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How Is Working Memory Training
Likely to Influence Academic
Performance? Current Evidence and
Methodological Considerations
Sissela Bergman Nutley* and Stina Söderqvist *

Pearson Clinical Assessment, Clinical Research, Stockholm, Sweden

Working memory (WM) is one of our core cognitive functions, allowing us to keep

information in mind for shorter periods of time and then work with this information. It

is the gateway that information has to pass in order to be processed consciously. A

well-functioning WM is therefore crucial for a number of everyday activities including

learning and academic performance (Gathercole et al., 2003; Bull et al., 2008), which

is the focus of this review. Specifically, we will review the research investigating whether

improving WM capacity using Cogmed WM training can lead to improvements on

academic performance. Emphasis is given to reviewing the theoretical principles upon

which such investigations rely, in particular the complex relation between WM and

mathematical and reading abilities during development and how these are likely to be

influenced by training. We suggest two possible routes in which training can influence

academic performance, one through an effect on learning capacity which would thus be

evident with time and education, and one through an immediate effect on performance

on reading and mathematical tasks. Based on the theoretical complexity described we

highlight some methodological issues that are important to take into consideration when

designing and interpreting research on WM training and academic performance, but that

are nonetheless often overlooked in the current research literature. Finally, we will provide

some suggestions for future research for advancing the understanding of WM training

and its potential role in supporting academic attainment.

Keywords: working memory training, reading, mathematics, working memory, learning, academic performance

INTRODUCTION

At the center of all conscious information processing lies working memory (WM)—a fragile
system responsible for processing and temporarily storing information. It is fragile because it
can only keep track of a few pieces of information at the same time, and this information
can fade away after just a short period of time (seconds) or be pushed out by distracting
stimuli (Goldman-Rakic, 1996; McNab and Klingberg, 2008). WM capacity (WMC) predicts
school performance years later (Gathercole et al., 2003; Bull et al., 2008; Alloway and Alloway,
2010; Geary, 2011). Furthermore, WMC in preschoolers has been shown to predict future risk
of dropping out of high school (Fitzpatrick et al., 2015). Children with reading and math
difficulties often exhibit WM deficits (Siegel and Ryan, 1989; Swanson and Jerman, 2006) and
developmental studies of children with poor WMC have also reported findings to suggest
that the effect is cumulative across development, resulting in greater decrements in learning
as a child gets older (Alloway et al., 2009). This notion has instigated a quest for effective
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KEY CONCEPT 1 | Working memory (WM)

The brain’s processing system that allows us to mentally work with a limited

amount of information in the now. It is fundamental to all advanced thinking and

in order to learn facts or skills, that information must first pass through working

memory—our mental workbench, before becoming more stable long-term

representations.

early interventions—all with the higher purpose of supporting
the learning of these children.

This review will expand on the results from Söderqvist
and Bergman Nutley (2015) showing improvements in reading
and math performance two years following Cogmed Working

Memory Training (CWMT), put these results in a wider
theoretical context and discuss these in relation to conflicting
results from other studies. As cognitive training programs differ
in both their content and implementation, consequently showing
significantly different effects between intervention types (Melby-
Lervåg et al., 2016), this review will focus on the most widely
studied WM training program, CWMTTM (Klingberg et al.,
2002).

KEY CONCEPT 2 | Cogmed Working Memory Training (CWMT)

A computerized intervention entailing 12 different visuo-spatial and verbal WM

span tasks that are presented in a rotating schedule and adapt to the capacity

level of the trainee. Training is typically implemented during a period of 5–7

weeks, 30–40min/day, 5 days/week, with weekly support from a certified coach

that ensures compliance to the program.

The overarching question is whether an increased WMC
following CWMT will transfer to increased school performance.
A straightforward question perhaps, but what does it actually
entail? Are we asking whether training affects the skills and
content already learned, or whether training will help acquiring
new skills and content in the learning to come? Earlier
generations of “cognitive training” research struggled with
similar questions and for instance Sidney Strauss described this
complexity as follows (Strauss, 1972, p. 331):

“...the level of a child’s structural development determines the
concepts he will learn. That is, the intellectual structure sets the
limits for what can be learned. In this sense learning is subordinate
to development.”

In Söderqvist and Bergman Nutley (2015), we discussed two
theoretical routes through which improved WMC could impact
academic outcomes, the learning route and the performance

route. These two theoretical routes are in no way exclusive from
one another, but they are nonetheless important to distinguish
when designing an intervention study as their interaction and
effects are otherwise likely to be overlooked. Since WM training
does not include actual teaching or practice of reading or
mathematical skills, their development will depend largely on
the education students are or have been receiving, along with
the development of other cognitive functions required for skill
proficiency.

KEY CONCEPT 3 | Learning route

The mechanism by which WM training can influence academic performance

through improving learning capacity. This can result from increased attention in

class and from an increased capacity to digest new knowledge. Effects acting

through this route would be evident in the long-term with outcome measures

matching the curricular content.

KEY CONCEPT 4 | Performance route

The mechanism by which WM training can influence academic performance

throughWM’s direct involvement in academic tasks. Effects impacting this route

would accompany the increased WM capacity and be evident on outcome

measures of already learned skills on tasks tapping WM to its limits.

While the field of cognitive training is still young, some
researchers have been tempted to summarize the current results
in meta-analyses, reaching the conclusion that WM training does
not transfer to academic outcomes (Melby-Lervåg and Hulme,
2013;Melby-Lervåg et al., 2016). Althoughmeta-analyses can add
value in assessing the current status of a field, the conclusions
will only reflect the individual studies and the design choices
therein. It is important to remember the theoretical assumptions
in these studies and how they have been operationalized in
order to understand what some of these, perhaps premature,
conclusions are telling us. Since most studies that have assessed
transfer effects to academic performance have focused on reading
and mathematics we will here briefly summarize the literature of
WM’s role for the two.

THE ROLE OF WM FOR READING ABILITY

The cognitive mechanisms underlying acquisition of reading
ability have been studied extensively over the past decades
(Daneman et al., 1980) and the complexity of its nature is
well-demonstrated (Carretti et al., 2009; Kudo et al., 2015).
Becoming reading proficient requires a delicate interplay
between different cognitive abilities along with formal instruction
and practice. For instance, one study of beginning readers
(7-year olds) found that phonological awareness predicted
reading accuracy, while phonological awareness and verbal WM
predicted reading comprehension (Leather and Henry, 1994).
As reading proficiency involves both cognitive abilities and
skill acquisition, the strength of the relation between WM and
reading is likely to vary over time depending on both cognitive
maturity and skill development (Christopher et al., 2012). In one
such study, the relations between reading comprehension and
different cognitive components were assessed in a longitudinal
design in grades 1–3 (Seigneuric and Ehrlich, 2005). The results
indicated that WM became an increasingly important predictor
of reading comprehension with age and it was not until grade
3 that WMC independently explained variance in reading
comprehension after controlling for decoding and vocabulary. At
earlier reading stages, the influence of WM could be explained
by its shared variance with decoding and vocabulary skills.
This main finding has also been reported in slightly older
children, where verbal WM predicted reading comprehension
after controlling for WM’s shared variance with other verbal
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abilities (Cain et al., 2004; Kibby et al., 2014), however WM did
not predict word identification (Kibby et al., 2014). Thus, WM
is on an independent predictor of reading comprehension once
word reading ability has been mastered.

Others have found that different aspects of WM seem
related to different aspects of reading (Oakhill et al., 2011;
Gathercole et al., 2016) and that this relation also varies between
languages (Arina et al., 2015). The relation observable between
WM and reading ability will thus depend partly on the types
of assessments used to measure each construct. For example
in the study by Seigneuric and Ehrlich (2005), correlation
between WMC and reading in grade 3 was more prominent
when using passage comprehension compared with a sentence
comprehension outcome. Taken together, it seems that WMmay
be differentially supporting the two different phases of “learning
to read” and “reading to learn” (Chall, 1996), in that WM may
be transitioning from being one of several essential parts of the
puzzle in reading acquisition to later becoming a crucial function
in content understanding.

How is WM Training Likely to Influence
Reading?
As we have reviewed above, WM is only one of several capacities
that are necessary for reading proficiency. Thus, the right
question to ask may not be whether CWMT is likely to influence
reading proficiency or not, but rather explore the stages where
CWMT is likely to have effects on word decoding, reading
fluency and reading comprehension respectively, depending on
the baseline profile (cognitive and skill acquisition) of the child.
For instance, phonological awareness has a more significant
impact on reading acquisition in the early stages than WM.
However, if WM is also impaired, then additional struggles are
likely to cause hindrance in decoding progress, which could then
be improved with CWMT. Conversely, if another ability than
WM is acting as a bottleneck for a specific skill acquisition, then
CWMT alone is not likely to have an effect on that skill. Since
previous research has shown WMC to be predictive of certain
aspects of reading at certain ages only, selecting appropriate
outcome measures for training studies is crucial. Part of the
variance seen between controlled published CWMT studies may
indeed lay in the assessments chosen (see Table 1).

For example, as WMC has not been shown to predict
simple word recognition (e.g., Kibby et al., 2014) and reading
comprehension when using simple sentences (compared to
longer texts; Seigneuric and Ehrlich, 2005), these types of
measures are not likely to be influenced by an improved WMC
over and beyond a level that can be explained by variance
common to verbal and phonological abilities. This is possibly
reflected in a recent study (Roberts et al., 2016) that report no
improvements in reading following CWMT in a large sample of
6 to 7-year-olds. The measures used to assess reading [from the
Wide Range Achievement Test (WRAT)-4] at a 12 month follow
up was word reading, sentence comprehension and spelling and
at a 24 month follow up: word reading and spelling. Thus,
considering the theoretical background discussed above it is
not surprising that improvements were not observed on these

measures. However, it would be inappropropriate to draw any
strong conclusions regarding reading capacity in general as it
remains unclear from this study whether effects would have been
observed with other reading measures that are known to be more
reliant on WMC (Dunning et al., 2013; Katz et al., 2016). When
reading is assessed with passage comprehension on the other
hand, it seems that CWMT more often than not has produced
positive effects in both clinical and non-clinical samples, in line
with what would be expected based on the literature reviewed
above (Cain et al., 2004; Seigneuric and Ehrlich, 2005; Carretti
et al., 2009; See Figure 1).

While the figure offer no clear explanation to the
circumstances under which CWMT transfers to measures
of reading, it highlights some of the complexities in interpreting
the literature, namely the types of assessments used, the wide age
range within studies, the learning status between studies and the
time of the assessment. As previously discussed, WM seems to
play a different role in supporting reading acquisition than it does
reading comprehension, meaning that studies including students
on both sides of becoming reading proficient (for instance in
Phillips et al., 2016 ranging from age 8 to 16) are likely to see
differential effects on the same outcome after training. It also
seems that studies assessing reading proficiency in the early
stages do tend to find effects on a group level on decoding or
phoneme awareness (Foy and Mann, 2014; Fälth et al., 2015),
whereas studies assessing older children on this measure tend to
find effects primarily in impaired samples (Dahlin, 2010; Egeland
et al., 2013), although not consistently (Chacko et al., 2014). This
could perhaps reflect the different levels of restrainment WM
has caused (on average) on the measured skill in the various
study samples and to which degree other factors are hindering
performance.

THE ROLE OF WM IN MATHEMATICS

WMC predicts measures of current and future mathematical
abilities (Passolunghi et al., 2007; De Smedt et al., 2009; Raghubar
et al., 2010; Dumontheil and Klingberg, 2012; Peng et al., 2016)
and their partly overlapping neuroanatomical correlates have
been suggested to account for at least some of this observable
relation (Zago et al., 2002; Swanson et al., 2008; Metcalfe
et al., 2013). However, longitudinal studies have found different
components of WM to be related to mathematics performance
at different ages (De Smedt et al., 2009; Holmes et al., 2009;
Raghubar et al., 2010) and between aspects of mathematics
within the same age (Wiklund-Hörnqvist et al., 2016). The
developmental stage of the participants does not only relate
to the cognitive development (linked closely to age) but also
to the quality and quantity of exposure participants have had
to mathematical training (Morrison et al., 1997; Roberts et al.,
2015). During early stages of learning arithmetic most children
use counting strategies, at first often with the aid of fingers
before developing verbal counting (De Smedt et al., 2009).
Finally, the counting will gradually be replaced by forming
categorical representations in long-term memory (LTM; Noël
et al., 2004; De Smedt et al., 2009). The use of these different
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TABLE 1 | Effect sizes (Cohen’s d) extracted from published studies on CWMT on developing samples reporting data on different aspects of reading.

Study Sample Age Reading outcome Reading category Effect size Follow up

(>6 months)

Effect size

Dunning et al., 2013 Low WM, n = 94

Effect sizes in comparison

with the active control group

7–9 Word reading (WORD) Decoding 0.36 0.14‡

Reading ability (NARA) Passage comprehension 0.40 0.0‡

Reading accuracy 0.03 −0.22‡

Reading rate 0.04 −0.66‡

Written expression (KTEA) Written expression 0.69

Holmes et al., 2009 Low WM, n = 42 8–11 Word reading (WORD/WIAT) Decoding 0.01 0.07 (no control)

Dahlin, 2010 Special ed (mixed

ADHD/ADD), n = 57

9–12 Reading comprehension

(PIRLS)

Passage comprehension 0.88* 0.91*

Word decoding/Non-words

Orthographical test

Decoding 0.37 0.17

Orthographical knowledge −0.39 −0.13

Gray et al., 2012 Severe LD and ADHD and

previously shown to be

intervention resistant, n = 52

12–17 Sentence comprehension

(WRAT)

Sentence comprehension 0.05

Chacko et al., 2014 ADHD, high comorbidity

(CD/ODD), n = 85

7–11 Sentence comprehension Sentence comprehension 0.31

(WRAT) −0.05

Word reading (WRAT) Decoding 0.13

Spelling (WRAT) Spelling

Egeland et al., 2013 ADHD, n = 67 10–12 Decoding quality (LOGOS) Decoding 0.57* 0.64*

Decoding rate (LOGOS) Speed of decoding −0.32 −0.15

Reading fluency &

comprehension (LOGOS)

Passage fluency & comprehension 0.46* 0.62*

Reading rate (LOGOS) Reading speed 0.42* 0.17*

Foy and Mann, 2014 At risk academic progress,

n = 50

4–6 First sound fluency test

(DIBELSNext)

Phoneme awareness/Decoding 0.71 +

(3 months)

Holmes and

Gathercole, 2014

Low academic progress,

n = 75 × 2

9–10 National standard Composite of reading, writing,

speaking and listening skills

−0.56

10–11 assessment test (SAT) in

English

0.67*

Partanen et al., 2015 Special education, n = 64 8–9 Diagnostic reading and Passage comprehension −0.15 0.07

writing test (DLS, Swedish) Phonological ability −0.40 −0.69

Word comprehension −0.16 −0.05

Spelling ability −0.40 −0.14

Conklin et al., 2015 Cancer survivors, n = 62 8–16 Woodcock Johnson reading

fluency

Sentence comprehension −0.34

Söderqvist and

Bergman Nutley,

2015

Typically developing, n = 42 10–11 Diagnostic reading and writing

test (DLS, Swedish)

Passage comprehension 0.66*

(24 months)

Bigorra et al., 2016 ADHD, n = 61 7–12 Pruebas psicopedagogicas

de aprendizajes

instrumentales en Catalan

(Catalan test)

Passage comprehension −0.13 −0.1

Fälth et al., 2015 Typically developing, n = 32 7 “Words and images” word

decoding

Decoding 1.09 1.24 (2 months)

Roberts et al., 2016 Screened for low WM,

n = 452

6–7 Sentence comprehension Sentence comprehension −0.12#

(12 months)

Word reading (WRAT-4) Decoding −0.14#

(12 months)

−0.14#

(24 months)

Spelling −0.12#

(12 months)

Phillips et al., 2016 TBI, n = 27 8–15 Reading comprehension Passage comprehension 0.17* 0.16 (3 months)

Word reading (WIAT-II) Decoding −0.056 0.17* (3 months)

In studies not reporting effect sizes, it was calculated subtracting the change score for the control group from the intervention group divided by the pooled standard deviation. *Indicates

p < 0.05 and+ indicates p < 0.1.
‡
Based on less than a third of the original sample, #values indicate standardized differences between groups in follow-up scores only since there were

no baseline measures collected. KTEA, Kaufman Test of Educational Attainment; NARA, Neale Analysis of Reading Ability test; WORD, Wechsler Objective Reading Dimensions; DIBELS,

Dynamic Indicators of Basic Early Literacy Skills (DIBELSNext); WRAT, Wide Range Achievement Test; DLS, Diagnostiskt Läs och Skrivtest; WIAT, Wechsler Individual Achievement Test.
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FIGURE 1 | Depicts the effect sizes (Cohen’s d) extracted from the studies using CWMT divided between outcomes of decoding (A), sentence

comprehension (B), and passage comprehension (C). Studies with clinical samples are color coded in a red shade whereas studies with samples without a clinical

diagnosis are depicted in a blue shade.
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strategies put different demands on cognitive functioning,
including that of WM. This is reflected in a changing pattern in
how WM components relate to mathematics in that executive
and visuo-spatial capacities appear to be mostly recruited for
learning and application of new mathematical skills whereas
the phonological loop/verbal WM becomes more important
once the skill is learned (McKenzie et al., 2003; Raghubar
et al., 2010). Thus, although the task is held constant between
participants, the strategies used to solve it might differ and as
a result associations with WM will differ between participants.
Similarly, there might be intra-individual differences in cognitive
demand if an individual is measured with a longitudinal design
(or following an intervention) if the individual has switched
strategy e.g., from verbal counting to automatized solutions
between the measurement points. This is supported by a study
by Meyer et al. (2010), who observed that while grade 3
students performed significantly better than grade 2 students
on measures of operations and mathematical reasoning, no
significant differences were observed in the WMmeasures found
to correlate with these mathematical measures. This possibly
reflects a development of strategies as a result of 1 year of
formal education. Although these skills are reliant on WM, they
are not necessarily reliant on a matched development of WM.
Rather, a good fundamental WMC will allow for the learning
and development of new skills and strategies (Bull et al., 2001)
but once these are established WM will play a different role in
performance (Imbo and Vandierendonck, 2007).

In addition, the term “mathematics” can include a large variety
of skills. Geary (2011) describes two core domains: numerical
facility (including skills such as arithmetic, number, and counting
knowledge) and mathematical reasoning (representing more
abstract mathematical knowledge). These two domains both
rely on a number of cognitive functions, of which WM (and
its different components) has been demonstrated to be one
(Swanson and Jerman, 2006; Swanson et al., 2008; Geary, 2011).
HowWM relates to mathematics does not only depend on which
domains of WM and mathematics are being assessed (Peng et al.,
2016; Wiklund-Hörnqvist et al., 2016) but also on other aspects
such developmental stage of the subjects and how tasks are
presented (DeStefano et al., 2004).

How is WM Training Likely to Influence
Mathematical Abilities?
As outlined above, WM is consistently found to relate to
mathematical performance but the specific patterns of this
relation are complex and not fully understood. Consequently,
the effects of CWMT will be dependent on many different
factors. For example, the effects from training are sensitive to
the measures used, specifically as to which degree they tap WM.
As we have discussed above, the load on these measures can
differ across ages and specific strategies the child is using. The
observation that the phonological loop seems to play a more
important role for retrieving already learned skills in children
(McKenzie et al., 2003; Raghubar et al., 2010) is important
since capacity of the phonological loop is shown to be largely
unaffected by CWMT (Holmes et al., 2009; Dunning et al.,
2013). Thus, CWMT might have its potentially largest influence
on the process of learning new skills or during more complex

mathematical reasoning tasks shown to be more reliant on visuo-
spatial resources (Holmes et al., 2006). These points have been
largely overlooked in the majority of studies on CWMT to date
and as can be seen from Table 2 and Figure 2, many studies
have a wide age range of participants included. This will not
only induce large variance due to development and strategies
used, but in the cases where standardized assessments such as
WRAT andWechsler Individual Achievement Test (WIAT) have
been used this will also mean that the actual tasks performed
by the participants within the same study will differ due to the
assessments wide inclusion of different mathematical domains
(Raghubar et al., 2010) and the start and stop rules typically
used within these assessments. These points make it difficult to
interpret and generalize these results.

DISCUSSION

Outcome Measures to Assess the
Performance Route
As for all research, a crucial point to consider both when
designing and interpreting research is whether the study design
and outcome measures used actually answer the question(s)
being asked. Most of the studies reviewed here set out
to investigate whether effects from CWMT “transfers” or
“generalizes” to academic performance (Gray et al., 2012; Egeland
et al., 2013; Chacko et al., 2014; Foy and Mann, 2014) thus
implicitly focusing on what has been discussed here as the
performance route. This implies an assumption that WM would
have been acting as a bottleneck for pre-existing skills and
that increasing its capacity would unlock previously constrained
academic potential. Within this line of reasoning, such effects
would be apparent only on academic tasks with a WM load
close to each subject’s limits. Due to the complexity of both
reading and mathematical learning it is also not obvious that
improvingWMCwill lead to linearly associated improvements in
the academic skills measured. One can imagine two alternatives,
one in which a minimum level of capacity is required for simple
mathematics or reading skills, such as for example identifying
letters or reading and understanding a short and simple sentence.
In this case, having a WMC above this threshold might not
provide additional benefits on such tasks. On the other hand,
more advanced reading tasks such as reading and understanding
a whole paragraph of more complicated text might benefit from
a higher WMC independently of the baseline, thus exhibiting a
linear pattern of improvement with an increasedWMC. Similarly
to what Raghubar et al. (2010) have argued, the complexity of
the relation between WMC and academic performance points to
the need for task content analyses of outcome measures if we are
to better understand when, how and for whom CWMT leads to
significant transfer effects.

Outcome Measures to Assess the Learning
Route
Although learning itself takes time to manifest, there are other
ways to study the process of learning as was done in a
randomized, controlled study of children with ADHD (Green
et al., 2012). After CWMT, children in the intervention group
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TABLE 2 | Effect sizes (Cohen’s d) extracted from published studies on CWMT developing samples reporting data on different aspects of mathematics.

Study Sample Age Math outcome Math category Effect

Size

Follow up (>6

months) effect size

Dunning et al.,

2013

Low WM, n = 94

Effect sizes in comparison

with the active control group

7–9 Maths reasoning (WOND) Mix: problem solving,

geometry etc.

−0.20 −0.27‡

Number operation

(WOND)

Written number operations −0.4

Holmes et al., 2009 Low WM, n = 42 8–11 Maths reasoning (WOND) Mix: problem solving,

geometry etc.

−0.08 (0.49 no control)

Dahlin, 2010 Special ed (mixed

ADHD/ADD), n = 57

9–12 Basic number screening

test

Number concepts and

operations

0.69* 0.65

Speeded additions

verification tasks

Timed addition checking 0.55 0.33

Speede subtraction

verification tasks

Timed subtraction checking 0.01 −0.42

Chacko et al., 2014 ADHD, high comorbidity

(CD/ODD), n = 85

7–11 Math computation

(WRAT4)

Mix: number operations,

counting, oral and written

problems

0.1

Egeland et al., 2013 ADHD, n = 67 10–12 Key math: math

composite

Mix: a timed Mental

computation subtest of

verbally presented items and

an untimed problem solving

task with word problems

0.28 0.23

Bergman-Nutley

and Klingberg,

2014

Low WM & ADHD, n = 480 7–15 Cogmed progress

indicator

Multiple-choice timed

arithmetic test

0.39*

Holmes and

Gathercole, 2014

Low academic progress,

n = 75 × 2

9–10,

10–11

National standardized

math tests

Mix: concepts and number

operations, measuring, space,

shapes and algebra

1.15*

0.6*

Partanen et al.,

2015

Special education, n = 64 8–9 Arithmetic (WISC-III) Orally presented and solved

number operations

−0.19 0.05

Conklin et al., 2015 Cancer survivors, n = 62 8–16 Woodcock Johnson

math fluency

Timed written number

operations

−0.13

Söderqvist and

Bergman Nutley,

2015

Typically developing, n = 42 10–11 Adler maths screener Timed written number

operations

0.58 + (24 months)

Phillips et al., 2016 TBI, n = 27 8–15 Numerical operations

(WIAT-II)

Written number operations −0.43

Ang et al., 2015 Low WM, low math,

n = 111

Effect sizes in comparison

with the active control group

7 Numerical operations

(WIAT)

Written number operations −0.29 0.11

Roberts et al., 2016 Screened for low WM,

n = 452

6–7 Math computation

(WRAT-4)

Mix: Number operations,

counting, oral and written

problems

−0.18# (12 months)

−0.18# (24 months)

In studies not reporting effect sizes, it was calculated subtracting the change score for the control group from the intervention group divided by the pooled standard deviation. *Indicates

p < 0.05 and + indicates p < 0.1. ‡Based on less than a third of the original sample, #values indicate standardized differences between groups in follow-up scores only since there were

no baseline measures collected. WOND, Wechsler Objective Number Dimensions; WRAT, Wide Range Achievement Test; WIAT, Wechsler Individual Achievement Test; WISC, Wechsler

Intelligence Scale for Children.

were observed to have fewer occurrences of looking away and
playing with objects during an academic task compared with
the children in the control group, concluding that CWMT had
indirect impact on academic learning. Another study explicitly
set out to assess both hypothetical routes of impact with
assessments directly after training as well as after 12 months
(Dunning et al., 2013). Other studies have investigated the
learning route (Holmes and Gathercole, 2014; Söderqvist and
Bergman Nutley, 2015; Roberts et al., 2016) only, that is, that

CWMT would positively influence the learning capacity of the
participants. This hypothesis can be simplified as:

CWMT+ education > education alone

Within this premise, great care must be taken in selecting
outcome measures that match the content of the education part
of the equation. For example, while a well-functioning WM
can help a child understand geometry, only specific instruction
and practice will enable that child to solve a problem using
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FIGURE 2 | Effect sizes (Cohen’s d) extracted from published studies on CWMT reporting data on number operations (A) and mixed maths tasks (B).

Studies with clinical samples are color coded in a red shade whereas studies with samples without a clinical diagnosis are depicted in a blue shade.

pythagoras theorem (an example from the WIAT-II numerical
operations subtask). Most of the studies discussed in this review
have used short standardized assessments such as the WRAT
and WIAT, and results from these have been used to generalize
conclusions to the much wider term “academic achievement.”
Although these are good measures for their own purpose, such
as identifying individuals with specific learning difficulties, it is
important to keep in mind that they only provide a snapshot
of a student’s academic abilities. It is therefore surprising that
most studies using these have not included a discussion on
how the particular tasks included (a) relate to WM and (b)
for math primarily, match the curriculum to reflect what the
students have been learning in school since the completion of
training.

One approach that is more likely to capture progress on
curricular content is to use metrics that schools already use,
such as exams and national achievement measures, since these
are specifically designed to capture learning progress. So far
there have been two studies implementing CWMT in a school
environment that have also used outcome measures based on

assessments that the schools choose themselves as part of their
typical academic assessment (Holmes and Gathercole, 2014;
Söderqvist and Bergman Nutley, 2015). Both these studies stand
out as finding significant improvements on mathematics and
reading performance at long-term follow-up. It should however
be noted that while year 6 students in the Holmes and Gathercole
study demonstrated significant increases in both mathematics
and English, the effects for year 5 students were less clear. Using
established school metrics also has the benefit of the assessments
being salient to the students since these contribute to grades
and/or are presented in the usual educational context. Students
might therefore be more motivated when performing these tests
compared to tests performed for a research study only. Another
potential benefit is reducing the risk of placebo effects driving the
results. Although these studies have employed no-contact control
conditions, placebo effects are unlikely to explain the results
when using regular school based assessments administered by
the teachers, about 10–24 months after the training, and with
no obvious link to the study (Holmes and Gathercole, 2014;
Söderqvist and Bergman Nutley, 2015).
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Time of Assessment
Another requirement to assess the learning route is to
allow for sufficient time between training and assessment for
learning to take place. Although time increases the risk of
introducing confounding factors, this should be avoided with
well-controlled designs and should not hinder investigating
effects on learning. This point is often disregarded in the
literature. For example, a recent meta-analysis concluded that
WM training (different programs bundled together) does not
“generalize to important real-world cognitive skills, even when
assessments take place immediately after training” (Melby-
Lervåg et al., 2016).We believe that statements like these illustrate
a lack of consideration for the different mechanisms underlying
WM’s role in learning, and thus how training is likely to influence
academic performance.

Training Quality
Another overlooked factor when interpreting results from
training studies is to consider how the training is implemented,
not only with regards to compliance but also tracking the effort
levels invested. Just as one would not expect to build muscles by
going to the gym and simply sitting there, or lifting weights that
are not putting a strain on the muscle, one should not expect
effects from CWMT if a large portion of the training has been
performed with low effort.

Control Conditions
A factor that has been more widely discussed is use of control
groups (Morrison and Chein, 2011; Shipstead et al., 2012; Green
et al., 2013). While active control groups are appropriate to
control for test-retest and expectancy effects, their inclusion also
warrants a close dissection of potential side-effects. For instance
in a randomized, controlled trial studying 5–7 year old children
with ADHD, the control condition consisted of the same tasks as
the intervention group but with memory load set to 2 throughout
the training (van Dongen-Boomsma et al., 2014). Baseline
assessments showed that the sample had an averageWMC of 2.6–
2.8 indicating that the control group would have been training on
a level that is likely to have trained their WMC. Consistent with
this speculation, both groups showed improvements on many
outcomes but the contrast between groups was scarce. Similarly,
other samples of impaired individuals have used similar control
conditions (Chacko et al., 2014) and even though the contrast
may have been larger in older samples, it is still rather likely
that training for 40 min/day on a low level task (similarly
to a sustained attention task) could in fact lead to training
effects, thus diluting the statistically measureable effects from
the intervention. Such findings have been observed in brain
activity after CWMT, showing similar changes in both groups,
simply more pronounced in the intervention group (Brehmer
et al., 2011). This emphasizes the importance of identifying the
active ingredient one wishes to study, which will then guide the
selection of an appropriate control condition.

If one wants to investigate whether CWMT + education >

education, one should ensure that the education given to both
groups is comparable for reliable conclusions to be drawn. This
aspect might have influenced the results from the Roberts et al.

(2016) study. In this study students were screened for WMC
and those with low WMC were identified as at risk for academic
underachievement. Half of these children were then informed of
their deficits and selected to take part in a CWMT intervention.
When doing so these children were taken out of class to perform
the intervention, thus missing out on fundamental instruction.
In this sense the Roberts et al. study rather investigated the
hypothesis: CWMT > education. Improving the WMC of these
students is unlikely to replace the education they have missed
out on. Rather it runs the risk of them falling behind in their
knowledge and skills, potentially resulting in negative influences
on their self-esteem and motivation. Better design options to
avoid this possibility is either performing the training outside of
the school day as in Holmes and Gathercole (2014) or training
whole classes and scheduling training to take time from several
different subjects instead of one (as in Söderqvist and Bergman
Nutley, 2015). A benefit of training whole classes is that all
students miss the same content and the teachers can therefore
compensate for this and no single student will suffer from falling
behind in relation to their peers.

Clinical vs. Typically Developing Samples
The vast majority of studies reviewed herein have included
children with some sort of cognitive deficit, such as low WMC,
ADHD, or children receiving special education. Since these
categories tend to include heterogeneous samples, often with
high comorbidity with other deficits (Gray et al., 2012; Chacko
et al., 2014) it is of particular importance to perform more in-
depth analyses of the participants’ characteristics and response
to the intervention if we are to gain a deeper understanding of
the results. A recent study including children with the age of
8–12 years and diagnosed with ADHD indicate that medication
status and co-morbidity can both act as moderators for the effect
following CWMT (van der Donk et al., 2016). Furthermore,
baseline cognitive capacities have been found to be a predictor
of both training improvements and transfer effects in a sample
of children with intellectual disability (Söderqvist et al., 2012).
As we have discussed above, if other deficits are present but not
improved either by CWMT or by another parallel intervention,
it is unlikely that any great improvements on transfer measures
will be observed after CWMT alone. On the other hand, if
WMC is the only or the most serious hindrance for performance,
then CWMT is more likely to lead to noticeable improvements.
However, such improvements run the risk of being missed in a
classical group comparison design if there are other subgroups
for which little or no improvements are observed. Performing
in-depth analyses to understand inter-individual differences are
necessary in order to understand when CWMT can lead to
improvements in academic performance, and ultimately inform
on how to create better individualized interventions.

In contrast, since our study (2015) included typically
achieving children with no apparent deficits hindering their
learning progress, it is more likely that effects from training will
be more homogenous across the group. This study suggests that
typically performing students can also benefit academically from
CWMT.
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Power
An issue that most young intervention research fields suffer from
is that of running studies with insufficient power to actually
detect a true signal (Green et al., 2013). While small pilot studies
can produce directionally informative results, their effect sizes
will naturally rely on the heterogeneity of the sample and can
thus be expected to vary between studies. Some have raised the
issue of drawing invalid conclusions due to type-I errors (see for
example Simons et al., 2016). The risk of type-II errors on the
other hand is unfortunately seldom discussed in the cognitive
training literature and as can be seen in Tables 1, 2 some studies
report effect sizes in the range of 0.4–0.7 that are non-significant
due to the small sample sizes in the studies (Dunning et al., 2013;
Foy and Mann, 2014). However, these studies have concluded
that “there were no effects” on these measures rather than stating
that the results are inconclusive. This magnitude of effects has
been deemed as relevant in educational interventions (Hattie,
2008) and highlights the importance of running studies with
sufficient power to statistically detect such effects (as in for
instance Bergman-Nutley and Klingberg, 2014; Roberts et al.,
2016).

CONCLUSION AND FUTURE DIRECTIONS

In this review we have highlighted some important points to
consider when designing future WM training studies, as well
as when interpreting their results. As a whole, we believe the
field would benefit from refocusing on the theoretical and
functional underpinnings of the expected effects (e.g., Green
et al., 2012), with design choices that reflect the complexity of
the area. Based on the literature reviewed above, we consider
WM’s role in the learning route to be a promising notion to
investigate further. In order to advance our understanding of

how CWMT supports learning, we need to run larger studies
that include more careful mapping of individuals’ baseline
profiles, and track long-term scholastic learning. Operationally,
this would include consideration of how the intervention and
outcome measures are matched with the education given to
the participants along with in-depth analyses of inter-individual
differences in responsiveness to training, and acknowledgement
of how additional cognitive and educational skills interact with
the outcome performance. This is particularly important for
studies with clinical samples or academically underachieving
children.

It is important to recognize that CWMT is not suggested,
nor is it likely, to be a “magic pill” that solves all cognitive
problems. Some of the effects are well-established whereas others
are still in its early research days. Thus, there is still much
to be learned about what an individual should expect from
CWMT and grand scale studies are needed to answer the
remaining questions outlined above. Caution should be given
to not overstate effects, but just as importantly we should
recognize that concluding at this early stage that WM training
is ineffective without trying to understand the theoretical or
functional mechanisms behind the effects, is premature. This
runs the risk of leading to fewer intervention options for
individuals who could benefit from them and cause stagnation
of the research field and thereby our knowledge of training
induced neuroplasticity. Let us instead move forward and look
for solutions and deeper understanding of the mechanisms
behind training and its effects.
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