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Thermodynamics of continuous non-Markovian
feedback control
Maxime Debiossac 1,5✉, David Grass 1,4,5, Jose Joaquin Alonso2, Eric Lutz3 & Nikolai Kiesel1

Feedback control mechanisms are ubiquitous in science and technology, and play an essential

role in regulating physical, biological and engineering systems. The standard second law of

thermodynamics does not hold in the presence of measurement and feedback. Most studies

so far have extended the second law for discrete, Markovian feedback protocols; however,

non-Markovian feedback is omnipresent in processes where the control signal is applied with

a non-negligible delay. Here, we experimentally investigate the thermodynamics of con-

tinuous, time-delayed feedback control using the motion of an optically levitated, under-

damped microparticle. We test the validity of a generalized second law which bounds the

energy extracted from the system, and study the breakdown of feedback cooling for very

large time delays.
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The second law of thermodynamics is of fundamental and
practical importance1. On the one hand, it allows one to
predict which transformations are possible in nature. On

the other hand, it offers a method for determining the efficiency
of a given process by comparing it to its ideal, reversible limit.
According to the standard formulation of the second law, no
work can be cyclically extracted from a system coupled to a single
reservoir at temperature T0, that is, the power output has to be
negative, _Wext ≤ 01. However, in the presence of measurement
and feedback, this statement of the second law breaks down and
positive work can be produced, as exemplified by Maxwell’s and
Szilard’s thought experiments2,3. For Markovian feedback pro-
tocols a refined version of the second law reads _Wext ≤
kBT0

_Imar
flow, where T0 is the bath temperature and _Imar

flow is the
information flow to the detector, defined as the time variation of the
mutual information between a variable and its measured value4–6.
This inequality has been experimentally verified with colloidal
particles7,8 and single electrons9,10. When the information rate
_Imar
flow is positive, more work can be extracted from the system than

permitted by the usual second law of thermodynamics.
The fact that a control signal cannot be applied instantaneously

implies that feedback circuits inevitably exhibit memory effects
and are thus non-Markovian. The Markovian approximation is
only valid when the delay, i.e., the time between measurement
and feedback, is much smaller than the typical timescales of the
system. Delayed feedback is widespread in many areas, from
chaotic systems to biology11–15, emphasizing the crucial need to
expand the second law to account for finite memory. However,
such generalization is nontrivial. Because of the non-Markovian
nature of the feedback, the conventional approach of stochastic
thermodynamics16 cannot be applied and the usual condition of
local detailed balance does not hold. As a result, new contribu-
tions to the nonequilibrium entropy production occur, leading to
the extended second law for continuous, non-Markovian feed-
back, _Wext ≤ kBT0

_Spump, where _Spump is the entropy pumping
rate, which incorporates the effect of the time delay17–20. Since
_Spump ≤ _Imar

flow, this is the tightest second-law inequality to
date18. Despite the omnipresence of delay in feedback processes, a
dedicated experimental investigation of this non-Markovian
generalization of the second-law inequality is still lacking.

Here, we report the experimental study of the thermodynamics
of continuous, non-Markovian feedback control applied to the
underdamped center-of-mass (CM) motion of a levitated micro-
sphere21. Levitated particles are an ideal experimental platform to
explore thermodynamics in small systems22–27. We confirm the
validity of the generalized second law for time delays spanning two
decades and observe the breakdown of the high-quality-factor
(high Q) approximation18. We establish that the efficiency of the
feedback is enhanced when non-Markovian effects are included.
We further explore the relation between Markovian and non-
Markovian feedback by analyzing how the delay affects the cor-
relations between measurement outcome and velocity of the
particle. We finally explore the limitations of feedback cooling and
the saturation of the effective CM temperature of the system above
the bath temperature for very large delay.

Results
Generalized second law. We consider a harmonic oscillator in
contact with a heat bath at temperature T0, and subjected to a
delayed feedback control that acts as an information reservoir
(Fig. 1). Delayed feedback control means here that we acquire
information about the oscillator position xt at time t and apply a
force FfbðtÞ / xt�tfb

to manipulate its motion based on the
position measured at time t− tfb. The stochastic dynamics of the

oscillator is governed by the underdamped Langevin equation28,

€xt þ Γ0 _xt þΩ2
0xt � gΓ0Ω0xt�tfb

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γ0kBT0

m

r
ξt; ð1Þ

with m the particle mass, Ω0 its natural frequency, and Γ0 the
damping coefficient. The quantity ξt is a centered Gaussian white
noise with hξðtÞξðt0Þi ¼ δðt � t0Þ. The linear feedback is applied
via the force Ffb ¼ �gmΓ0Ω0xt�tfb

with feedback gain g > 018. The
mechanical quality factor of the resonator is given by Q0=Ω0∕Γ0
and the feedback damping rate by Γfb= gΓ0. It is convenient to
introduce the normalized delay τ= tfbΩ0 and the position of the
oscillator normalized to its standard deviation in equilibrium17–20.
The dynamics of the particle is then fully characterized by a set of
dimensionless parameters (g, Q0, τ) (Methods). Both the harmonic
and Brownian terms in Eq. (1) are Markovian. Memory effects
enter only via the delayed feedback force Ffb.

When the feedback force acts to cool the harmonic oscillator,
the extracted work Wext ¼ �W is taken to be positive. According
to the first law, the energy balance reads ΔU ¼ W �Q. As a
result, the heat dissipated into the heat bath in the steady state is
Q ¼ �Wext. On the other hand, the steady-state entropy balance
is17–20

�
_Q

kBT0
¼

_Wext

kBT0
≤ _Spump; ð2Þ

where _Spump is the entropy pumping rate, an additional
contribution to the entropy production that stems from the
feedback control and depends on the delay for non-Markovian
protocols. The entropy pumping rate is computed by coarse-
graining the harmonic and feedback forces over the position
variable17–20 (Methods). For a harmonic potential and a linear
feedback force, the velocity distribution is a Gaussian (Fig. 2b),
PðvÞ ¼ exp �v2=2σ2v

� �
=

ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p
with variance σ2v . The non-

Markovian feedback control leads to a cooling of the
microparticle, corresponding to negative entropy pumping
and extracted work rates, when σ2v < 1. By contrast, heating
occurs for σ2v > 1.

The validity of inequality (2) can be assessed by comparing
the entropy pumping to Markovian bounds. The usual
Markovian velocity feedback (VFB) cooling29,30, with a feedback
force proportional to the instantaneous velocity of the particle,
Ffb ∝− v, is recovered in the limit of Q0≫ τ and for τ= π∕2+
2πn, with n an integer. The entropy pumping rate corresponds

Bath
(T0)

Particle
(Teff)

Feedback
circuit

W

Spump

Ffb(xt-tfb
)

   Measure

Apply feedback

xt

Fig. 1 Non-Markovian delayed feedback control. The system consists of a
particle (white) in contact with a single heat bath (red) and coupled to a
feedback reservoir (green). The feedback loop continuously detects the
position xt of the particle and applies a delayed feedback force Ffbðxt�tfb

Þ
proportional to the position at time t− tfb. Depending on the time delay
tfb, the feedback cools or heats the system to a steady-state effective
temperature Teff. The blue arrows in the figure correspond to cooling, when
the feedback control pumps the entropy Spump out of the system. Energy
flows as heat Q from the bath to the particle and is extracted as workW by
the feedback circuit (blue arrows). In the case of heating, the energy and
entropy flows change direction. In both regimes the generalized second law
holds in the form, _Wext ¼ � _W ≤ kBT0

_Spump.
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in this case to _Svfb ¼ g=Q0
31, which we identify as the Markovian

information flow _Imar
flow (Methods). The high-quality-factor

approximation (Q0≫ 1) allows one to map the non-Markovian
dynamics to an effectively Markovian Langevin equation,
because the motion of the oscillator is essentially coherent on
that timescale18. The effect of the feedback is then incorporated
in a modified damping Γ0 ¼ Γ0ð1þ g sin τÞ and mechanical
frequency Ω02 ¼ Ω2

0½1� ðΓfb=Ω0Þ cos τ� of the resonator (Sup-
plementary Note 2). The Markovian second law remains valid
with these modified parameters. In the high Q approximation,
the entropy pumping is given by _ShighQ ¼ ðg=Q0Þ sin τ18. The
approximation is expected to breakdown for larger τ, when the
Brownian force noise leads to dephasing between the oscillator
motion and the feedback signal. This regime can only be
correctly described using the generalized second law (2).

Experimental setup and results. In our experiment, we use an
optically levitated microparticle to implement the dynamics of
Eq. (1), which holds for any harmonic system with linear feed-
back control. A standing wave is formed by two counter-
propagating laser beams (λ= 1064 nm) inside a hollow-core
photonic crystal fiber (HCPCF) (Fig. 2a and Methods)21. A silica
microsphere (969-nm diameter) is trapped at an intensity max-
imum of the standing wave. The amplitude of the particle motion
is sufficiently small to allow for a harmonic approximation of the
potential with frequency Ω0∕2π= 404 kHz (Supplementary
Note 7). The damping coefficient Γ0 as well as the bath tem-
perature T0= 293 K are determined by the surrounding gas. In
our setup, the linear dependence of the damping coefficient Γ0 on
the environmental pressure allows simple and systematic tuning
of this parameter along with the mechanical quality factor Q0=
Ω0 ∕ Γ0. The particle motion along the x-axis is detected by
interferometric readout of the light scattered by the particle21.
The signal is fed into a delay line that is digitally implemented,
and the output signal serves to control the power of a feedback
laser. This laser exerts a radiation pressure force in one direction,
accelerating the microparticle proportional to the delayed particle
position. The overall amplification of the signal sets the pro-
portionality constant, which is given by gΩ0Γ0, where the gain in

our experiment is g= 0.36 (Supplementary Note 5). The whole
feedback circuit has a minimal delay of tfb= 2.6 μs, i.e., τ= 2.04π.

We first test the extended second law (2) by varying the delay
over two decades. Figure 3a demonstrates the validity of the non-
Markovian inequality (2) over all relevant timescales. The non-
Markovian entropy pumping rate _Spump (green) is a much more
precise upper bound to the extracted work rate (black) than the
Markovian pumping rate _Svfb (horizontal dashed line). In
particular, the Markovian result fails to capture the oscillations
of the extracted work rate, as well as the heating phases induced
by the delay. The high Q approximation (dashed-dotted line)
correctly describes the oscillatory behavior of _Spump for short
delays. Yet, it does not account for the oscillation decrease
induced by the Brownian force noise for long delays. We already
observe significant deviations for a delay of only three oscillation
periods with a mechanical quality factor of Q0= 55. We have also
verified the second law (2) by varying the dissipation via Q0

(Supplementary Note 9).
The generalized second law (2) is crucial to properly estimate the

performance of the feedback cooling. In analogy to heat engines
and refrigerators, one may define the efficiency of work extraction
ηpump ¼ _Wext=ðkBT0

_SpumpÞ, which characterizes the conversion of
information into extracted work32. As shown in Fig. 3b, the
corresponding Markovian efficiencies for velocity feedback (ηvfb)
and for the high Q approximation (ηhighQ) vastly underestimate the
feedback efficiency. We note that the pumping efficiency ηpump and
cooling power _Wext exhibit a trade-off similar to that of heat
engines: one is maximal when the other is minimal, and vice versa.
By contrast, the velocity feedback efficiency ηvfb exhibits an
opposite dependence on τ.

We may gain physical insight on the breakdown of the standard
second law as shown in Fig. 3 by analyzing the correlations
between particle velocity and feedback force, as well as the effective
temperature of the system. Cooling is efficient when the feedback
force counteracts the motion of the oscillator, in other words, when
the velocity vt of the oscillator and the feedback force (F ∝ xt−τ) are
anticorrelated. Heating occurs when they are correlated. Figure 4
shows the correlation function between the two quantities,
c(τ)= 1∕(σqσv)∫∫ytvtP(yt, vt)dytdvt with yt= qt−τ (Supplementary
Note 4). The delay τ has two effects. First, it changes the phase
between the mechanical system and the feedback signal determi-
nistically, resulting in the oscillatory behavior of the correlations,
and thus the difference between heating and cooling. Second, it
allows for stochastic dephasing of the mechanical motion with
respect to the feedback signal, which translates into a reduction of
the correlations for increasing delay. These correlations do not
vanish, however, but asymptotically approach a finite value. For
long delays, the oscillator thermalizes due to the damping. The
action of the feedback circuit can then be seen as an independent
force noise with the spectrum of a white-noise driven harmonic
oscillator. The positive correlations occur as a result of the resonant
driving of the mechanical motion by the feedback signal.

Figure 5 displays the ratio of the effective steady-state
temperature, Teff ¼ T0σ

2
q
18, and the bath temperature T0. Figure 5a

clearly shows how the action of the feedback is reduced when the
mechanical quality factor Q0 is decreased or the time delay τ
increased. For all values of Q0, there is a certain delay τ, beyond
which cooling is no longer possible (black line). For even longer
delays, the effective temperature reaches a constant value,
T1

eff =T0 � 1þ g2=2, that is independent of Q0 for weak coupling
g≪ Q0 (Supplementary Note 3). This is in line with the second law
that predicts an asymptotic negative work extraction, W1

ext �
�g2=ð2Q0Þ for very long delays. Figure 5b provides a cut for
constant Q0= 55 through Fig. 5a. The gray-shaded area on the right
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Fig. 2 Experimental setup. a Two counterpropagating laser beams (red) are
coupled into a hollow-core photonic crystal fiber (HCPCF). They form a
standing wave that allows for trapping a silica microparticle at an antinode
(inset, white arrow). The fiber ends are placed inside vacuum chambers
(vac) to control the pressure inside the HCPCF. The particle position along
the fiber axis is detected with an interferometric readout. The feedback loop
is implemented by delaying the detected signal by a time tfb. To apply the
feedback force, a feedback laser (green) is modulated with the delayed signal
via an acousto-optic modulator (AOM). b Phase-space distribution P(x, v) of
the microparticle derived from the position measurements at Teff= T0 (red
circles) and Teff < T0 (blue circles). The respective marginals for the
distributions of position and velocity are shown on the top and right panels.
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shows the region where Teff > T0 for our gain g= 0.36. Note that
this region can be reduced by decreasing the feedback gain.
Excellent agreement between theory (red) and data (black) is
observed.

Discussion
In summary, we have performed an extensive experimental study of
the second law of thermodynamics in the presence of continuous
non-Markovian feedback. Our results constitute an important step
toward bridging theoretical developments in stochastic information
thermodynamics and more technical applications like continuous

feedback. Possible generalizations include the consideration of
measurement noise31 and the extension to nonlinear potentials and
nonlinear feedback (e.g., parametric cooling of levitated nano-
particles33). Nonlinear delayed feedback control has thus already
proven to be a more robust and effective method for synchroni-
zation compared with its linear counterpart34. Another avenue of
future research is the use of optimal control via Kalman–Bucy fil-
ters20. Intuitively, one might hope that elaborate filtering methods,
like Kalman filters, may overcome the impact of delay that we
observe in our simple feedback scenario by an optimal prediction
of the instantaneous velocity. However, while this will help to
reduce the effect of measurement noise, the effect of stochastic
Brownian force noise that occurs during the delay is fundamentally
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unpredictable. We therefore anticipate no improvement compared
with the long-delay results presented in our work.

Methods
Normalized form of the equation of motion. After time contraction t → tΩ0 and
position normalization x → q = x∕xth with xth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=mΩ2

p
the thermal root

mean square amplitude, the Langevin equation can be rewritten in the dimen-
sionless form,

€qt þ
1
Q0

_qt þ qt �
g
Q0

qt�τ ¼
ffiffiffiffiffiffi
2
Q0

s
ξt ; ð3Þ

with Q0=Ω0∕Γ0 the quality factor, g= Γfb∕Γ0 the feedback gain, τ= tfbΩ0 the
normalized delay and ξt representing a centered Gaussian white noise force with
hξðtÞξðt0Þi ¼ δðt � t0Þ.

Experimental setup. The particle is trapped in an intensity maximum of the
standing wave and oscillates in a harmonic trap. For a laser power of 400 mW in
each trapping beam, the mechanical frequency is Ω0∕2π= 404 kHz. The particle
CM motion is recorded using a balanced photodiode and roughly 10% of the light
transmitted through the HCPCF and that scattered by the particle. The feedback
control is implemented via radiation pressure of a second laser beam which is
orthogonally polarized and frequency shifted with respect to the trapping laser to
avoid interference effects. The feedback force Ffb is realized in the following steps.
The readout signal of the CM motion is bandpass filtered (bandwith: 600 kHz,
center frequency: Ω0∕2π) to get rid of technical noise in the detector signal. Then,
the signal can be amplified and delayed by an arbitrary time tfb with a field
programmable gate array. This signal is then used as modulation input for the
AOM. A more detailed description of the experimental setup and the feedback
control can be found in Supplementary Note 6 and in ref. 21

Thermodynamic quantities. The non-Markovian entropy pumping rate _Spump
can be computed by coarse-graining the harmonic (h) and feedback (fb) forces over

the position variable: _Spump ¼ � R
d v FfbðvÞ þ FhðvÞ

h i
∂vPðvÞ, where P(v) is the

velocity distribution and F iðvÞ ¼
R
dxFiðx; vÞPðxjvÞ is the corresponding coarse-

grained forces17–20. On the other hand, the Markovian information flow _Imar
flow

in the case of VFB is given by the time variation of the mutual information
between the velocity v and the measured value of the velocity y: _Imar

flow ¼R
dvd y∂vJðvÞ ln ½Pðv; yÞ=PðvÞPðyÞ� with the velocity probability current J(v)18–20.

This quantity diverges for error-free feedback31. We thus identify the Markovian
entropy bound with the Markovian limit of _Spump ! _Svfb ¼ g=Q0

18–20. For a
harmonic potential and a linear feedback force, the velocity distribution is a
Gaussian, PðvÞ ¼ exp �v2=2σ2v

� �
=

ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p
, with variance σ2v . The entropy pumping

rate is then explicitly _Spump ¼ ð1� σ2vÞ=ðQ0σ
2
vÞ and the work extraction rate reads

_Wext=ðkBT0Þ ¼ ð1� σ2vÞ=Q0 (Supplementary Note 1). We experimentally obtain
the velocity variance needed to verify the generalized second law as follows: for a
given time delay τ, a position time trace x(t) is recorded, filtered with a bandwidth
of 3Γ0 via post processing, and normalized with the standard deviation of the
feedback beam turned off, to find the normalized position q(t). The velocity v ¼ _q
is then numerically calculated with the finite difference approximation and the
variance σ2v computed.

Data availability
The datasets generated in the current study are available from MD on reasonable request.
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