community abundance and diversity in
rhizosphere soil

Table 1 showed that the sequencing coverage of bacteria and

fungi for all samples were above 96%. Results also showed that

FIGURE 1
Comparison of rhizosphere soil enzyme activities between transgenic lines and WT. (A) Sucrase activity (B) Urease activity (C) Catalase activity
(D) Neutral protease activity (E) Cellulase activity.

FIGURE 2
Relative abundance of rhizosphere soil microbial communities in populus in the first 20 orders. (A) Bacteria (B) Fungi.
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the diversity changes of bacterial and fungal communities in

rhizosphere soil. The observed species, Chao1 community

abundance parameters, Shannon and Simpson diversity

indexes showed that there was no significant difference in

bacterial community abundance and diversity between OE

and WT (except OE2). However, bacteria community

abundance and diversity for RE lines were lower than WT

(p < 0.05). In terms of fungal community composition, the

abundance and diversity for OE and RE lines were higher

than those of WT lines, except OE3.

Wayne diagrams were based on the characteristic sequences

(ASV) of bacteria and fungi in rhizosphere soil among the tested

lines (Figure 3). As for rhizosphere soil bacteria, ASV was only

2.94% of the total 1080 in the tested lines. This indicates that

there were significant differences of ASV among tested lines

(Figure 3A). The specific ASV of WT lines was 3952. The specific

ASVs of the three OE lines were 5146, 3458 and 4199,

respectively. The specific ASVs for RE lines were 2454,

2579 and 3275, respectively. According to ASVs shared with

the WT, the highest similarity withWT was 306 for OE1, and the

lowest similarity was 215 for RE3.

As for rhizosphere soil fungi, there were 164 ASVs in all

tested lines which was accounted for 3.54% of the total. This

indicates that there were differences in ASVs among the tested

lines (Figure 3B). The specific ASV of WT lines was 292; the

specific ASVs of the three OE lines were 603, 380 and 224,

respectively; the three specific ASVs of RE lines were 599, 528 and

458, respectively. According to the number of ASVs shared with

TABLE 1 Alpha diversity of bacteria and fungi in rhizosphere soil of transgenic PaGLK poplar.

Class Sample Observed_species Chao1 Shannon Simpson Coverage

Bacteria WT 4793a 6015a 9.967ab 0.9912a 0.9694b

OE1 4863a 5826ab 10.31ab 0.9962a 0.9722ab

OE2 4266bc 5078bc 9.849ab 0.9903a 0.9769a

OE3 4497ab 5336abc 10.30a 0.9974a 0.9756a

RE1 3911c 4975c 9.279bc 0.9856a 0.9758a

RE2 3768c 4741c 8.717c 0.9632b 0.9773a

RE3 4097bc 5125bc 9.443bc 0.9870a 0.9742ab

Fungi WT 465cd 465.60cd 3.791cd 0.8235ab 0.9999a

OE1 655ab 656.03ab 4.609bc 0.8402ab 0.9999a

OE2 536bcd 537.73bcd 3.828cd 0.7221bc 0.9999a

OE3 369d 370.77d 2.623d 0.6238c 0.9999a

RE1 721a 722.35a 6.045a 0.9417a 0.9999a

RE2 634abc 635.49abc 5.654ab 0.9397a 0.9999a

RE3 592abc 593.06abc 5.906ab 0.9512a 0.9999a

Note: Means with the same letters were not significantly different at p < 0.05.

FIGURE 3
ASV Wayne diagram of bacteria and fungi in rhizosphere soil of P. alba × P. berlinensis. (A) Bacteria (B) Fungi.
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FIGURE 4
PCA of bacterial and fungal community genera in rhizosphere soil between transgenic PaGLK and WT poplar. (A) Bacteria (B) Fungi.

FIGURE 5
Abundance clustering heat map of the top 50 bacterial community genera in rhizosphere soil of the test lines.
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WT, the highest similarity with WT was 35 for OE1, and the

lowest similarity was 12 for OE3.

Principal component analysis (PCA) was performed at the

ASV level, and the results showed that PC1 and PC2 to the

bacterial community structure in rhizosphere soil were 88.8%

and 4.2%, respectively (Figure 4A), and the cumulative

contribution rate was 93.0%, which was considered to be the

main reason for the change of bacterial community structure. As

for fungal community in rhizosphere soil, PC1 and PC2 were

49.2% and 33.9%, respectively (Figure 4B), and the cumulative

contribution rate was 83.1%, indicating that the above principal

components could also explain the differences in fungal

community. Figure 4 showed that rhizosphere soil bacterial

composition difference between RE lines and WT lines was

small. Fungal community composition difference between OE

lines and WT lines was small as well.

In order to further compare the horizontal composition of

bacteria and fungi in rhizosphere soil between samples, the heat

map was drawn by the average abundance of the top 50 genera.

The results showed that RE lines was closer to WT lines in the

rhizosphere soil bacterial (Figure 5) and OE lines were closer to

WT lines in the rhizosphere soil fungi (Figure 6). The heat map

results were consistent with the above PCA analysis.

Different analysis of root exudates in
transgenic P.alba × P.berolinensis

Figure 7 showed that the Wayne diagram based on the

differential metabolites of the three groups. There were

28 common differential metabolites in the comparison 3

groups of RE vs. WT, OE vs. WT and RE vs. OE. Among

FIGURE 6
Abundance clustering heat map of the top 50 genera in rhizosphere soil fungal communities of the tested lines.
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them, the contents of 5 differential metabolites were significantly

up-regulated in RE lines, but significantly down-regulated in OE

lines. In addition, Among the other 23 different metabolites, 2

were significantly up-regulated and 21 were significantly down

regulated in transgenic lines (p < 0.05).

Discussion

Effects of transgenic poplar on soil
enzyme activity

Soil enzymes are mainly produced by soil microorganisms

and plant roots. Their activity reflects the dynamic change of

organic matter in soil and the material cycle of C, N, S, P and

other elements, which is an important indicator for evaluating

soil quality (Sobucki et al., 2021). Rhizosphere is a key area for the

interaction among plants, soil and microorganisms. Exogenous

gene products of transgenic plants may enter the soil through

root exudates or plant residues (Melnitchouck et al., 2006).

Therefore, people tried to understand the impact of exogenous

gene expression products on soil microecology through the

changes in rhizosphere soil enzyme activities of transgenic

plants. Studies showed that transgenic Bt cotton had no

significant effect on soil urease (Shen et al., 2006; Luo et al.,

2017), while some Bt lines had certain effect on soil urease. The

degree of influence varied from cotton varieties, growth stages

and soil types (Li et al., 2019). The rhizosphere soil enzyme

activity of transgenic PaGLK poplar were different between

transgenic lines and WT lines in different growing stages. As

plant was growing, the rhizosphere soil urease, catalase and

neutral protease activities of the tested lines showed an

increasing trend (Figures 1B–D). However, cellulase showed

a downward trend (Figure 1E). The rhizosphere enzyme

activities of transgenic lines and WT lines at different

growing stages were not the same (Figures 1B–D). For

example, in mid-September, the activities of catalase and

cellulase in rhizosphere of RE lines were higher than those

of WT lines (Figure 1C); the activity of neutral protease in

rhizosphere of OE lines was higher than that of WT. The other

four enzyme activities were lower or significantly lower than

that of WT lines. In this experiment, the rhizosphere soil

enzyme activity of 2-year-old old transgenic lines was

studied. Further long term study is needed to investigate

whether the introduction of target genes and exogenous

genes had an effect on rhizosphere soil enzyme activity.

Effects of transgenic plants on soil
microbial community

Studies have shown that the composition and richness of

rhizosphere soil microbial community were often affected by

plant species, plant growth period, tillage management and

exogenous gene introduction (Gabriele Berg, 2009). For

example, the study of herbicide-resistant transgenic soybean

NZL06-698 on soil microbial community composition showed

that its microbial species abundance and diversity decreased, as

well as the abundance of nitrogen-fixing bacteria (Lu et al., 2017);

Analysis of bacterial Alpha diversity and community structure in

rhizosphere soil of transgenic Btmaize and non-transgenic maize

at mature stage showed that there were significant differences in

alpha diversity and community composition between them (van

Wyk et al., 2017). Studies have shown that the composition and

richness of soil microbial community in plant rhizosphere are

often affected by biological and abiotic factors such as plant

species, plant growth period, cultivation management mode and

introduction of foreign genes. In this study, results showed that

the fungal community abundance and diversity of OE and RE

lines were higher than those of WT lines. There was no

significant difference in bacterial community abundance and

diversity between OE and WT lines, while RE lines was lower

or significantly lower than WT.

Studies have also shown that although transgenic plants have

a certain impact on rhizosphere soil microbial communities, but

the impact may be less than the plant growth, fertilizer and field

management and other factors (Liu et al., 2005; Susanne and

Christoph C, 2005). For example, the rhizosphere microbial

community of transgenic glufosinate-tolerant oilseed rape (

Brassica napus) did not change significantly compared with

wild type, and the effect of different growing stages of rape on

rhizosphere soil microbial community structure was greater than

effect of transgenic plants (Gyamfi et al., 2002). Similarly, the

results of transgenic Bt maize indicate that spatial variation and

FIGURE 7
Wayne diagram of differential metabolites in three groups.
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heterogeneity in the field had a greater effect on the community

structure of the Arbuscular mycorrhizal fungi (AMF) than host

Bt transgenic plant cultivars (Cheeke et al., 2015). In this study,

we analyzed the rhizosphere soil bacterial and fungal

communities of 2-year-old transgenic P. alba × P. berlinensis.

For perennial trees, whether these differences changed or

weakened in later years needs further study. Our results

showed that Burkholderia was the dominant bacterial genus

in the rhizosphere of P. alba × P. berlinensis, and its relative

abundance decreased in PaGLK OE lines (containing

hygromycin resistance gene), and increased in PaGLK

repression of RE lines (containing herbicide resistance gene).

Burkholderia is a kind of bacteria with wide distribution and

diverse functions. In recent years, with the increase of studies on

plant-related Burkholderia, more and more evidence has shown

that most species in the genus Burkholderia are important plant

rhizobacteria. For example, involved in bioremediation,

nitrogen fixation, growth promotion, induction of plant

resistance, etc (Depoorter et al., 2016). ITS sequencing

analysis showed that Tomentella was the dominant group in

rhizosphere soil fungal community. The previous study has

proved that the fungi of Tomentella are widely distributed in

the world, which can form exogenous mycorrhizal fungi with

Salicaceae, Betulaceae, and Pinaceae (Jakucs et al., 2005). The

results of this study show that Tomentella is also a dominant

fungal group in the rhizosphere of P. alba × P. berlinensis, and

the relative abundance is the highest in the rhizosphere of WT

lines.

Effects of soil microorganisms on plant
growth

Studies have found that rhizosphere microorganisms also

change the physiology of plants or promote their growth in

different ways. For example, Serendipita indica is a root fungus

colonized in a variety of plants. It not only establish symbiotic

relationships with plants, but also induce plants to synthesize

secondary metabolites, thereby promoting plant growth,

accelerating plant uptake of nutrients such as nitrogen and

phosphorus, enhancing plant tolerance to adversity, and

inducing plants to produce systemic resistance (Ray et al.,

2021; Ray et al., 2021). This study also had the colonization of

Serendipita, but the relative abundance of Serendipita fungi in the

rhizosphere of RE lines was significantly higher than that of WT

and OE lines (Figure 2B ). The RE lines’ leaf chlorophyll content

is significantly lower than that of WT and OE lines. The 2-year-

old plant height and ground diameter survey showed that the

three RE lines did not affect plant height growth due to the

decrease of leaf chlorophyll content. Whether the growth

performance of RE lines was promoted by the distribution of

highly abundant Serendipita fungi in the rhizosphere needs

further verification.

Effects of root exudates of transgenic
poplar on microbial composition

The content of metabolites secreted by plant roots is closely

related to ecological factors such as environment and climate

conditions, and genetic factors also have a great impact on it

(Calvo et al., 2019). In order to overcome the influence of

environmental factors, root exudates were collected in sterile

test tubes with the same culture conditions. OE lines can

constitutively express PaGLK gene and hygromycin

resistance gene (the protein kinase expressed by this gene

can make hygromycin inactive), while RE lines decreased the

PaGLK expression and the BAR gene product was expressed.

Due to the difference of PaGLK gene expression level and

the difference of marker genes, LC-MS analysis showed that

the contents of (S) -ACPA, geniposidic acid, agnuside,

hydroquinone and pyranocoumarins in RE lines were

significantly higher than those in WT lines, while in OE

lines, the contents of these substances were significantly

lower than those in WT lines (Table 2). In the research

system of the interaction between plants and rhizosphere

microorganisms, the microorganisms that are attracted by

plant root exudates and gathered around the rhizosphere are

TABLE 2 5 differential metabolites between RE vs. WT and OE vs. WT.

Name Class RE_WT
p-value

OE_WT
p-value

(S)-ACPA Amino acids, peptides 0.013 0.044

Geniposidic acid Terpene glycosides 0.032 0.012

Agnuside Terpene glycosides 0.040 0.025

Hydroquinone Benzenediols 0.020 0.002

(9R,10R)-10-hydroxy-8,8-dimethyl-9-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)
oxan-2-yl]oxy}-2H,8H,9H,10H-pyrano[2,3-h]chromen-2-one

Pyranocoumarins 0.047 0.020
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beneficial to plant growth and development , which can help

plants obtain nutrients in extreme environments to help plants

grow better (Mukhtar et al., 2019), there are also plant root

rot caused by Fusarium oxysporum, resulting in decreased

plant nutrient uptake and death (Maryani et al., 2019).

Pyranocoumarins, agnuside, hydroquinones, geniposidic acid

and other metabolites in the root differential metabolites of

PaGLK transgenic populus have a variety of physiological

and pharmacological activities such as antioxidant, free

radical scavenging and antibacterial (Patel and Patel, 2011;

Rajarajeswari and Pari, 2011). Our results show that the

increase of the above metabolites in the rhizosphere of RE

lines may be beneficial to the proliferation of Serendipita,

and the decrease of its content in the OE lines is a

favorable environmental condition for the reproduction of

Sphaerosporella.

Rhizosphere is the main place for plants to communicate

with rhizosphere microorganisms. The results showed that the

OE and RE lines of P. alba × P. berlinensis showed some

differences in root exudates, rhizosphere soil enzyme activity,

bacterial and fungal community composition due to the

different expression levels of PaGLK gene and the

difference in selection marker genes. Some metabolites with

pharmacological activities such as antioxidant and

antibacterial in root exudates were significantly increased in

RE lines, while those in OE lines were lower than those in WT

line, at the same time, it was found that the rhizosphere soil of

RE lines was probiotic increased significantly. In conclusion,

the transgenic lines involved in the plant growth stage did not

adversely affect root exudates, rhizosphere soil enzyme

activities and microbial community composition. Since we

only studied one season, we can’t confidently determine whether

this effect was due to the transgenic P. alba × P. berlinensis lines or

plant growing stages, or temporary unknow factors. Therefore, it is

necessary to study the rhizosphere soil microbial community

structure and soil enzyme activity of the tested lines in different

development stages and different years.
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