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Abstract: In this paper, an electrochemical technique is introduced for the determination of
streptomycin (STR) in the presence of oxytetracycline (OTC) in milk samples. A novel bifunctional
modified screen-printed electrode (SPE) modified with oracet blue, silver nanoparticles, and graphene
oxide (OB/SNPs/GO/SPE) was fabricated. The modified electrode plays a catalyzer role for
electrooxidation of STR at pH = 7.0 and reveals a facile a separation between the oxidation peaks of
STR and OTC. Calculation of kinetic parameters such as the electron transfer coefficient α and the
heterogeneous rate constant k´ of STR at the OB/SNPs/GO/SPE as 8.1 ± 0.07 cm s−1 and 0.32 have been
obtained based on the theoretical model of Andrieux and Saveant. A differential pulse voltammetric
measurement demonstrates two linear dynamic ranges, 0.4 to 240.0 nM and 240.0 to 720.0 nM and a
detection limit of 0.17 nM for STR. The sensitivities of the OB/SNPs/GO/SPE towards the oxidation of
STR in the absence and presence of OTC were 2.625 × 10−1 and 2.633 × 10−1 µA/µM, respectively.
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1. Introduction

The aminoglycosides are an important group of antibiotics as their main influence is to
produce inhibitory effects on the protein production of bacteria. This group of antibiotics displays
significant activity toward Gram-positive and Gram-negative bacterial infections via a disaccharide
molecule containing a streptidine aminocyclitol moiety. Streptomycin (STR) is the most basic of
the aminoglycosides, is an antimicrobial organic base produced by Streptomyces Griseous, and is
commonly used both in human and veterinary medicine [1]. In agriculture, it is used to control
bacterial and fungal diseases of selected fruits, vegetables, seeds, specialized field crops, ornamental
crops, and in ornamental ponds and aquaria to control algae [2].

Oxytetracycline (OTC) is a member of the tetracycline family produced on an industrial basis
by Streptomyces Rimosus fermentation [1]. The molecule is a clinically important natural product
possessing semisynthetic derivatives which are characterized by a broad spectrum of activity against
pathogenic microorganisms. These groups of reagents are bacteriostatic antibiotics that, as for
streptomycin, hinder bacterial cell protein formation. Their major application is the control of bacterial
infections in humans and animals. They have also been used in conserving harvesting fruits and
vegetables and for prevention of the effects of insect pests.
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Veterinary drugs are used widely in domestic animals for the avoidance and treatment of infectious
diseases and for raising growth. The indiscriminate application can lead to the contamination of
dairy products such as milk, in turn potentially causing various side effects on consumption including
fever and nausea, intensive allergic reactions such as photodermatitis, and anaphylaxis. Accordingly,
the development of a selective and sensitive method for the accurate determination of residues of
veterinary drugs such as STR and OTC in animal food is highly critical. In this connection, appropriate
controlling authorities worldwide have enacted maximum residue limits (MRLs) for a number of
veterinary drugs that contaminate food and dairy products.

The determination of aminoglycosides conventionally requires the employment of qualitative
microbiological methods rather than quantitative procedures [3–6]. Chemical analysis methods
include high-performance liquid chromatography (HPLC) [7], ion pair chromatography [8],
agarose gel electrophoresis [9,10], liquid chromatograph(LC) [11], and mass spectrometry [12].
These methods are costly, generally time-consuming, and usually exhibit interferences from other
pieces. Thus, achievement of analysis through the use of inexpensive methods would prove to be an
attractive alternative.

Electrochemical techniques have been applied recently to determine antibiotics since they provide
a relatively convenient, rapid, and low-cost approach. In terms of electrodes for electrochemical
assay, screen-printed electrodes have received increasing attention due to their high sensitivity, rapid
response, low detection limit, facile sample injection, and capability to function in microfluidic
configuration. STR is oxidized at common electrodes with a significant oxidation overpotential,
thus providing a promising methodology to reduce over-voltage effects and enable the determination by
chemically-modified electrodes (CMEs) [13]. Modification of electrodes with appropriate electroactive
reagents can result in the enhancement of electrochemical biosensors.

Graphene oxide (GO) is a two-dimensional carbon nanomaterial with a large surface area that
possesses many oxygen functional groups such as hydroxyl, epoxide and carbonyl groups, which can
be easily activated to an SPE configuration. In addition to a large surface area, the combination of
GO with SNPs for electrode fabrication offers very high electrical conductivity, high water solubility,
and ease of construction via the electrostatic self-assembly technique. [14,15].

The anthraquinone derivative, oracet blue (the structure of which is shown in Scheme 1), can be
used as an electrode modifier due to its good reactivity as a mediator through the catalysis of slow
reactions. When employed as a modifier, the molecule displays two oxidation peak potentials at 230
and 540 mV (at pH = 7.0). The present work was conducted based on the second peak potential at
540 mV. Based on preparation methods of the OB-modified electrodes reported in the literature [16–18],
the present work describes the utilization of a oracet blue/silver-nanoparticles/graphen-oxide-modified
screen-printed electrode (OB/SNPs/GO/SPE) as an electrocatalyst for the oxidation of STR. Additionally,
the successful determination of STR in the presence of OTC in real samples with the prepared modified
electrode is described.
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2. Material and Methods

2.1. Reagents and Apparatus

Streptomycin and oxytetracycline and all the chemicals used for the experimental work are of
analytical grade purchased from Merck Company. 1-Amino-4-anilinoanthraquinone or oracet blue (OB)
also was purchased from Merck (Scheme 1), and graphene oxide (GO) was obtained from Sigma–Aldrich.
For the preparation of all the solutions, doubly distilled water was used. Buffer solutions (0.1 mol L−1)
were prepared from H3PO4 and adjusted for pH with an NaOH solution. Streptomycin (STR) and
oxytetracycline (OTC) solutions were just prepared just prior to use, and all experimental steps were
performed at room temperature.

The electrochemical tests performed with an Autolab potentiostat-galvanostat AUT41203 equipped
with NOVA 2.1 software (Metrohm Company, Netherland), connected to an SPE through a specific
cable connector(CAC)-and for electrochemical measurements a personal computer (PC) system was
used. SPEs were purchased from (Dropsense Company, Asturias, Spain model C110) featuring
carbon ink as a working electrode, a carbon electrode as counter, and Ag electrode as a reference
electrode. The modification of the working electrode (carbon ink) was done to prepare the
graphene-oxide-modified SPE (GO/SPE), an OB electrodeposited on a graphene-oxide-modified SPE
(OB/GO/SPE), a silver-nanoparticles-modified GO/SPE (SNPs/GO/SPE), and an OB electro-deposited
on silver-nanoparticles–Graphene-oxide-modified SPE (OB/SNPs/GO/SPE). The measurement of pH
was performed with a Metrohm pH/mV meter (model 827).

2.2. Preparation of Samples

As the electrochemical techniques are able to determine the concentration of STR without
pretreatment, the preparation of a real sample is produced by diluting 3 mL of fresh milk to 10 mL
with a 0.1 M phosphate buffer solution pH = 7.0. Next, the addition of certain amounts of STR was
done and the responses of the OB/SNPs/GO/SPE were determined in differential pulse voltammetry
(DPV)measurements with the milk samples being directly inserted into the experimental cell.

2.3. Electrode Preparation

For the working electrode, a 2.5 µL drop of dispersed (1mg/mL in H2O) graphene oxide (GO) was
placed on the bare SPE to produce the GO/SPE combination. For the preparation of SNPs/GO/SPE,
a 2.5 µL solution of 100 mM nitric acid and 1.0 mM AgNO3 was placed on the GO/SPE, and a
continuous cyclic potential was performed from −700 to 1900 mV with a scan rate of 80 mV s−1 for eight
cycles [19]. Following this procedure, the modified electrode was washed with doubly distilled water.
The oracet blue SNPs modified GO/SPE (OB/SNPs/GO/SPE) was prepared by placing a 2.5 µL drop of
0.1 mol L−1 phosphate buffer pH = 7.0 containing 1.0 mmol L−1 of OB, and OB was immobilized on the
SNPs/GO/SPE surface by 18 potential cycles from 0.0 to 230 mV at 25 mV s−1. To prepare OB modified
GO/SPE (OB/GO/SPE), the GO/SPE was modified as explained above without SNPs and lastly doubly
distilled water was used to wash the modified electrodes as is shown in Scheme 2.

Given the importance of electrode surface morphology, characterization of the electrodes was
assessed by SEM. The morphology of SNPs/GO/SPE and that of OB/SNPs/GO/SPE are shown in
Figure 1a,b. Characterization and specification of the SNPs were achieved using transmission electron
microscopy (TEM) imaging (Figure 1c). The resulting SNPs have sufficient uniform shape and
approximately 30 nm diameter. Figure 1b shows that a thin film of OB was adsorbed on SNPs/GO/SPE.
Since, in this work, the SPE surface was covered by SNPs, we believe that the deposition of OB at the
SNPs/GO/SPE was mainly due to the strong adsorption of OB onto SNPs/GO/SPE.
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screen-printed electrode (OB/SNPs/GO/SPE) and (c) the TEM image of SNPs.
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3. Results

3.1. Electrochemical Charaterization of the OB/SNPs/GO/SPE Electrode

The cyclic voltammograms of OB/SNPs/GO/SPE in 0.1 mol L−1 phosphate buffer pH = 7.0 at
several scan rates are presented in Figure 2. An excellent redox couple appears when the potential is
applied from 300 to 700 mV without a background current. OB electrodeposited on a screen-printed
electrode (SPE) modified with graphene oxide and SNPs (OB/SNPs/GO/SPE) shows a redox couple.
Schemes of the anodic and cathodic peak currents vs. the scan rate show a linear relationship (Figure 2,
inset A) as estimated for the electrode surface which is immobilized with an electroactive couple.
Furthermore, the formal potential (E0´) value, by the use of the equation of E0 = Epa − α(Epa – Epc) [20]
is around 500 mV and for scan rates in the range of 5 to 1000 mV s−1 is nearly independent of the scan
rate of potential (Figure 2, inset B). As shown in Figure 2, inset C, for scan rates higher than 2000 mV s−1,
the values of the anodic and cathodic peak potentials are related to the logarithm of the scan rate.
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Figure 2. Cyclic voltammetric responses of GO/OB/SNP/SPE in 0.1 M phosphate buffer pH = 7.0 at
different scan rates (The numbers 1–5 correspond to 20–100 mV s−1). Insets: (A) plots of anodic and
cathodic peak currents vs. of scan rate. (B) Variation of the peak potentials vs. the logarithm of the
scan rate. (C) Magnification of the same plot for high scan rates.

In these circumstances, the surface electron transfer rate constant (ks) and the charge transfer
coefficient (α) for electron transfer between OB and SNPs/GO/SPE can be predicted from the slope of the
linear correlation between peak potentials (Ep) and the logarithm of the scan rate as [Slope = 2.3RT/(1–α)
nα F]. This result agrees with the Laviron theory [21]. Based on the theoretical considerations mentioned
above, the rate constant of electron transfer in the middle of SNPs/SPE and OB can be determined by
the following equation:

log ks = α log(1 − α) + (1 − α)log α − log (RT/nFv) − α(1 − α) nF ∆Ep/2.3RT (1)
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where (1 − α) nα = 1.02, v is the scan rate, and all other signs having their usual meanings. A mean
of ks = 14.0 ± 0.5 s−1 is obtained applying Equation (1) to all experimental data. The ks is the
constant of electron transfer between SNPs/GO/SPE and immobilized oracet blue on the surface of
this modified electrode. The mediator for electron transfer between the modified SPE and STR is
oracet blue, which can decrease the overpotential of STR oxidation on the SPE surface. Therefore, the
large value of ks validates the fast formation of the equilibrium. The obtained value for ks and those
reported for other modifiers before are in agreement with each other. The value of ks described in
this research was compared with other works [22–25]. To obtain the kinetic parameters αc (cathodic
transfer coefficients) and αa = (1 − αc ) (anodic transfer coefficients) of the slopes of Figure 2, plots
can be used. The slope of the linear part is −2.303RT/αc F for the cathodic peak and 2.303RT/αa nF for
the anodic one. We considered the mean value of 0.49 for αc (α) and used it in the following study.
The range of transfer coefficient, α, is from zero to one, which indicates how useful is the reduction of a
reagent toward its oxidation.

3.2. Electrocatalytic Oxidation of STR at the OB/SNPs/GO/SPE

One of the purposes of this study was the separation of the electrochemical responses of STR
and OTC from each other with a modified electrode for electrocatalytic oxidation of both molecules.
To examine the electrocatalytic performance of the OB/SNPs/GO/SPE towards the oxidation of STR,
Figure 3A presents the CV responses which were measured at pH = 7.0 phosphate buffer solution in the
absence and presence of STR. The anodic current density increases noticeably compared to a recorded
scan for a buffer solution without STR. The cause of the increase in oxidation current density is the
diffusion of STR in the solution to the surface of modified electrode followed by conversion of OB(ox) to
OB(red) reduced by STR. As STR regenerates OB (red), an intense increase in the anodic current density
appears at the potential scanning duration; similarly, the cathodic peak current density decreases while
the STR is present (Figure 3A, curve d). Equations (2) and (3) describe the electrocatalytic oxidation
of STR. The reaction of OB with STR is shown in Equation (3) with rate constant k´ relating to the
rate-determining step. Accordingly, the rate of the oxidation of the modified surface with OB in
Equation (2) ks in comparison with the reaction of the OB with STR can be considered fast.

Oracet blue(red)
ks

�
Oracet blue(ox) + 2H+ + 2e (2)

Oracet blue(ox) + STR(red)
K
→ Oracet blue(red) + STR(ox) (3)

The peak potential of anodic segment for the STR oxidation at OB/SNPs/GO/SPE is about 540 mV
(Figure 3A, curve d), whereas STR is oxidized at about 670 mV (Figure 3A, curve f) at a GO/SPE under
the same conditions and shows a lower peak current density than that seen with OB/SNPs/GO/SPE.
Thus, the overpotential decreased for 130 mV, and the peak current was increased by the modified
electrode. There is no oxidation peak potential for STR at the surface of SNPs/GO/SPE in the investigated
potential range.
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Figure 3. (A) Cyclic voltammograms of OB/SNPs/GO/SPE in the absence (a) and presence (b) of 0.1
mM STR. Cyclic voltammograms of SNPs/GO/SPE (c) and OB/GO/SPE (d) in the presence of 0.1mM
STR. (e,f). As (b) for SNPs/SPE, and GO/SPE, conditions: 0.1 M phosphate buffer solution pH = 7.0 at
scan rate 20 mV·s−1. (B) Electrochemical impedance spectroscopy of the electrode for SPE, GO/SPE,
SNPs/SPE, SNPs/GO/SPE, OB/GO/SPE, and OB/SNPs/GO/SPE.

To reconfirm the CV experiments, electrochemical impedance spectroscopy (EIS) experiments
were performed also which are shown in Figure 3B, with plots of the modified electrodes after each
modification step. It is clearly noticeable that the bare SPE exhibits a small charge transfer resistance,
but for the GO modified electrode, the Rct significantly increased to 517 Ω. Modification with OB
causes a decrease in resistance compared to the value for GO/SPE.

The cyclic voltammograms of a 0.10 mM STR solution at different scan rate potentials are presented
in Figure 4. The inset of Figure 4 indicates the linearity of the plot of the catalytic peak current versus the
square root of the scan rate potentials, implying that the reaction is limited by diffusion. These results
imply that the oxidation reaction of STR by OB involves a catalytic reaction (ErC'i). A theoretical model
can be used to calculate the catalytic rate constant for ErC′i mechanisms. A relationship between the
substrate concentration and the peak current for the case of a slow scan rate, v, and a large catalytic
rate constant, k′, is constructed based on the theoretical model of Andrieux and Saveant [26] for such a
mechanism. Using this model, and in particular Figure 4 of this work, we calculate an average value
for k′ of 8.1 ± 0.07 cm s−1. The parameter k′ is the catalytic rate constant between OB/SNPs/GO/SPE
and STR. Thus, this value of k′ defines a good catalytic characteristic for the oxidation of STR at
OB/SNPs/GO/SPE.

According to the following equation for totally irreversible diffusion-controlled processes, the
slope of the Ip versus v1/2 plot can be used to obtain the number of electrons in the overall reaction
(Figure 4, inset A) [27].

Ip = 3.01 × 105n[(1 − α)nα]1/2ACbD1/2V1/2 (4)
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Using the obtained values of (1 − α) nα = 1.02 and D = 8.33 × 10−6 cm2
·s−1 from the

chronoamperometry method, the total number of electrons in the anodic oxidation of STR is estimated
as n = 2. The linear sweep voltammograms of OB/SNPs/GO/SPE in a 0.1 M phosphate buffer is used to
obtain information on the rate-determining step, using points of the Tafel region of the linear sweep
voltammograms in Figure 4, and the anodic Tafel plots were drawn (inset B of Figure 4). The value
of Tafel slope b = (1 − α)nα F/2.3RT for STR indicates that this process is one-electron transfer for
the rate-determining step, and the predicted mean charge transfer coefficient is α = 0.32 for STR.
Furthermore, the exchange current density, J0, can be calculated from the intercept of the Tafel plots
and geometric area. The obtained average value of J0 is 3.35 µAcm−2 for the oxidation of STR at the
surface of modified electrode. This parameter shows the exchange current between the electroactive
agents on the surface unite in equilibrium potential [28]. Therefore, the higher value of J0 indicates
that charge transfer between the analyte and electrode surface is significant and displays a higher rate.

3.3. Chronoamperometric Studies of STR Oxidation at OB/SNPs/GO/SPE

The electrocatalytic oxidation of streptomycin at OB/SNPs/GO/SPE surface was also studied by
a chronoamperometry method. Chronoamperograms were obtained at different concentrations of
streptomycin at a potential step of 570 mV (Figure 5). For an electroactive material (STR in this case)
with an evident diffusion coefficient, Dapp, the current related to the electrochemical reaction (under
diffusion control), is defined by the Cottrell equation:

I = nFADapp
1/2 C/π1/2t1/2 (5)

where Dapp is the recognizable diffusion coefficient and C is the bulk concentration of the analyte.
The plots of I versus t−1/2 are shown in Figure 5, which is compared to different concentrations of STR.
The obtained straight lines slopes were then plotted vs. the STR concentration (Figure 5). From the
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slope (9.87 µA s1/2 mmol L−1) and use of the Cottrell equation [29], an apparent diffusion coefficient
(Dapp) of STR was calculated to be 8.33 × 10−6 cm2 s−1.Biosensors 2020, 10, x FOR PEER REVIEW 9 of 16 
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Figure 5. Chronoamperometric response of the OB/SNPs/GO/SPE in 0.1 M phosphate buffer solution
pH = 7.0 at potential step of 570 mV for different concentrations of STR. The numbers 1–11 correspond
to 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 mM of STR, respectively. Insets: (A)
plots of I versus t−1/2 obtained from the Chronoamperograms and (B) plot of the straight lines against
the STR concentration.

3.4. Simultaneous Determination of STR and OTC

Experiments were performed using OB/SNPs/GO/SPE at different concentrations of STR and OTC.
Figure 6 shows the DPVs obtained with increasing concentrations of STR in the presence of different
concentrations of OTC, and the inset A of (Figure 6) shows the differential pulse voltammetry plots of
a combination of 0.1 mM STR and 0.01 mM OTC at OB/SNPs/GO/SPE. In this case, at the potentials
of 540 and 740 mV two notable anodic peaks were observed, which correspond to the oxidation
of STR and OTC, respectively. Furthermore, due to the addition of STR and OTC concentrations,
significant increases in peak currents were detected. Accordingly, an effective oxidation reaction of the
STR at OB/SNPs/GO/SPE is observed. The dependence of DPV peak currents on the STR and OTC
concentration are shown in inset B and C of Figure 6, respectively, together with the linear relationship
of the obtained peak current with increasing concentration of STR and OTC across the explored range.
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Figure 6. (A) Differential pulse voltammograms of OB/SNPs/GO/SPE in a 0.1M phosphate buffer
solution pH = 7.0 containing different concentrations of STR and OTC. Numbers 1–25 correspond to
(00.0–700.0 µM STR and 10.0–70.0 µM OTC. Insets: (B,C) show the plots of the electrocatalytic peak
current as a function of STR and OTC concentrations, respectively.

An attempt was also made at the determination of STR in the presence of OTC by using
an OB/SNPs/GO/SPE sensor. Figure 7 shows the differential pulse voltammetric responses which
were obtained by changing either the STR (Figure 7A) or OTC (Figure 7B) concentration, while the
concentration of the other compound was constant. As depicted (Figure 7A), the electrochemical
response of STR in the presence of a constant concentration of OTC increases linearly with the increase
of the STR concentration, while the response of OTC remains almost constant. Similarly, Figure 7B
shows the DPVs obtained by increasing the concentrations of OTC in the presence of STR. From these
results, it can be noted that the responses to STR and OTC at the OB/SNPs/GO/SPE surface are
independent from each other. From this work, the use of OB/SNPs/GO/SPE for the determination of
STR in the presence of OTC has clearly been demonstrated.
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Figure 7. (A) Differential pulse voltammograms of OB/SNPs/GO/SPE in a 0.1 M phosphate buffer
solution pH = 7.0 containing 15.0 µM OTC and different concentrations of STR. Numbers 1–9 correspond
to 170.0, 180.0, 190.0, 200.0, 210.0, 220.0, 230.0, 240.0, and 250.0 µM STR, respectively. Inset shows the
plot of the electrocatalytic peak current as a function of STR concentration within the 170.0–250.0 µM
range. (B) Differential pulse voltammograms of OB/SNPs/GO/SPE in a 0.1 M phosphate buffer solution
pH = 7.0 containing 170.0 µM STR and different concentrations of OTC. Numbers 1–8 correspond
to 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, and 50.0 µM OTC, respectively. Inset shows the plot of the
electrocatalytic peak current as a function of OTC concentration within the 15.0–50.0 µM range.

Determination of the linear ranges and limit-of-detection of STR were obtained using differential
pulse voltammetry and the OB/SNPs/GO/SPE. (Due to the fact that DVP with respect to current
sensitivity is much higher than cyclic voltammetry, the DPV method was used in this work.) Differential
pulse voltammograms are shown in Figure 8, which were obtained from successive addition of STR
at the step potential of 570 mV. The peak currents plot versus STR concentration shows two linear
sections that rely on two different ranges of 0.4 to 240.0 nM and 240.0 to 720.0 nM at a potential step of
570 mV for STR. This is clearly indicated in the insets A and B of Figure 8. Based on reference [30] Cm
is the lower limit of detection, which was found from the equation Cm = 3sbl/m, where m is the slope
of the calibration curve (Figure 8) in the earlier linear range, and the standard deviation of the blank
response (sbl) was found from fourteen repetitions of blank solution measurements. Consideration of
the obtained data results in the value of 0.17 nM for the detection limit of STR. The relative standard
deviation (RSD%) of OB/SNPs/GO/SPE was determined by 14 measurements of 0.1 mM STR solution
and was found to be 2.9%.
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Figure 8. Differential pulse voltammograms of the GO/OB/SNP/SPE in 0.1 M phosphate buffer solution
pH = 7.0 containing different concentrations of STR (from 0.36 to 0.67 V and peak potential of 0.54 V).
The voltammograms correspond to STR. Inset A shows the plots of the electrocatalytic peak current
as a function of STR concentration in the range of 0.4 to 240.0 nM and inset B is the peak current as a
function of STR concentration in the range of 240.0 to 720.0 nM.

In Table 1, a comparison of the obtained characteristics for STP in this research with other sensors
was performed. As shown in Table 1, the introduced modified electrode displays higher responses in
comparison with former reported modified electrodes.

Table 1. Comparison of the present method with other analytical methods.

Method Linear Range (µM) LOD (µM) Matrices Ref

LC/MS - 3, 0.6 Milk, Honey [31]

LC/MS - 4.7 Honey [32]

Electrochemistry - 14.1, 15.3 Milk, Serum [33]

Electrochemistry 8.6 × 10−3–3.44 × 10−2 1.7 × 10−2 Food [4]

Electrochemistry 1.0–33.8
33.8–81.7 1.0 Honey [34]

Electrochemistry 860.0–8.60.0 × 106 5.0 × 109 Muscle/Kidney/milk/Honey [35]

Electrochemistry 7.0 × 106 Milk [36]

Electrochemistry 1.0–1.0 × 103 1.5 × 10−3 Injection Sample
Solution [37]

Electrochemistry 4 × 10−4–2.4 × 10−1

2.4 × 10−1–7.2 × 10−1 0.17 × 10−3 Milk This Work

4. Discussions

4.1. Analysis of Impedance Results

With respect to SNPs/GO/SPE, reduction of Rct occurred to 243 Ω, likely because of the higher
surface area and excellent conductivity of SNPs. After immobilization of OB on the SNPs/GO/SPE,
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the Rct value decreased slightly to 401 Ω. These results clearly support the observations of CV
experiments and reconfirmed the procedure employed for the modified electrodes.

4.2. Evaluation of Sensitivity and Stability of the Prepared Electrode

The sensitivities of the OB/SNPs/GO/SPE towards the oxidation of STR in the absence and presence
of OTC are 2.625 × 10−1 and 2.633 × 10−1 µA/µM, respectively. It is noteworthy that the sensitivity of
the modified electrode to STR in the absence and presence of OTC is nearly the same, which shows that
STR and OTC oxidation at the OB/SNPs/GO/SPE is independent of each other. This result confirms
determination of STR in the presence of OTC is achieved without any form of interference.

In order to study the stability of the modified electrode, several OB/SNPs/GO/SPE have been
produced with the above-described method. The modified electrodes were examined within a time
range of 1 to 14 days as outlined above. The results showed that the modified electrodes have the best
stability for use less than 7 days. After 7 days, the responses of the modified electrodes yield a more
than 5% decrease. It is noteworthy that STR, OTC and their oxidation product(s) have no harsh effect
on the modified electrode surface. Hence, OB/SNPs/GO/SPE was found to have several advantages
such as fast response time, a good detection limit, a wide linear range and almost a stable response for
the determination of STR and OTC.

4.3. Application

The application of the introduced electrochemical sensor for the determination of STR in real
samples was examined by determining the concentration of the molecule in two milk samples.
The preparation of the sample involved dilution of 3 mL of fresh milk to 10 mL with a 0.1 M phosphate
buffer solution pH = 7.0. Next, the addition of certain amounts of STR was performed and the responses
of the OB/SNPs/GO/SPE determined via DPV measurement. The results are shown in Table 2. It is
clear that OB/SNPs/GO/SPE can be successfully used for STR determination in different milk samples.
Therefore, the components of the milk matrix do not interfere with determination of STR as determined
by the proposed sensor.

Table 2. Determination and recovery results of streptomycin in two different milk samples.

Sample Added (µM) Found (µM) RSD (%) Recovery (%)

Milk1

0 19 3.42 -
10 29.2 3.26 100.68
20 38.7 3.08 99.23
30 49.2 3.16 100.40

Milk2

0 62 3.49 -
10 72.4 4.39 100.55
20 81.9 3.03 99.87
30 92.5 4.18 100.54

4.4. Reliability and Interference study of Proposed Nanosensor

The reliability of the proposed nanosensor was evaluated by comparing the results with those
obtained from that declared in the label of the dairy products and LC/MS standard method to our
method in order to quantify STR in the same sample. The concentrations of STR in the milk samples
were found to be 19.0 ± 0.5 µM and 62.0 ± 1.2 µM by the present voltammetric method, which is in close
agreement with the values of 21.1 ± 0.2 µM and 63.3 ± 0.8 µM obtained by the standard method for
STR and declared in the label of the milk package. Based on the t test, it can be concluded that there is
no evidence of systematic difference between the results obtained by two methods. This suggests that
the detection procedures have been free from any interference from components of the sample matrix.
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5. Conclusions

In this work, we introduce a very simple, fast, and precise electrochemical technique for the
determination of both STR and OTC. The obtained results indicate that OB/SNPs/GO/SPE was effective
in detecting STR and OTC separately and in the determination of both components in the mixture.
The OB/SNPs/GO/SPE electrode revealed excellent electrocatalytic properties for STR oxidation in a
phosphate buffer solution pH = 7.0. Moreover, the modified electrode played a role as an excellent
agent for oxidation of OTC in comparison to GO/SPE. The cyclic voltammetric results show that STR
displays the characteristics of an ErC'i catalytic mechanism. In DPV measurements, the separation of
the STR and OTC oxidation peak potentials at the surface of OB/SNPs/GO/SPE electrode is around 200
mV. Determination of STR in the presence of OTC in milk samples has been achieved with satisfactory
results by using OB/SNPs/GO/SPE.
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