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Abstract

The reliable identification of the irritative zone (IZ) is a prerequisite for the correct clinical

evaluation of medically refractory patients affected by epilepsy. Given the complexity of

MEG data, visual analysis of epileptiform neurophysiological activity is highly time consum-

ing and might leave clinically relevant information undetected. We recorded and analyzed

the interictal activity from seven patients affected by epilepsy (Vectorview Neuromag), who

successfully underwent epilepsy surgery (Engel > = II). We visually marked and localized

characteristic epileptiform activity (VIS). We implemented a two-stage pipeline for the detec-

tion of interictal spikes and the delineation of the IZ. First, we detected candidate events

from peaky ICA components, and then clustered events around spatio-temporal patterns

identified by convolutional sparse coding. We used the average of clustered events to create

IZ maps computed at the amplitude peak (PEAK), and at the 50% of the peak ascending

slope (SLOPE). We validated our approach by computing the distance of the estimated IZ

(VIS, SLOPE and PEAK) from the border of the surgically resected area (RA). We identified

25 spatiotemporal patterns mimicking the underlying interictal activity (3.6 clusters/patient).

Each cluster was populated on average by 22.1 [15.0–31.0] spikes. The predicted IZ maps

had an average distance from the resection margin of 8.4 ± 9.3 mm for visual analysis, 12.0

± 16.5 mm for SLOPE and 22.7 ±. 16.4 mm for PEAK. The consideration of the source

spread at the ascending slope provided an IZ closer to RA and resembled the analysis of an

expert observer. We validated here the performance of a data-driven approach for the auto-

mated detection of interictal spikes and delineation of the IZ. This computational framework

provides the basis for reproducible and bias-free analysis of MEG recordings in epilepsy.

1 Introduction

Magnetoencephalography (MEG) has been proven as a useful clinical tool for the improve-

ment of surgery outcome in epilepsy [1,2]. Guidelines are provided for the use of MEG in clin-

ical settings [3–5] and its integration in the presurgical work-up [6]. The impact of MEG in

epilepsy investigation has been retrospectively validated on intracranial EEG recordings on

large patient cohorts, with resection of MEG foci associated with good outcome [7,8]. The

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275063 October 25, 2022 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chirkov V, Kryuchkova A, Koptelova A,

Stroganova T, Kuznetsova A, Kleeva D, et al. (2022)

Data-driven approach for the delineation of the

irritative zone in epilepsy in MEG. PLoS ONE

17(10): e0275063. https://doi.org/10.1371/journal.

pone.0275063

Editor: Gennady S. Cymbalyuk, Georgia State

University, UNITED STATES

Received: January 12, 2022

Accepted: September 9, 2022

Published: October 25, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0275063

Copyright: © 2022 Chirkov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We have reserved a

DOI on the Zenodo platform 10.5281/zenodo.

7114578.

https://orcid.org/0000-0003-3950-898X
https://orcid.org/0000-0002-1263-8162
https://orcid.org/0000-0002-9019-3760
https://doi.org/10.1371/journal.pone.0275063
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275063&domain=pdf&date_stamp=2022-10-25
https://doi.org/10.1371/journal.pone.0275063
https://doi.org/10.1371/journal.pone.0275063
https://doi.org/10.1371/journal.pone.0275063
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7114578
https://doi.org/10.5281/zenodo.7114578


consideration of MEG findings in patient treatment prospectively improved clinical manage-

ment optimizing intracortical EEG implantation and surgical plan [9,10]. This evidence is

built on the localization of interictal epileptiform discharges (IED), in the form of spikes and

sharp waves. While interictal activity contains valuable information to support successful non-

invasive clinical assessment [11], the identification of epileptiform events is committed to the

visual inspection of expert reviewers. MEG recordings are characterized by multivariate infor-

mation embedded in some few hundreds channels, where possibly repeating patterns with var-

iable signal-to-noise ratio (SNR) arise from the background activity. In this context, visual

analysis represents a time consuming procedure prone to human bias.

Several automated approaches for IED detection have been proposed for invasive and non-

invasive EEG, based on a-priori assumptions on the morphological, spectral and statistical

properties of epileptic spikes [12]. Recent approaches based on machine learning showed high

sensitivity of linear classifiers [13,14] and deep-learning [15] for the detection of visually iden-

tified events. These strategies have been applied retrospectively, based on specific properties of

the spike signal or following the training of a classifier on extensive available datasets. This

poses some limitations on their applicability to prospective cases.

Ideally, MEG analysis requires data-driven adaptive strategies, scalable to the peculiarity of

the individual case. An interesting approach is this direction is represented by dictionary

learning [16]. The target of this approach is the extraction of prototypical waveforms, to which

we refer here as ‘atoms’, that are emblematic representations of the signal under study. The

mathematical framework to apply dictionary learning of atoms to multivariate neural time

series is provided by convolutional sparse coding (CSC, [17]). While CSC has been successfully

applied to image processing and neurophysiological signals [18], an implementation particu-

larly suitable for MEG has been recently proposed [19,20].

Here we tested and validated a data-driven strategy, which aims to identify and cluster clini-

cally relevant events, with minimal assumptions imposed by the user and with the option of

visual validation of extracted clusters. Our approach is organized in two main stages: first, the

selection of candidate IED by peak detection and dipole fitting [21]; second, the validation of

candidate IEDs undergoes spatiotemporal clustering by CSC [19]. We applied this pipeline to

MEG data of epilepsy patients who underwent successful surgical resection and quantified the

clinical relevance of the automatically identified irritative zone with respect to the outcome of

the IED visual analysis and the resected area.

2 Methods

The analysis workflow is shown in Fig 1.

2.1 Patients

Patients were recorded between 2012–2018 at the MEG Center of Moscow State University of

Psychology and Education (MSUPE), Moscow, Russian Federation. We have selected 7 patients

(N male = 2, average age 15.8) meeting the following inclusion criteria: 1) The patient underwent

focal epilepsy surgery after the MEG recording; 2) Follow-up> 1 year, with known outcome

according to the Engel scale; 3) Availability of an individual pre-surgical MR; 4) Description of

the resected area, or alternatively, availability of the post-surgical MR; 5) Availability of visually

marked epileptic spikes. Detailed clinical characterization for the entire dataset is provided in

Table 1. The selection of the putative seizure onset zone was based on the combined analysis of

the interictal and pre-ictal events in these non-lesional or complex-lesional patients. Then they

underwent pre-surgical or intra-operative ECoG based on the localization given by presurgical

source localization of the MEG events. For a more detailed description see [22].
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Patients signed the written consent to participate in the study. This study was approved by

the ethical committees of Moscow State University of Psychology & Education (MSUPE),

Moscow, Russia.

2.2 MEG data acquisition

Patients were recorded during sleep accommodated in supine position with the head fitting a

306-channel MEG system (102 magnetometers and 204 gradiometers, Elekta Neuromag Oy, Hel-

sinki, Finland) at the MEG Center of MSUPE. Data was acquired at a sampling rate of 1000 Hz.

Additionally, ECG, EOG and EMG from the right and the left masseter muscles were recorded.

Hands and legs movement were tracked with four accelerometers fixed at the index fingers of

both hands and the second toe of both feet. Head movements were monitored by four head posi-

tion indicator (HPI) coils, whose position was constantly tracked during the recordings. The 3

anatomical fiducial points (nasion, left and right preauricular points) also were digitized using

FASTRAK system (Polhemus Inc., Colchester, VT, USA) for the MRI-MEG co-registration.

2.3 MEG data preprocessing

MEG data preprocessing was performed according to the standard practice for clinical MEG

research [23,24]. The data were processed by MaxFilter (Elekta Neuromag Software) using

temporal signal space separation (tSSS, [25]). For each patient, out of the 1–2 hours available

Fig 1. Workflow overview.

https://doi.org/10.1371/journal.pone.0275063.g001
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recording, we selected 20 minutes with the highest number of visually marked spikes during

sleep. MEG data were visually inspected and noisy segments were excluded for the automated

spike detection pipeline (< 2 minutes out of 20-minutes recording). Eye blinks and heart beats

were projected out by ICA decomposition.

2.4 Anatomical data processing

2.4.1 Head model. Pre-surgical T1 MRI images (voxel size is 1 mm) with FreeSurfer v6.0.0

(https://surfer.nmr.mgh.harvard.edu). The MRI and MEG spaces were aligned in the MNE-Py-

thon co-registration GUI [26]. The head model was computed using a single layer (inner skull)

Boundary Element Method (BEM) model with around 10200 vertices covering the cortical sur-

face. The forward model was generated assigning freely oriented sources to all vertices.

2.4.2 Resected area. The resected area (RA) was delineated co-registering pre-surgical

and post-surgical T1 MRI images in MNI space by Brainstorm [27]. The RA was manually

delineated on the post-surgical MRI image. We created a binary mask with value equal to 1 for

all sources inside the resection volume or within 3 mm from the resection border.

2.5 Visual marking

Epileptiform events were identified according to the glossary of terms most commonly used

by clinical electroencephalographers and recommendations The American Clinical MEG

Table 1. Patients’ description.

Patient Etiology

(biopsy)

Age/

gender

SOZ

(MEG)

N

visual

spikes

MRI

findings

Additional

assessment

Surgery Resection

area

Outcome

(Engel)

Follow up

(months)

1 FCD IIIc 16/m Right T

Bas

62 1)FCD I in Right

medial occipital area

2)FCD in Right

parahippocampal

gyrus

3)Thinning of Right

insula

1)PET: hypometabolism in

Right TL, Right PL, Right

insula 2)Stereo-EEG before

MEG: presumably Right TL.

tailored

resection

Right T

Bas

IA 12

2 FCD I, FCD II 8/f Left F

Bas+Lat

55 MR-negative 1)Ictal SPECT: Left Bas, 2)

PET: Left Bas

3)Intraoperative ECoG

tailored

resection

Left FL

Bas+Lat

IA 48

3 TSC 16/f Right T

Bas+Lat

73 Multiple tubers 1)Ictal SPECT:

hypometabolim in Right TL

2)Intraoperative ECoG

tuber removal Right TL IA 46

4 Ganglioglioma

WHO grade I

6.5/f F Med 79 glioma in Right F

area

— tumorectomy poster FL IA 54

5 HS, FCD Ib,

Right TL

28/f Right T 106 Right HS, right

anterio-latero-Bas

dysplasia

Intraoperative ECoG anterio-medial

resection

Right TL IB 78

6 TSC 4.9/m Left T 89 Multiple tubers Presurgical long-term

invasive EEG monitoring

anterior

lobectomy

Left TL IIA 22

7 FCD Ic 20/f Left T 99 Right Hippocampal

Gyrus

Intraoperative ECoG anterio-medial

resection

Left TL IIB 53

Bas = basal, F = female, F = Frontal, FCD = focal cortical dysplasia, HS = hippocampal sclerosis, HG = hippocampal gliosis, PET = positron emission tomography,

SPECT = Single-photon emission computed tomography, ECoG = electrocorticography, L = Lobe, lat = lateral, m = male, Med = Medial, T = Temporal, P = parietal,

TSC = tuberous sclerosis, WHO = World Health Organization.

https://doi.org/10.1371/journal.pone.0275063.t001
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Society (ACMEGS) [4,28] (Kane et al. 2017; Bagić et al. 2011). The epileptiform discharges

were reconstructed at the peak using the multi-dipole modeling procedure (ECD, Equivalent

current dipole) implemented into the Elekta Neuromag software, using a spherical head

model. Three expert reviewers agreed on the marked events (T.S, A.K., A.Kr.). It is important

to stress that not all spikes were visually marked, but only the amount necessary to compile a

patient report.

2.6 Automated spike detection and clustering

We present here a fully automated data-driven pipeline for spike detection and clustering. Our

pipeline includes two main stages: 1) peak detection in the feature space of ICA-decomposed

MEG sensor data [21] and 2) spatio-temporal clustering of the sensor-space MEG data epochs

around the detected peaks based on convolutional sparse coding [19].

The pipeline was run separately for gradiometers and magnetometers, generating for each

sensor type a library of clusters, with each cluster associated to a list of events. The libraries

were created through an iterative procedure including stages 1 and 2 but sampling from differ-

ent subsets of events. Once clusters were formed, the averages of the events within each cluster

were used to map the irritative zone. In the following we provide implementation details.

2.6.1 Stage I. ICA decomposition. To reduce computing load, the data were resampled to

200 Hz. MEG data bandpassed from 2 to 90 Hz were decomposed by fastICA. The number of

components was restricted to 20 for all patients and sensor types.

Components selection. Among the first 10 ICA components ranked by the explained vari-

ance, we selected those presenting a highly “peaky” temporal pattern, reflected by high Kurto-

sis values (1 to 10, see also S1 Fig), and mimicking a dipolar spatial pattern, reflected by the

goodness of fit (GOF) of spatial pattern ECD (0 to 100%). For magnetometers the GOF thresh-

old was equal to 80% and for the gradiometers to 60%. If GOF was greater than 95%, the ICA

component was included irrespective of the Kurtosis value. Dipole fitting was performed by

MUSIC [29]. ICA components meeting these criteria were automatically selected for the fol-

lowing analysis.

Peak detection. We performed peak detection on the selected ICA components time series.

For peak detection, data were filtered in the 20–90 Hz spectral band. Additionally, we prepro-

cessed ICA components’ time series using sklearn RobustScaler to apply amplitude-based peak

detection with the same parameters for different patients. Peak detection was performed using

the peak-finding routine scipy.signal.find_peaks() implemented in SciPy. To avoid different

settings for different patients, we automatically decreased the threshold until at least 300 peaks

were detected in each patient.

Peak selection. Detected peaks underwent dipole fitting by MUSIC algorithm [29] (Mosher

and Leahy 1999), computed on -20 to 30 ms around the spikes peak. To avoid redundancy in

the data, only the event with the largest GOF was selected in each 0.5 s time window. In other

words, the interspike interval was forced to be larger than 0.5 s. The output of stage I was a set

of timestamps of identified spikes candidates.

2.6.2 Stage II. αCSC decomposition. We applied an optimization framework of convolu-

tional sparse coding known as αCSC. Specifically, we used a multivariate model with rank-1

constraint [19], which reflects the fact that one source can be observed on a manifold of MEG

sensors. In a nutshell, the multivariate time series data Xn [n x T], with n number of sensors

and T the total time of the recording, is decomposed in a series of k atoms with spatial pattern

uk [n x k] and temporal pattern vk [k x t], with t the duration of one event. The proximity of

each data point to the k-th atom is defined by the activation vector zk [k x T], which is the ele-

ment introducing sparsity. zk has only few non-zero entries and it is always positive, meaning
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that one atom repeats along the time series with the same polarity. The temporal extension of

each atom vk was set to t = 0.5 s, and the regularization parameter (λ) set equal to 0.1. The

mathematical formulation is summarized as follows

minuk;vk ;znk
PN

n¼1

1

2
kXn �

PK
k¼1

znk � ðukv
⊺
kÞk

2

2
þ l
PK

k¼1
kznkk1

;

s:t: kukk
2

2
� 1; kvkk

2

2
� 1 and znk � 0:

Before applying convolutional sparse coding, the data was bandpassed in the 2–90 Hz spectral

range.

Spatio-temporal clustering. It was recently shown that αCSC can automatically detect bio-

logical artifacts and non-sinusoidal patterns [19,20] (Jas et al. 2017; La Tour et al. 2018). In our

pipeline, the number of atoms in the dictionary was restricted to 3 atoms for each sensor type.

To maximize the performance of αCSC, we concatenated epochs of 1s centered on the time-

stamps provided from stage I. This allowed us to use αCSC purely as a clustering technique,

where each cluster is identified by one atom of the library.

Events selection. The αCSC algorithm returns spatio-temporal patterns as atoms, and pro-

vides, for each atom k, a spatial pattern uk (weights of each sensor), a temporal pattern vk (tem-

poral time trend) and an activation vector zk, which defines the proximity of each time point

of the MEG time series to the atom. To assign events to each atom, we thresholded at 7 median

absolute deviations (MAD), and iteratively decreased the threshold until either at least 15

events were selected or the threshold reached 1.5 MAD of zk. The derived epochs were

assigned to the atom k. Each atom was therefore linked to a set of events with similar spatio-

temporal patterns. This stage provides spatially aligned and clustered events.

Atoms library generation. We iterated our pipeline 4 times through stages 1 and 2. The

rationale for multiple iteration is that prominent ICA components might miss relevant infor-

mation. Therefore, we include additional runs forcing the clustering of spike events around

different subsets of ICA components. In the first run, we include all ICA components passing

the Kurtosis and GOF criteria, and extract the first three atoms. In the following three runs, we

include a subset of ICA components showing similar topography (k-means based clustering).

For each run, we extract three atoms. We constrained αCSC to fit three atoms in order to

extract stable patterns in a reasonable time (20 minutes, 204 chs, sampling frequency = 200

Hz, 3 atoms: 5 mins). Therefore, after 4 runs, we obtain twelve candidate atoms. The goodness

of the cluster built around each atom was estimated according to three features: GOF of the

spatial pattern uk; mean temporal correlation of the vk with the epoch time series from the sen-

sor with maximum uk; number of events in the cluster (= 1 for 20 or more). Each of these three

features was scored from 0 to 1 and their average represented the atom’s score. The atoms

exceeding the mean+1standard deviation of the atoms score distribution were selected to pop-

ulate the atoms’ library. The selected atoms were visually reviewed, and atoms with unclear

patterns were excluded (17/42 atoms were excluded in the analyzed dataset).

2.6.3 Source reconstruction. To delineate the irritative zone we used Minimum Norm

Estimation (MNE, implemented in MNE-Python [26]. The covariance matrix was computed

in the interval [-0.5 0.5] seconds around the spike peak of the averaged events in each cluster.

The noise covariance was considered diagonal.

Visually marked spikes were individually reconstructed at peak latency [30]. The activation

map for each spike was binarized, with value 1 for each vertex exceeding 50% of the maximum

activation and 0 otherwise. The final binary map contained only locations pointed by at least

half of the individual spike maps. Finally the binary map was smoothed within 10 mm in order

to delineate the region associated with the spiking activity.
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Spatiotemporal clusters based on αCSC atoms were used to estimate the irritative zone. For

each atom in the library, the average of all clustered events was localized [31]. Atoms resulting

from gradiometers and magnetometers were treated as independent contributions. An activa-

tion map was computed for each atom at two latencies identified as PEAK, i.e. the latency of

maximum amplitude of the sharp deflection of the spike, and SLOPE, identified as the latency

preceding the PEAK where the activity is still above baseline and the spatial pattern provides a

distinct focus (see also supplementary material, S2 Fig). In both cases, SLOPE and PEAK, the

activation map was thresholded at 50% of the maximum activation value, and translated into a

binary activation map (1 if activation is higher, 0 otherwise, as in [30]). For each patient, we

summed the binary maps from all atoms. Sources pointed by more than half of the atoms were

selected and smoothed in the range of 10 mm. The resulting map delineated the predicted irri-

tative zone.

2.7 Statistics

For each patient we obtained four anatomical maps: the resected area (RA), the irritative zones

delineated by visually marked spikes, the irritative zone identified by automatically identified

spikes at the level of the ascending slope (SLOPE) and at the level of the peak (PEAK).

We validate these three approaches by computing the average distance of the estimated irri-

tative zone to the border of the resected area [32]. The RA was converted into a convex hull

and the average distance of each point of the estimated irritative zone from the hull surface

was computed. So the more negative the distance, the more is the overlap of the estimated irri-

tative zone with the resected area; the more positive the distance, the larger the discrepancy

between the estimated irritative zone and the resected area.

The pipeline is implemented as a python package megspikes which can be found at https://

github.com/MEG-SPIKES/megspikes. The code for reproducing the analysis and figures can

be found at https://github.com/MEG-SPIKES/aspire-alphacsc-epilepsy-MEG.

3 Results

We automatically detected spike clusters in 20 minutes of sleep from seven patients with good

surgery outcome (Table 1), following our two-steps procedure: identification of candidate epi-

leptiform events and events clustering by convolutional sparse coding. We indicate here with

atom the spatiotemporal pattern defining a cluster of epileptic spikes. In Fig 2 we show the

example of one atom and the events populating the atom’s cluster: spatial (Fig 2A) and tempo-

ral (Fig 2B) patterns characterize the profile of repeating epileptic events. The average of the

events displayed on the MEG layout shows a focal activation over the left hemisphere (Fig 2C).

Single events presented a stable temporal profile in the sensors with largest activation (Fig 2D).

In the seven cases analyzed, we identified 25 atoms (16 from gradiometers, 9 from magnetom-

eters), with an average of 3.6 [range 1–6] atoms per case (2.3 [1.0–3.0] for gradiometers, 1.3

[1.2–3.0] for magnetometers). We detected 549 total spikes, reflecting a spike rate of 2.41 [0.9–

3.6] spikes/minute (recording duration: 19.5 [12–24] minutes). We assigned an average of 22.1

[15.0–31.0] events to each cluster, with similar amounts of spikes detected from gradiometers

(21.1 [15.0–30.0] spikes/cluster) and magnetometers (23.7 [17.0–31.0] spikes/cluster).

We validated the output of our analysis against the irritative zone identified by visual analy-

sis, the resected area and the surgery outcome. In Fig 3 we illustrate the case of patient 5:

resected area and visually marked spike locations are superimposed on the individual patient

MR in Fig 3A, while the resected area and irritative zone identified by visual analysis projected

on the modeled cortical surface are depicted in panel 3B and 3C respectively. The averaged

time trend for one cluster is presented in the sensor space (panel 3D) and in the source space
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(panel 3E), while the cortical spread of activation at SLOPE and PEAK latencies (see methods

2.6.3) is presented in 3F. Those activations anatomically define the predicted irritative zone,

which is the output of our analysis pipeline.

Fig 2. Example of one atom from gradiometers in patient 7. A. Atom’s spatial pattern. B. Atom’s temporal pattern.

C. Average of the epileptiform events assigned to this cluster. D. Temporal pattern of events from three representative

gradiometers (x-axis:time, y-axis:event number).

https://doi.org/10.1371/journal.pone.0275063.g002
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In this case, the automated procedure identified the source of epileptic activity within the

resected area. The patient had a good surgery outcome (see Table 1), which exemplifies the

clinical relevance of our approach.

We identified cortical sources of cluster averages at the amplitude SLOPE and PEAK for all

patients and therefore delineated our predicted irritative zone. To quantify the reliability of

our predicted irritative zone, first we visually confirmed the sublobar concordance with the

resected area, as in [32]. We observed an overlap of the resected area with both visually identi-

fied and automatically detected irritative zones in six out of seven patients. In one patient

(patient 7), we observed concordance between visually identified and automatically detected

irritative zones, both not overlapping with the resected area, and the patient had outcome

Engel IIB.

SLOPE and PEAK latencies of the detected sources correspond to different spatial spread of

activity, and therefore to different localization and extent of the irritative zone (Fig 4). We

Fig 3. Illustration of the performance of our automated epileptic spike pattern detector applied on pre-surgical MEG data from patient 5. A. Localization

of visually detected spikes with single equivalent dipole fit (red dots) in the Elekta software and the resection area (blue area); B. Surgically resected area (lateral

view, right hemisphere); C. Irritative zone defined by Minimum Norm Estimation (MNE) on visually detected spikes; F (left). Irritative zone defined by (MNE)

along the ascending slope of the averaged automatically detected spike cluster; F (right). Irritative zone defined by (MNE) on the peak of the averaged

automatically detected spike cluster; D. Sensor space butterfly plot of the averaged automatically detected spike cluster; E. Source space time series of the

automatically detected spike cluster. Traces correspond to 6 anatomical locations (FreeSurfer segmentation) with the highest averaged activity in the source

space.

https://doi.org/10.1371/journal.pone.0275063.g003
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compared the average distance of the irritative zone from the resection border at the SLOPE

and PEAK latencies and observed that that irritative zone detected at the SLOPE is signifi-

cantly closer to the resection border (Wilcoxon signed rank test, p = 0.01). SLOPE based

Fig 4. Accuracy of different estimations of the IZ. The average distance of the estimated IZ from the resection border is represented on the x-axis. The IZ

estimated by the automated clustering at the level of the ascending slope, the visually marked events, and the automated clustering at the level of the peak, are

shown for each case. Each patient is represented with a color and the size of the dot is proportional to the ratio between the size of the estimated IZ and the

size of the resected area, to provide a comparison within and between patients. The red line corresponds to the 20 mm average distance from the resection

border.

https://doi.org/10.1371/journal.pone.0275063.g004
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distance from the resection border was not significantly distinguishable from the distance

based on visual analysis (Wilcoxon signed rank test, p = 0.31). Across patients, average dis-

tance from the resection border was 8.4 ± 9.3 mm for visual analysis, 12.0 ± 12.0 mm for

SLOPE and 22.7 mm ± 16.4 mm for PEAK. Therefore, the distance of the IZ at both SLOPE

and PEAK latencies is relatively close to the resection margin. However, only when consider-

ing the source activation at the spike onset, the performance of the automated detection is sim-

ilar to the expert observer.

4 Discussion

We proposed here a data driven approach for the automated identification of epileptiform

activity patterns in MEG data. We showed that selection and clustering of events based on dic-

tionary learning correctly supported the delineation of the irritative zone in the single patient

for cases with good surgical outcome. Our approach provided an estimation of the irritative

zone consistent with the visual inspection of expert observers. Therefore, our results support

the standardization of the analysis of interictal epileptiform activity in MEG data.

We followed a two-step procedure to select the events of interest and then cluster them.

Our approach follows a procedure similar to spike sorting in microelectrodes recordings [33],

where detected neuronal spike peaks are used to build spatio-temporal templates by density-

based clustering. Clustering epilepeptic spikes in MEG recording represents a more challeng-

ing problem, given the lower number of events and their signal to noise ratio (SNR). On the

other hand, given the biophysical relation between source and sensor space in MEG data, we

optimized this scheme for the delineation of the irritative zone in non-invasive human epilepsy

data. The data feeded into the pipeline were visually screened to minimize the presence of arti-

fact. The peak detection was performed on ICA components mimicking sources with high

kurtosis. Searching for peaks in source space rather than in sensor space signal improves sig-

nal-to-noise ratio (SNR) and is more robust to artifacts. As an advancement on [21]

(Ossadtchi et al. 2004), we did not cluster separately with respect to spatial and temporal

source features of each single event, but we rather exploited the consistency of the spatiotem-

poral pattern of multiple events, which led to the estimation of data-driven ‘atoms’. Convolu-

tional sparse coding is based on alpha stable heavy tailed noise distributions, which makes it

robust against bursty events. The ‘atoms’ defined the library of learned repeating events, with

each ‘atom’ representing the center of each cluster in feature space.

Previously proposed detector strategies relied on statistical properties in the time, frequency

and time-frequency domain [34], either on single channel or multivariate data [12]. Recent

approaches implemented machine learning to automatically classify epileptic events. Deep

learning networks recognizing time domain morphological features [35] and based on short-

term memory networks [36], as well as convolutional neural network processing spectral

information [37] have been proven as valuable approaches on EEG data. Deep learning has

been successfully applied also on a MEG dataset of 20 patients affected by focal epilepsy [15].

Compared to other proposed approaches, dictionary learning does not require specific

assumptions on the spike statistics and is not dependent on algorithm training on an extensive

dataset. Therefore, it can be prospectively applied to the next incoming case.

The opportunity to standardize interictal events detection might further increase the added

value of MEG recordings in epilepsy investigation. To date, spikes and sharp waves identify

the irritative zone, which can overlap with the seizure onset zone and support the delineation

of the resection margins [38] (Jehi 2018). The clinical value of the irritative zone has been vali-

dated on intracranial EEG [7,8] where seizure freedom was associated with the resection of

dipole sources identified in MEG data. In prospective studies, MEG analysis outcome
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contributed to improve the subsequent implantation [9,10]. In a meta analysis of 6 clinical

studies, it was shown that MEG source localization of interictal events might be even more spe-

cific that stereoEEG [39]. While the use of MEG improves clinical practice, neurologists are

involved in time-consuming bias-prone data inspection. Ideally, a clinical MEG recording ses-

sion should lead to the identification and localization of a sufficient number of IED sources

and to delineation of a reliable and reproducible spatiotemporal map of the irritative zone. In

this context, an automated approach based on peak analysis might overestimate the extension

of the irritative zone. Clustering events allows access to source activity at latencies preceding

the spike peak with higher SNR. The proposed approach quickly provides neurologists with

the activation profile of candidate clusters, which can be inspected and possibly contribute to

clarify the structure of the epileptic network.

The identification of epileptiform activity is a crucial step to anatomically target spike gen-

erators. Source estimation of interictal pattern in MEG has been validated by comparison with

intracranial recordings [30,40,41]. In this project we used distributed sources imaging, which

was shown to be more informative than equivalent current dipole [32]. However, while source

estimation is reliable for stationary activity, spike propagation represents still one major con-

cern for the delineation of the epileptic network and the identification of the seizure onset

zone. Therefore, rather than the spatial extent of the irritative zone, its intrinsic dynamic must

be characterized. To date, the resection of sources of propagating spike patterns identified in

invasive stereoEEG recordings are associated with good surgery outcome [42,43]https://www.

zotero.org/google-docs/?T7WkMp. The clinical analysis of MEG interictal patterns should

therefore localize spike generators at latencies preceding the spike peak, where the SNR is

higher, in order to account for spatial propagation. The consideration of the ascending slope

in MEG has proven strong association of the irritative zone with good outcome [11], while

recent evidence from high density EEG and MEG identifies the highest accuracy in the earliest

resolvable phase of the IED onset [44]. Source estimation of the single event for latencies pre-

ceding the spike peak might be affected by poor SNR [45,46]. Therefore, the opportunity to

cluster similar events and consider their spatio-temporal averaged pattern empowers our abil-

ity to localize early activations. Our approach allows us to consider the evolution of the activity

spread along the rising slope of the averaged time trend for each cluster of the irritative zone.

Enhancing the SNR of repeating patterns, we might provide a finer localization of the event

onset.

Limitations

We demonstrated the applicability of convolutional sparse coding for spike detection and

localization of the irritative zone in epileptic patients. However, the limited dataset considered

represents the framework only for a technical validation. While we could reproduce the find-

ings of visual analysis and provide clinically relevant information, a larger set of cases is needed

to further quantify the reliability of our approach and verify its implementation in the clinical

settings.

Conclusions

We propose here the validation of an algorithmic approach for the detection and clustering of

IEDs, emulating the analysis of expert reviewers consistently with the clinical findings. The

opportunity to model epileptiform activity into spatiotemporal ‘atoms’ enhances SNR and pro-

vides reliable source localization at the early stage of the IED onset. This, in turn, might sup-

port clinicians in the delineation of the irritative zone, providing automated access to spatial

and temporal features characterizing the epileptic network.
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Supporting information

S1 Fig. Selection of “Peaky” ICA components. In case #4, the ICA decomposition of magne-

tometers provided components 3 and 4, both featuring a dipolar spatial pattern (GOF ICA3 =

.96, GOF ICA4 = 0.98). However, only ICA component 2 presented spike-like events in the

temporal pattern, which was reflected in a Kurtosis value of 5.6, while the Kurtosis for ICA

component 3 as 0.7. The code to reproduce this image is published at https://github.com/

MEG-SPIKES/aspire-alphacsc-epilepsy-MEG/blob/main/analysis/05_revision.ipynb.

(TIFF)

S2 Fig. Distance from the resection margin from take-off to peak latency of the averaged

clusters. Slope 1–5 refers to latencies between the take-off and the 50% slope. Slope 6–9 refers

to latencies between the 50% slope and the peak. The latencies were individually selected for

each cluster because of the different length of the ascending slopes. The code to reproduce this

image is published at https://github.com/MEG-SPIKES/aspire-alphacsc-epilepsy-MEG/blob/

main/analysis/05_revision.ipynb.

(TIFF)

S3 Fig. Resected volume and irritative zone of each patient computed according to manual

spike marking, automated peak and slope estimation. Pages 1–7 correspond to patient 1–7

in Table 1.

(PDF)
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