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A B S T R A C T   

Patients with hepatitis B virus (HBV)-related liver cirrhosis (LC) are at high risk for hepatocellular 
carcinoma (HCC). Limitations in the early detection of HCC give rise to poor survival in this high- 
risk population. Here, we performed comprehensive metabolomics on health individuals and 
HBV-related LC patients with and without early HCC. Compared to non-HCC patients (N = 108) 
and health controls (N = 80), we found that patients with early HCC (N = 224) exhibited a 
specific plasma metabolome map dominated by lipid alterations, including lysophosphati-
dylcholines, lysophosphatidic acids and bile acids. Pathway and function network analyses 
indicated that these metabolite alterations were closely associated with inflammation responses. 
Using multivariate regression and machine learning approaches, we identified a five-metabolite 
combination that showed significant performances in differentiating early-HCC from non-HCC 
than α-fetoprotein (area under the curve values, 0.981 versus 0.613). At metabolomic levels, 
this work provides additional insights of metabolic dysfunction related to HCC progressions and 
demonstrates the plasma metabolites might be measured to identify early HCC in patients with 
HBV-related LC.   
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1. Introduction 

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths and the most common cause of death in patients 
with liver cirrhosis (LC) [1,2]. Infection by hepatitis B virus (HBV) is the main risk factor for HCC and LC [3,4]. Worldwide, HBV 
accounts for approximately one-third of LC cases and one-half of HCC [5]. In China, 77% of LC cases and 84% of HCC cases are caused 
by HBV infection [6]. It is well known that LC alone is also a strong risk factor leading to HCC. LC is found in more than 90% of patients 
with HCC [2]. However, the underlying mechanisms of the progression from HBV-related LC to HCC remain largely unknown. 

The treatment of HCC remains challenging and is largely determined by early diagnosis. The overall 5-year survival for patients 
with HCC is very poor at 5% [7]. Early detection of preclinical or early symptomatic HCC offers the potential for improving survival 
[8]. For screening early HCC in a high-risk population of HBV-related LC patients, thorough surveillance by liver ultrasound is rec-
ommended. However, an important limitation of ultrasound is its low sensitivity for the differentiation of malignant from benign 
nodules in LC and its strong dependence on operator experience [9,10]. Serum α-fetoprotein (AFP), is the most widely used 
non-invasive marker of HCC in clinical practice. However, previous evidences indicated that AFP could not effectively differentiate 
early HCC from LC, because both LC and HCC could cause AFP elevation [11,12]. At present, the gold standard for diagnosing HCC is 
biopsy, which is not indicated in most HCC cases due to irreversible damage and concomitant risks [13]. Therefore, the identification 
of accurate and noninvasive biomarkers for screening and diagnosing early HCC in high-risk LC population is urgently needed. 

Metabolic reprogramming is an important hallmark of cancer. Cancer cells undergo metabolic reprogramming to maintain 
tumorigenesis and cell proliferation [14,15]. Metabolomics, aiming to comprehensively study the entire metabolome in biological 
sample, is a newly emerged analytic discipline with promising potential in the area of precise medicines [16]. The progressive 
development of high-throughput metabolomic technologies makes it possible to provide comprehensive molecular data for under-
standing the biochemical perturbations in a variety of cancers, allowing for the discovery of potential therapeutic targets and diag-
nostic biomarkers [17,18]. Metabolomic studies from biofluids or tissues have indicated that HCC could present a variety of 
characteristic metabolic changes, such as imbalance of oxidative metabolism, dysregulation of amino acid, and phospholipid meta-
bolism [19,20]. 

Despite several small-sample-size metabolomic studies have been performed to explore discriminatory profiles of HCC differen-
tiated from HBV infection or LC [21–24], the deep metabolic profiling of early HCC in patients with HBV-related LC has not been 
systematically studied. Here, we used comprehensive metabolomics and network analysis to investigate the metabolic signatures in 
plasma samples from a large panel of HBV-related LC patients with and without early HCC (N = 332) and health controls (N = 80). 
Furthermore, we performed multivariable regression and machine learning analyses to identify candidate metabolite biomarkers for 
the early detection of HCC cases in patients with HBV-related LC. 

2. Materials and methods 

2.1. Study subjects 

A total of 332 patients with HBV infection, including 224 LC patients with early-stage HCC and 108 LC patients without HCC were 
enrolled from Shandong Jiaotong Hospital and Anzhen Hospital between 2015 and 2021. In addition, age- and sex-matched healthy 
individuals (n = 80) were included. This study protocol was conducted in accordance with the Declaration of Helsinki and approved by 
the Ethics Committees of Peking university health sciences center. All participants provided written informed consent, which was the 
review procedure of the ethics committee. 

The inclusion criteria were as follows: participants aged >18 years with HBV infection and defined LC. The diagnosis of LC and HCC 
was performed by two or more hepatogastroenterologists. LC diagnosis was based on the established basis of clinical LC symptoms, 
abnormal liver function, histology (progressive fibrosis, loss of hepatic architecture), and liver imaging (including abdominal ultra-
sonography, computed tomography, magnetic resonance imaging, or portal hypertension assessed by hepatic arteriography), when 
needed. In addition, patients with LC underwent liver imaging studies to exclude HCC within 6 months of registration. LC stage was 
assessed by Child-Pugh class. HCC cases were diagnosed based on well-established diagnostic liver imaging criteria and/or biopsy 
histology according to the criteria of Barcelona Clinic Liver Cancer (BCLC) and American Association for Study of Liver Disease Group 
[24]. Early HCC is defined as a single node of HCC measuring <3 cm, or up to 3 nodes <3 cm each, Child-Pugh A-B class [25]. Exclusion 
criteria for the study were current or historical conditions of other types of liver diseases for patients with nonalcoholic/alcoholic fatty 
liver diseases, autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis, current or no more than three 
months of acute cardiovascular and cerebrovascular diseases, respiratory diseases, ulcerative colitis, other infectious diseases (HIV, 
hepatitis C virus, hepatitis D), pregnancy, and definite HCC with anti-cancer therapy. HBV infection was defined as positive HBV 
surface antigen (HBsAg), hepatitis B virus DNA levels ≥20 IU/mL, and elevated aspartate aminotransferase (AST) or alanine 
aminotransferase (ALT) levels. 

2.2. Clinical data collection 

Demographic characteristics, including age, gender, body mass index, smoking and drinking status, were recorded for each study 
participant. Hypertension was defined as a condition in individuals with mean office systolic blood pressure (SBP) ≥ 140 mmHg or 
diastolic blood pressure (DBP) ≥ 90 mmHg or a defined history of hypertension. Diabetes mellitus was defined as a condition in in-
dividuals with clinical diagnosed type 1 and type 2 diabetes based on the American Diabetes Association. Patients who exhibited ≥50% 
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stenosis in at least one main coronary artery were diagnosed with coronary heart disease. Fasting blood samples were obtained to 
measure glucose, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), total bilirubin (TBIL), direct bilirubin (DBIL), ALT, AST, and AFP using an automatic biochemistry analyzer 
(Beckman AU 5400, Brea, USA). 

2.3. Metabolomic analysis 

Sample preparation and ultra performance liquid chromatography system coupled with quadrupole-time of flight mass spec-
trometer (UPLC-Q-TOF/MS) based-metabolomics were performed according to previous protocols [26–28]. Briefly, the frozen plasma 
samples were thawed at 4 ◦C. A total of 200 μL of ice-cold methanol-water (7:3, v/v) containing 2 μg/mL lysophosphatidylcholine 
(LysoPC) 19:0-d5, 3.5 μg/mL phosphatidylcholine (PC) 18:0/20:4-d11, 1.52 μg/mL tauroursodeoxycholic acid-d4, 2 μg/mL glycocholic 
acid-d4, 4.3 2 μg/mL stearoyl-L-carnitine-d3, 1.5 μg/mL L-arginine-d7, 2.4 μg/mL L-phenyl-d5-alanine, 1.2 μg/mL L-leucine-5, 5,5-d3, 
and 3.2 μg/mL stearic acid-18, 18, 18-d3 as the internal standard were added to 50 μL plasma samples for protein precipitation. The 
mixtures were vortexed for 10 min, sonicated for 10 min in an ice-water bath, and centrifuged for 10 min at 15,000 rpm. Then, 200 μL 
of the supernatant solution was evaporated to dryness using a ZLS-2 vacuum centrifugal concentrator. The dried residue was added to 
80 μL of methanol/acetonitrile (50/50, v/v) for further metabolomic analysis. The quality control (QC) samples were prepared by 
mixing equal aliquots from each sample and processed following the above protocols. 

Metabolite separation was achieved with an ACQUITY UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm, Waters Corp., Milford, 
MA, USA). The mobile phase consisted of a mixture of ultrapure water (0.1% formic acid) and acetonitrile (0.1% formic acid). The 
elution program was as follows: 0–1.5 min, 0–5% B; 1.5–3.5 min, 5–35% B; 3.5–4.5 min, 35–50% B; 4.5–5.5 min, 50–70% B; 5.5–9.0 
min, 70–100% B; 9.0–11.5 min, 100% B; 11.5–13.5 min, 100–0% B; 13.5–16.5 min, 0% B. The flow rate and oven temperature were 
0.4 mL/min and 40 ◦C, respectively. The injection volumes of the samples were 1 μL and 3 μL for positive and negative ion modes, 
respectively. MS analyses were performed on a Waters Xevo-G2 XS Q-TOF MS system (Waters Corp., Milford, MA, USA). The MS 
parameters were set as follows: capillary voltage at 2.5 kV; cone voltage at 40 V and 35 V; and desolvation gas temperature at 400 ◦C 
and 450 ◦C for positive and negative modes, respectively. Source temperature at 110 ◦C; desolvation gas flow at 700 L/h; cone gas rate 
at 50 L/h; collision energy at 10–60 eV; scanning range of mass spectrometry at 50–1100 Da. All analyses were acquired using a 
LockSpray interface to ensure accuracy and reproducibility, and LE was used as the reference compound with m/z 556.2771 for ESI+

and 554.2615 for ESI–. 

2.4. Metabolomic identification and data processing 

UPLC-Q-TOF/MS raw data were processed by using Progenesis QI software (version 2.0, Waters, USA) for peak alignment, 
grouping, peak extraction, and peak identification operations. The raw data matrix was normalized by the QC samples and the in-
tensity of internal standards. Then, SIMCA− P (v14.1; Umetrics, Umeå, Sweden) was performed on the normalized datasets for 
multivariate statistical analysis (MVA). The principal component analysis (PCA) model was applied to determine the clustering trend, 
and R2 and Q2 values were employed to evaluate the quality of PCA model. The combination of S plot of orthogonal partial least 
squares discriminant analysis (OPLS-DA) model and two-tailed Student’s t-test or Mann Whitney U test [a false discovery rate (FDR)– 
adjusted P values < 0.05] was performed to identify the differentially expressed ion variables between HCC and LC groups. Metabolite 
identification for the differentiated ion-variables was performed by using the primary and secondary MS fragment information and the 
QI MetaScope, HMDB, METLIN, and LIPIDMAPS databases. The matched metabolite was further identified by the retention times and 
primary and secondary MS fragments of authentic standards using an in-house metabolite library. 

2.5. Statistical analysis 

For clinical variables, continuous and non-normally distributed variables are presented as the mean and standard deviation (means 
± SD) and medians and interquartile ranges [IQRs] and were compared by two-tailed Student’s t-test and Mann Whitney U test, 
respectively. Categorical variables were summarized by frequency (n) and percentages (%) and compared by using Chi-square test. 

The correlation of metabolites with HCC was performed by univariate and multivariable regression analyses using SPSS Statistics 
26 software (IBM Corp, New York, USA) and a bioinformatics platform (http://www.bioinformatics.com.cn/login/). FDR-calibrated P 
< 0.05 was considered significant. Relationships between clinical laboratory HCC-related markers (AFP, ALT, and AST) and metabolite 
signatures were calculated using a debiased sparse partial correlation (DSPC) network based on MetaboAnalyst software (http://www. 
metaboanalyst.ca/). Heatmap analyses of metabolic alterations were performed by using TBtools software v1.098769. Quantitative 
metabolic pathway analysis was performed by MetaboAnalyst using the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 
The latent relationship network between biological functions and altered metabolites was generated based on the Ingenuity Pathway 
Analysis Database (IPA, QIAGEN Inc., German) and Cytoscape software v. 3.8.2. The random forest-based classification and feature 
ranking model were employed to select a small number of representative biomarkers that can maintain a maximized performance for 
differentiating HCC from LC in patients with HBV infection. The top metabolite biomarkers were selected based on the mean decrease 
in accuracy and receiver operating curve (ROC). 
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3. Results 

3.1. Clinical characteristics of the study subjects 

A total of 80 health individuals (male, 52.5%) and 332 patients with HBV infection participated in the study, including 224 LC 
patients with early HCC (male, 55.8%) and 108 LC patients without HCC (male, 53.7%). The clinical characteristics of all participants 
are summarized in Table 1. No differences in ages, gender, body mass index (BMI), smoking status, alcoholic consumption (>10 g/ 
day), Child-Pugh class-calculated LC stages, and the prevalence of diabetes mellitus, hypertension, and coronary heart disease were 
observed between HCC and non-HCC groups. In clinical laboratory measures, there were no differences in the values of SBP, DBP, TC, 
TG, LDL-C, HDL-C, TBIL, DBIL, and blood glucose between HCC and non-HCC groups. However, the results indicated that patients with 
early HCC had higher values of AST, ALT, and AFP than patients without HCC. 

3.2. Metabolic phenotypes of HBV-related LC patients with and without early HCC 

The relative standard derivations (RSD) of the distribution for the detected ions in the QC samples are shown in Fig. 1A. The results 
showed that the ion variables with RSD <20% accounted for more than 85% of all detected variables in both the positive and negative 
models, indicating that the present metabolic analyses were stable. Then, an unsupervised PCA model was constructed to confirm the 
analytical reliability of the established metabolomic approach and capture the differences in the metabolic profiles of plasma samples 
from health controls and patients with and without early HCC. As shown in Fig. 2B, the QC samples were tightly clustered together in 
the PCA score plots of the datasets acquired in both the positive and negative models, suggesting the analytical reliability of the 
established metabolomic approaches. Furthermore, a clear clustering trend among health, HCC, and non-HCC groups was observed in 
the score plots, suggesting significantly different metabolic profiles between the study groups. The established PCA models were 
highlighted with powerful values of R2 and Q2, 0.621 and 0.843 for positive ion mode, 0.596 and 0.743 for negative ion mode, 
respectively. 

3.3. Identification of early HCC-associated metabolite signatures 

To characterize the differentiated metabolite signatures in patients with and without early HCC, S-plots of the orthogonal partial 
least squares discriminant analysis (OPLS-DA) model were constructed. As shown in Fig. 1C, a panel of ion variables was differentially 
expressed between patients with and without early HCC. Following the protocols of metabolite identification and verification (as 
described in the methods), a total of twenty-six differentiated metabolic alterations were identified, including seventeen chemical 
standard-annotated metabolites (Table 1). These altered metabolites mainly included bile acids, amino acids, lysophosphatidic acid 
(LysoPA), LysoPC, and PC. Although the PC species were not validated by chemical standards, they were confirmed by using other PC 

Table 1 
Demographic and clinical characteristics of the study subjects.  

ID Health controls (n = 80) Early HCC patients (n = 224) Non-HCC patients (n = 108) Pa 

Male gender, n % 42, 52.50% 125, 55.80% 58, 53.70% 0.72 
Ages 54.9 ± 9.86 56.1 ± 9.8 55.3 ± 10.9 0.5 
Body mass index, kg/m2 23.9 ± 1.9 24.6 ± 3.1 24.2 ± 3.6 0.42 
Current smoker, n % 31, 38.75% 102, 45.54% 51, 47.22% 0.77 
Alcoholic (>10 g/day), n % 23, 28.75% 89, 39.73% 41, 37.96% 0.76 
Coronary heart disease, n % 5, 6.25% 12, 5.36% 7, 6.48% 0.68 
Hypertension, n % 9, 11.25% 53, 23.66% 23, 21.30% 0.63 
Mean office SBP, mmHg 124.1 ± 15.5 124.9 ± 17.2 123.6 ± 16.8 0.57 
Mean office DBP, mmHg 80.1 ± 12.8 81.9 ± 10.5 81.3 ± 12.2 0.81 
Diabetes mellitus, n % 7, 8.75% 21, 9.38% 13, 12.04% 0.45 
Fasting blood glucose, mmol/L 5.43 ± 1.54 5.78 ± 1.83 5.65 ± 1.19 0.50 
TG, mmol/L 0.98 ± 0.41 1.06 ± 0.57 1.16 ± 0.44 0.14 
TC, mmol/L 3.96 ± 1.13 4.24 ± 0.57 4.34 ± 0.78 0.31 
HDL-C, mmol/L 1.32 ± 0.24 1.19 ± 0.39 1.25 ± 0.29 0.18 
LDL-C, mmol/L 2.59 ± 0.62 2.74 ± 0.76 2.79 ± 0.71 0.96 
TBIL, μmol/L 13.83 ± 4.82 57.82 ± 20.84 59.72 ± 22.24 0.48 
DBIL, μmol/L 2.48 ± 0.82 26.85 ± 10.95 28.51 ± 11.71 0.27 
AST, mmol/L 22.42 [18.12, 27.65] 36.91 [25.47, 59.83] 23.51 [19.10, 31.09] <0.0001 
ALT, mmol/L 24.51 [17.46, 34.82] 40.81 [28.23, 67.34] 33.06 [23.68, 44.21] 0.0003 
AFP, ng/mL 2.86 [1.46, 5.52] 16.09 [3.72, 180.12] 7.14 [6.47, 10.87] 0.0017 
Child-Pugh class A, n % / 198, 88.39% 95, 87.96% 0.91 
Child-Pugh class B, n % / 26, 11.61% 13, 12.04% 0.91 

Continuous data are presented as mean ± standard deviation or median [interquartile range], categorical variables are presented as %. a: P value in 
the comparison of HCC and non-HCC. Two-tailed Student’s t-test or Mann Whitney U test were used for continuous data. The Chi-square test was used 
for categorical data. HCC, hepatocellular carcinoma; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglycerides; TC, total 
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TBIL, total bilirubin; DBIL, direct bilirubin; AST, 
aspartate aminotransferase; ALT, alanine aminotransferase; AFP, alpha-fetoprotein. 

Z. Du et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e16083

5

standard chemicals and the specific fragment ion 184.1 in the positive MS model. The results of univariate statistical tests and fold 
changes of these altered metabolites between HCC and non-HCC groups are summarized in Table 2. Furthermore, we also calculated 
the expression trends of these differential metabolites in comparison of health controls with the HCC or non-HCC patients. As shown in 
Table S1, we found that all these plasma metabolite markers were differentially expressed between health controls and HCC patients. 
In contrast, only 21 metabolite biomarkers were statistically different between health controls and non-HCC patients. The overall 
heatmap of the altered metabolite markers revealed that the samples of patients with early HCC were clearly separated from the 

Fig. 1. Stability evaluation and multivariate statistical analysis of metabolomic data from health controls and patients with and without 
early HCC. (A) Stability of analytical methods based on the RSD distribution of detected ion variables in QC samples. (B) PCA score plots depicting 
the apparent assembly of QC samples and remarkable separation of the study groups. Each point represents an individual QC sample or real tested 
sample. (C) S-plot of OPLS-DA depicting profound metabolic alterations between patients with HCC and those without HCC. Upper right zone: 
metabolites that are more abundant in patients with HCC than in patients without HCC. Lower left zone: metabolites that are more abundant in 
patients without HCC than in patients with HCC. 
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samples of non-HCC patients and health controls (Fig. 2A). 
Then, we performed univariate and multivariate regression analyses to explore the associations of twenty-six metabolites with the 

condition of early HCC (Fig. 2B). Notably, the resultant plot indicated that all these metabolic markers were significantly correlated 
with HCC in the univariate model. Furthermore, the results indicated that all the metabolites remained significantly associated with 
HCC, even after adjusting for ages, sex, BMI, smoking/drinking status, Child-Pugh classes, AFP, AST, ALT, and other metabolic dis-
eases, such as diabetes mellitus and hypertension. These results indicated that HBV-related LC patients with early HCC exhibited 
specific metabolite changes compared to those without HCC. 

Fig. 2. Metabolite signatures and their association with early HCC. (A) Heat map of the differential metabolites that distinguish HCC from non- 
HCC patients and health controls. (B) Univariate and multivariate regression analysis plot depicting the association of each metabolite marker with 
HCC. Positive or negative correlation values indicate a positive or negative association of metabolites with HCC, and FDR-adjusted P < 0.05 was 
considered significant. In multivariate regression analysis, adjusted factors included ages, gender, body mass index, smoking/drinking status, Child- 
Pugh classes, diabetes mellitus, hypertension, coronary heart disease, and all clinical laboratory measures. The bubble size refers to the correla-
tion intensity. 
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3.4. Metabolic pathway and network analysis of early HCC-associated metabolites 

To characterize the significant metabolic pathways and biological functions involved in the identified metabolite signatures that 
discriminated HCC and non-HCC patients, bioinformatics analysis was performed utilizing MetaboAnalyst and IPA software. As shown 
in Fig. 3A, four major KEGG pathways were enriched, including phenylalanine metabolism, glycerophospholipid metabolism, primary 
bile acid biosynthesis, and taurine and hypotaurine metabolism. To further understand the biological function of the differentiated 
metabolites, a functional relationship network was constructed using IPA knowledge database and Cytoscape. As depicted in Fig. 3B, 
the resultant network indicated that most of the metabolites were primarily involved in the metabolism of phospholipids and bile 
acids. Notably, the accumulation of L-phenylalanine, leukotriene B4, arginine, pyroglutamic acid, LysoPA species, and bile acid species 
and the reduction in taurine and PC species were significantly associated with the inflammatory response and oxidative stress. By using 
the major DSPC network analysis, we also investigated the potential associations of clinical and metabolic alterations in patients with 
early HCC. As shown in Fig. 3C, the inflammation-related metabolites, including LysoPA species and bile acid species, showed strongly 
positive interactions with each other. Furthermore, the results also demonstrated that bile acids, leukotriene B4, and a small pane of 
hydrophilic metabolites (such as arginine, phenylalanine, and pyroglutamic acid) showed significant correlations with APF, ALT, or 
AST. 

3.5. Metabolite markers for identifying early HCC from patients with HBV-related LC 

AFP is the most widely used tumor marker for HCC. Although our results indicated that the AFP levels of patients with early HCC 
were significantly higher than those of subjects without early HCC (P = 0.0017), the area under the receiver-operating curve (AUC- 
ROC) of AFP only yielded a very low value, 0.613 (as shown in Fig. 4A) for discriminating two study groups. To test whether the 
identified discriminatory metabolites could be used for identifying early HCC in the study population, we used a random forest-based 
machine learning feature selection method to select representative markers. The mean decreased importance values of twenty-six HCC- 
related metabolites are depicted in Fig. 4B. The ROC analyses of the top-ten metabolites are depicted in Fig. 4C. Notably, the AUC 
values of the top-ten metabolites ranged from 0.888 to 0.931. In addition, we found that most of these candidate markers were closely 
associated with inflammation responses (as shown in Fig. 3B). By using the random forest-based Monte-Carlo cross validation model, 
we identified the combination of the top-five metabolites (leukotriene B4, LysoPA 18:2, LysoPC 14:0, LysoPA 20:4, and glycocholic 
acid) as the best classifier (AUC-ROC = 0.981), while the additional features had little effect on the AUC values (Fig. 4D). 

Table 2 
Plasma metabolite markers for differentiating early HCC from non-HCC.  

Metabolites HMDB log2(Fold changes) P value FDR-adjusted P value 

Argininea HMDB0000517 1.50 4.95 × 10− 30 9.19 × 10− 30 

Chenodeoxycholic acida HMDB0000518 1.60 4.06 × 10− 27 5.56 × 10− 27 

Chenodeoxyglycocholic acida HMDB0006898 1.19 7.16 × 10− 18 7.16 × 10− 18 

Cholinea HMDB0000097 − 0.40 1.09 × 10− 18 1.13 × 10− 18 

Glycocholic acida HMDB0000138 1.67 1.03 × 10− 28 1.67 × 10− 28 

Leukotriene B4a HMDB0001085 1.75 3.77 × 10− 37 9.80 × 10− 36 

L-Phenylalaninea HMDB0000159 0.62 4.75 × 10− 31 1.23 × 10− 30 

LysoPA (16:0)a HMDB0007853 2.06 7.36 × 10− 32 2.73 × 10− 31 

LysoPA (18:2) HMDB0007856 2.10 6.64 × 10− 36 8.63 × 10− 35 

LysoPA (20:4)a HMDB0114742 0.97 5.83 × 10− 33 3.03 × 10− 32 

LysoPC(14:0)a HMDB0010379 − 1.35 8.20 × 10− 35 7.11 × 10− 34 

LysoPC(16:0)a HMDB0010382 − 0.89 7.95 × 10− 28 1.22 × 10− 27 

LysoPC(16:1) HMDB0010383 − 1.06 2.50 × 10− 31 7.21 × 10− 31 

LysoPC(18:0)a HMDB0010384 − 0.86 2.88 × 10− 24 3.26 × 10− 24 

LysoPC(20:4)a HMDB0010395 − 0.87 1.50 × 10− 24 1.77 × 10− 24 

LysoPC(22:6) HMDB0010404 − 1.02 1.39 × 10− 31 4.51 × 10− 31 

PC(31:0) HMDB0007935 − 0.67 5.75 × 10− 33 3.03 × 10− 32 

PC(33:2) HMDB0007940 − 0.38 2.42 × 10− 30 4.84 × 10− 30 

PC(36:5) HMDB0007890 − 1.28 2.23 × 10− 27 3.22 × 10− 27 

PC(38:5) HMDB0007989 − 0.56 1.52 × 10− 29 2.64 × 10− 29 

PG (32:0) HMDB0010570 − 1.39 1.28 × 10− 26 1.67 × 10− 26 

Pyroglutamic acida HMDB0000267 0.58 4.86 × 10− 26 6.02 × 10− 26 

Taurinea HMDB0000251 − 0.66 4.18 × 10− 32 1.81 × 10− 31 

Tauroursodeoxycholic acida HMDB0000874 1.35 1.65 × 10− 30 3.58 × 10− 30 

Tryptaminea HMDB0000303 1.25 7.43 × 10− 24 8.05 × 10− 24 

12-Ketodeoxycholic acid HMDB0000328 0.87 1.54 × 10− 30 3.58 × 10− 30 

Two-tailed Student’s t-test or Mann Whitney U test was used for the comparison of HCC and non-HCC. A log2(fold change) value > 0 or <0 indicated 
that metabolites were increased or decreased in the plasma of patients with HCC compared to patients without HCC. a Chemical standard-annotated 
metabolites. FDR, false discovery rate; LysoPA, lysophosphatidic acid; LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; PG, 
phosphatidylglycerol. 
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4. Discussion 

In the current study, we demonstrated that HBV-related LC patients with early HCC exhibited remarkably differentiated plasma 
metabolome profiles compared to subjects without HCC. Through metabolic network and functional enrichment analyses, our study 
identified a variety of significant metabolites in multiple metabolic pathways that were implicated in inflammation responses and 
oxidative stress, providing an important link between metabolic dysfunction and HCC progression. Furthermore, regression and 
machine learning analyses identified a small panel of differentiated metabolites that exhibited powerful performances in the diagnosis 
of early HCC in high-risk patients with HBV-related LC. 

Metabolites are not only substrates in metabolic activities but also signaling molecules controlling a wide range of cellular pro-
cesses [29]. LysoPC is an important lysophospholipid subtype that derives from PC degradation. Its dysregulation has been associated 
with chronic HBV infection and tumorigenesis [30]. Our study indicated that several LysoPC species (such as 14:0, 16:0, 20:4, and 
22:6) were remarkably decreased in patients with early HCC compared to those without HCC. Previous evidences have showed that 
LysoPC was significantly decreased in chronic liver diseases infected with HBV [31]. LysoPC was also considered a marker of malignant 
liver tumors and was significantly decreased in patients with HBV infection-related HCC [20,31]. Previous studies have demonstrated 
that LysoPC could play an important role in inhibiting tumor cell invasion and metastasis [32], and exhibited anti-inflammatory 
actions [31–33]. Thus, the decreased LysoPC levels suggested a higher anti-inflammation activation due to the existence of HCC in 
patients with HBV-related LC. 

Another important finding of this study was that LysoPA species (including 18:2, 16:0, and 20:4) were significantly elevated in 
patients with early HCC. LysoPA refers to the downstream production of LysoPC [34]. Thus, the accumulation of LysoPA in patients 
with early HCC might be caused by largely decreased levels of LysoPC. LysoPA is a bioactive phospholipid that acts as a ligand for G 
protein-coupled receptors. Numerous studies have revealed that LysoPA could play critical roles in stimulating tumor cell proliferation 
and migration in various types of cancers, such as prostate cancer, breast cancer, ovarian cancer, and lung cancer [34–36]. 
Tumor-promoting inflammation is a key hallmark of LysoPA. LysoPA could promote the secretion of inflammatory mediators from 

Fig. 3. Metabolism, function, and correlation network analyses of early HCC-related metabolite signatures. (A) Metabolic pathway analysis 
of the altered metabolites by using MetaboAnalyst. The color intensity and size of the circle are proportional to the enriched P value and pathway 
impact. Only pathways with P < 0.05 and impact >0.2 are labeled. (B) IPA database-based functional network of the metabolic signatures. The red 
and blue circles represent metabolites that were elevated and decreased in HCC compared to non-HCC, respectively. (C) Debiased sparse partial 
correlation network plot visualizing the major relationships of metabolic alterations and clinical markers; squares represent clinical variables, and 
the red and blue circles represent metabolites that were elevated and decreased in HCC in comparison to non-HCC, respectively. The red and blue 
solid lines indicate positive and negative correlations, respectively. The line intensity was proportional to the correlation values. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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tumor cells. The excess inflammatory mediators might also induce LysoPA production, which subsequently reinforces the inflam-
matory response, thus creating a vicious cycle that might be sustained [37–39]. Collectively, this evidence indicated that abnormal 
LysoPA signaling might be potential targets for ameliorating the development of HCC from HBV-related LC. 

Compared to non-HCC subjects, we also found that five bile acids, including chenodeoxycholic acid, chenodeoxyglycocholic acid, 
glycocholic acid, tauroursodeoxycholic acid, and 12-ketodeoxycholic acid, together with arachidonic acid-derived leukotriene B4, 
were significantly increased in patients with early HCC. Emerging evidence has revealed that altered metabolite productions in bile 
acid metabolism were closely associated with HBV infection, chronic liver diseases, and liver carcinogenesis [40–42]. The elevated bile 
acids could directly activate protein kinase C, resulting in increased activation of nuclear factor kappa-B, ultimately leading to 
increased inflammation, oxidative stress, and cell proliferation [43]. Bile acids can also activate epidermal growth factor, leading to 
the upregulation of cyclooxygenase and lipoxygenase, which promote the production of reactive oxygen species and proinflammatory 
arachidonic acid derivatives [43,44]. 

Circulating biomarkers can facilitate the screening and early diagnosis of HCC with minimum invasion [20]. In clinical practice, the 
serum concentration of AFP is still the most widely used HCC biomarker so far, although numerous studies have demonstrated its 

Fig. 4. Metabolite markers for diagnosing early HCC in HBV-related LC patients by using a random forest-based machine learning al-
gorithm and receiver operating curve. (A) Logistic regression-based receiver operating curve (ROC) of the diagnostic performance for AFP. (B) 
Mean decreased importance-calculated plot of HCC-related metabolite markers. (C) Logistic regression-based ROC analyses of the diagnostic per-
formances for the top ten metabolite markers. (D) Random forest-based receiver operating characteristic curve analyses of the diagnostic perfor-
mances for multiple metabolite combinations. 

Z. Du et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e16083

10

limited diagnostic sensitivity and specificity, especially in high-risk populations, including patients with LC and chronic HBV infection 
[45]. More recently, multi-marker combined detection has been considered a more powerful tool for the screening and early diagnosis 
of HCC [46,47]. By using regression and machine learning algorithms, this study identified a panel of five inflammation-related 
metabolites that might be used independently as biomarkers for detecting early HCC. Their combination yielded a significant 
discrimination performance in differentiating patients with early HCC from subjects without HCC (AUC-ROC of 0.981). These results 
suggested that the analyses of a small panel of metabolites might allow the specific and noninvasive diagnosis of early HCC in a 
high-cancerous risk population of patients with HBV-related LC. 

Several limitations warrant discussion. The participants in the present study were Chinese people, which might limit the gener-
alizability of our findings to other ethnic populations. Targeted metabolomics and larger cohort studies are needed to confirm our 
findings. Further studies investigating the mechanism of action of the key altered metabolites (such as LysoPA and bile acids) during 
HCC progression might be worthwhile. 

5. Conclusions 

In summary, this study identified a variety of bioactive metabolite alterations that showed high selectivity for detecting early HCC 
in patients with HBV-related LC, combining this with clinical insights might help clinicians ameliorate the screening and diagnostic 
practices of early HCC in high-risk patients suffering from HBV-related LC. Moreover, our findings provided important insights for the 
metabolic dysfunction and the early-stage HCC progression, allowing for the discovery of new therapeutic targets. 
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