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Abstract: The multi-sensor artificial lateral line system (ALLS) can identify the flow-field’s param-
eters to realize the closed-loop control of the underwater robotic fish. An inappropriate sensor
placement of ALLS may result in inaccurate flow-field parametric identification. Therefore, this
paper proposes a method to optimize the sensor placement configuration of the ALLS, which mainly
included three algorithms, the feature importance algorithm based on mean and variance (MVF), the
feature importance algorithm based on distance evaluation (DF), and the information redundancy
(IR) algorithm. The optimal sensor placement performance selected by this method is verified by
simulation. In addition, further experimental verification was conducted using the ALLS. Compared
with the uniform sensor placement configuration mentioned in recent studies, the experimental
results suggest that the optimal sensor placement method can achieve a more effective prediction
of the flow-field parameters, therefore strengthening the underwater robotic fish’s perception and
control function.

Keywords: underwater robotic fish; artificial lateral line system; sensor placement; feature impor-
tance; information redundancy

1. Introduction

The lateral line is a collection of sense organs involved in various fish behaviors, such
as prey detection, predator avoidance, schooling, intraspecific communication, rheotaxis,
station holding, etc. [1–3]. The biological lateral line’s sensing unit is the neuromast [4],
including superficial neuromasts (SNs) and canal neuromasts (CNs). The SNs stick out of
the fish skin [5] and respond to flow velocity [6]. However, CNs are distributed on both
sides of the fish body at the same horizontal level [7] and are sensitive to the orientation [6]
and water acceleration [7]. Ref [8] suggested a physical explanation for sensory layout
across diverse species, which is helpful for the development of follow-up research. More-
over, for environmental studies on fish, [9] has also proposed a robust velocity estimation
methodology relevant for studies of fish behavior using a bioinspired fish-shaped artificial
lateral line probe (LLP).

To mimic fish’s lateral line canal system, pressure sensors are widely used in recent
studies [10,11] to build the artificial lateral line system (ALLS) due to its mature technology
and low cost. The multi-sensor ALLS provides sensing and control functions to underwa-
ter robotic fish, which can supplement current underwater sensing methods, including
sonar and vision [12]. With the feedback from the ALLS, underwater robotic fish can
control its direction, flow posture for exploration, interaction, and communication more
effectively [13,14].
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Currently, ALLS has been used for flow-field information extraction [10] and localiza-
tion of a vibrating sphere [15]. However, most of the aforementioned studies have adopted
the ALLS design with fixed sensor placement according to engineering intuition. The effect
of sensor placement on the results is not considered. Moreover, the pressure sensors are
evenly distributed on the robotic fish: some are only distributed on the front head of the
robotic fish [13], some are evenly distributed on the side of the robotic fish [16], and some
are evenly distributed on the side and bottom of the robotic fish [17]. Nevertheless, there
is no analytical evidence that these are the best placement. The unreasonable determina-
tion of sensor placement based on engineering intuition is the main reason for inaccurate
flow-field information monitoring. Therefore, it is necessary to optimize sensor placement
for ALLS.

After optimizing the placement of the sensors, it is possible to avoid the loss of infor-
mation caused by randomly placing pressure sensors in ALLS, resulting in the inaccurate
prediction of working conditions [13]. It can also reduce the number of sensors for construct-
ing the ALLS, therefore reducing the cost and power consumption of the underwater robotic
fish. Simultaneously, it is avoided that the information extracted by the sensors increases
the amount of calculation or detects more redundant information, therefore improving the
accuracy of perception [10]. However, only a few pieces of research concentrated on the
optimal sensor placement method for the ALLS. Through simulation, [18] optimized the
sensor structure and established the pressure distribution models of the lateral surface in
uniform flow and turbulent flow. DeVries optimizes sensor placement along a streamlined
body using measures of empirical observability [19]. However, this study is only effective
in the uniform and steady flow-field. The optimal results are only used for controlling
the desired angle of attack with respect to the flow. In Ali Ahraria’s study [15,20,21], a
specialized bi-level optimization methodology is proposed to find an optimum design
considering the shape and size of the streamlined body and the sensors’ number and
locations. However, the above two methods are only applicable to the ALLS composed
of hair-sensor arrays. In Siddhartha Verma’s work [22], by combining simulations of the
Navier–Stokes equations with Bayesian experimental design, they have determined the
optimal arrangements of shear stress and pressure gradient sensors. For pressure sensors,
in our previous research [23], we proposed an optimal weight analysis algorithm and a
comprehensive evaluation system to optimize the sensor placement for the ALLS.

In this paper, we propose a novel sensor placement optimal method for the ALLS.
The optimal placement means that a design maximizes average characterization accuracy
when velocity and deflection angle in Uniform flow (UF) and Karman vortex street (KVS)
is considered. The contributions of this paper are multifaceted, detailed as follows: (1) a
fluid dynamics simulation experiment was carried out through Fluent. In the simulation
environment, multiple kinds of investigated scenarios are set up, and a large amount of
pressure data are collected, which are used for the research of the optimal placement of the
sensors and the information-processing algorithm; (2) an optimal sensor placement algo-
rithm is proposed based on feature importance and information redundancy. Considering
these two factors comprehensively, the final optimal sensor position is obtained; (3) the
optimized sensor placement is verified using the method of curve fitting of flow-field pa-
rameters, i.e., velocity and deflection angle; (4) a comparison with several commonly used
sensor placements in the current research has been carried out to verify the effectiveness of
the optimal sensor placement algorithm.

This paper is organized as follows. Section 2 introduces the ALLS of the underwater
robotic fish and the investigated scenarios set in this paper. Moreover, the experiment
platform is presented in detail. The optimal sensor placement algorithm and the evaluation
method of different sensor placements are introduced in Section 3. Section 4 shows the
result and evaluation of optimal sensor placement. Apart from this, experiments are
conducted to verify the effectiveness of this optimal sensor placement algorithm. Section 5
summarizes this paper and provides prospects.
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2. Description of the ALLS and Experiment
2.1. Underwater Robotic Fish with the ALLS

Inspired by the robotic fish model [24], the underwater robotic fish is designed accord-
ing to the adult mackerel’s regular length and size. The robotic fish made by 3D printing
is shown in Figure 1. Its shape is a symmetrical cylinder with a fish-shaped cross-section,
and the size is about 30 cm× 10 cm× 6.4 cm. The component of the robotic fish is shown
in Figure 1b. The main body, the basic structure of the robotic fish, is made of waterproof
nylon material. The main body provides stable support for the robotic fish. The middle
layer is designed as a dismountable form so that the placement of the sensor can be easily
changed. Two types of resin plates make up the middle layer, piece A and piece B, and
piece A is divided into two forms: with holes and without holes. The two types of pieces A
have the same size, and the width is about 1 cm. Piece B is mainly used for immobilizing
piece A. The robotic fish’s upper layer comprises two thin slices, which are fixed on the
robotic fish by screws. The function of the connecting piece in Figure 1b is to connect
the robotic fish to the mobile rail in the experimental platform. In this paper, the sensors
(MS5803-01BA) that construct ALLS can measure pressure data from 100 Pa to 0.13 MPa
with a resolution of 1.2 Pa. The sensors are embedded in Piece A with holes, and different
sensor placement configurations can be obtained by changing the position of Piece A with
holes. In routine underwater measurements, waterproof glue and stainless steel induction
caps are used as protective measures.

Figure 1. (a) Overall appearance of robotic fish. (b) Component of the robotic fish. (c) Top view of
the distribution of pressure sensors on the robotic fish.

Considering that the CNs are mainly distributed on the maximum cross-section of
biological fish. Therefore, the discussion in this paper is limited to the 2D setting to imitate
the fish’s CNs; that is, the pressure sensors are arranged on the same horizontal plane on
both sides of the robotic fish, as is shown in Figure 1c. Moreover, the CNs located on the
nose of biological fish are quite sensitive to flow-field parameter changes [11]. Therefore, a
sensor is placed on the nose of the robotic fish. The remaining sensors are divided into two
groups and arranged symmetrically on robotic fish to imitate the biological fish’s symmetry.
As the circumference of the robotic fish is about 64 cm, and Piece A’s width is about 1 cm.
Therefore, there are 31 optional sensor positions, symmetrically distributed on both sides of
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the robotic fish. Due to the limitation of the cost and the robotic fish’s power consumption,
the number of sensors in the ALLS is limited. We need to choose the optimal sensors
placement position from 31 optional sensors placement positions to construct the ALLS.

2.2. Investigated Scenarios

An underwater robotic fish can change its movement posture when it senses environ-
ment change. In light of the investigated scenarios in paper [10], we analyze 18 kinds of
scenarios as shown in Figure 2 to simulate the environment in nature, six in the UF, and 12
in the KVS.
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Figure 2. Investigated scenarios.

First, simulation experiments are conducted in the UF. In the UF, flow speed and
deflection angle are two critical parameters. The deflection angle is the angle between the
center axis of the robotic fish body and the water flow. As is shown in Figure 2, in the
first set of experiments (Figure 2(1–3)), the deflection angle is 0◦, but the flow speed is
different. In the second set of experiments (Figure 2(4–6)), the flow speed is constant, but
the deflection angle alters. This paper puts a cylinder in front of the robotic fish to create
KVS. By changing the flow speed, the deflection angle, the distance deviates from the center,
and the cylinder’s diameter can simulate the different working conditions. For example, in
the third set of experiments (Figure 2(7–9)), the robotic fish is placed in the same direction,
but the flow speed changes. Then we repeat the simulations for different deflection angles
(Figure 2(10–12)) with other parameters fixed. Furthermore, we change the diameter of
the cylinder to achieve different working conditions (Figure 2(13–15)). In the end, the
simulations about different distances deviated from the vortex center (Figure 2(16–18)) are
also added.

As described in Section 2.1, there are 31 optional positions for the pressure sensors.
In this paper, the fluid simulation software Fluent is used for simulation experiments,
and the pressure data at 31 positions are collected. As the working range of the natural
hydrodynamic receptor of fishes is generally 1–150 Hz [10]. Therefore, in the simulation
experiments, the time step is set to 0.01 s (sampling rate of 100 Hz). In each experiment, the
pressure signal is collected every 0.01 s in an observation interval of 4 s. Table 1 summarizes
the settings and fluid dynamics parameters of the simulation experiment.
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Table 1. Simulation experiment conditions and hydrodynamic parameters.

Experiment Conditions

Uniform flow

Flow Speed (cms−1) 10 20 30

Deflection angle (◦) 0 15 30

Karman vortex street

Flow Speed (cms−1) 10 50 200

Deflection angle (◦) 0 15 30

Distances deviated from center (mm) 0 5 10

Cylinder diameter (mm) 25 50 75

Hydrodynamic parameters

Strouhal number 0.21

Spacing ratio 0.41± 0.08

2.3. Experiment Platform

As shown in Figure 3, an experimental platform is designed to verify the optimal
sensor placement algorithm. The water tank body is made of acrylic resin, and its size is
300 cm× 60 cm× 60 cm (length × width × height). Two 2 Kw pumps power the water
tank, and the water flow velocity is adjusted within the range of 0∼30 cm/s through
the frequency converter. Although the robot fish’s deflection angle is controlled by the
steering gear (DS3115MG). The adjustable range of deflection angle is from −40◦ to +40◦

with the precision is 1◦. Several honeycomb boards have been installed perpendicular to
the direction of water flow near the water inlet, which helps to form the UF. By placing a
cylinder between the robotic fish and the honeycomb boards to generate KVS. The system
uses a sampling board based on MCU STM32F103 to samples the pressure data, and a
separate control board is used to control the steering gear and the motor.

Pump
Power

Water channel

Control board
Mobile rail

Sampling board

Water inlet
Robotic fish 

model

Frequency converter

Host computer

Water outlet

Figure 3. The experiment platform.

2.4. Experimental Condition

To verify the optimized sensor placement’s validity, we collect experiment data in
four pairs of experimental conditions by changing the flow parameters in the flow-field
to imitate the flow environment in nature. In each pair of experiments, only one flow
parameter, velocity or deflection angle, is changed. The ALLS can predict the changed
flow parameter through the fitting models in Section 3. These four pairs of experimental
conditions are shown in Table 2 and described as follows:

(1) In the UF, the robotic fish’s axis is coincidental with the water flow, the velocity of the
flow-field changes from 1 cm/s to 40 cm/s.

(2) In the uniform flow-field, the velocity of the flow-field is always 100 cm/s, the deflec-
tion angle of the robotic fish changes from 0◦ to 40◦.
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(3) Under the condition of the KVS, the cylinder’s diameter is 10 cm, the robotic fish’s
axis is coincidental with the water flow, the deflection angle of the robotic fish is 0◦,
the flow velocity changes from 1 cm/s to 40 cm/s.

(4) Under the condition of the KVS, the cylinder’s diameter is 10 cm, the flow velocity is
always 100 cm/s, the deflection angle of the robotic fish changes from 0◦ to 40◦.

Table 2. Experiment conditions and flow parameters.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Flow speed (cm/s) 1–30 100 1–30 100

Deflection angle (◦) 0 0–40 0 0–40

Distance deviated from center (mm) / / 0 0

Cylinder diameter (cm) / / 10 10

3. Optimization Method for Sensor Placement of the ALLS

The optimization method for sensor placement of the ALLS contains two parts: (1) sen-
sor placement optimal algorithm and (2) Evaluation algorithm to choose the best sensor
placement. Through the optimal sensor placement algorithm, we can achieve multiple
sensor placement design by changing three weight factors that correspond to the feature
importance algorithm based on mean and variance (MVF), the feature importance algo-
rithm based on distance evaluation (DF), and the information redundancy (IR) algorithm.
To evaluate these different sensor placements we put forward the evaluation method. In
addition, we can achieve the optimal sensor placement according to the index R2.

3.1. The Workflow of Optimization Method

After obtaining the pressure data under different working conditions introduced in
Section 2.2, it is first necessary to extract features from the pressure data to distinguish
the flow-field parameters more effectively and avoid the dimension explosion. Secondly,
although the extracted features can identify flow-field parameters from different per-
spectives, some features make an outstanding contribution. In contrast, other features
have less relevant to some parameters. Therefore, it is necessary to calculate each fea-
ture’s importance and eliminate some features with a lower correlation with flow-field
parameter identification. When optimizing sensor placement, feature importance is a
significant parameter.

In this paper, two algorithms evaluate the importance of different features, MVF and
DF. The evaluation result of the MVF algorithm on the normal distribution features is
accurate, but the features’ distribution needs to be known in advance. Simultaneously,
the DF algorithm is efficient in calculating the feature’s distance within different working
conditions. Combining these two algorithms can obtain a more effective and more widely
applicable algorithm.

The two algorithms, as mentioned above, only consider the ability of a single sensor
to identify flow-field parameters. However, when multiple sensors collect data at the same
time, redundant information may be generated. The existence of redundant information
will reduce the efficiency of the learning algorithm. To accurately identify the flow-field
parameters, we propose an IR algorithm to reduce the redundant information collected,
combining the feature importance algorithm and the IR algorithm to obtain the optimal
sensor placement.

The algorithm workflow to achieve the final sensor placement is shown in Algorithm 1.
Figure 4 is the workflow of the optimization method.
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Algorithm 1 Sensor placement optimal algorithm.
Step 1: Calculate the feature importance using the MVF and DF algorithm. Supposing
that the result are respectively Emat and αmat, weight factors are A and B.
Step 2: Achieve a more efficient feature importance matrix D, which include the infor-
mation of 31 sensor pairs’ feature importance.
Step 3: Sum up the feature importance of each sensors.
Step 4: Sort the sensor pairs according to the sum of feature importance from large to
small.
Step 5: Select the sensor pairs sensor the sorting results from front to back and satisfy
the degree of information redundancy L as well.
Step 6: Change the weight factors (A, B, L) of these three algorithms and achieve various
sensor placements.
Step 7: Calculate the evaluation indexes R2 of fitted curves. The fitted curves include
velocity and deflection angle fitting curves in the UF and KVS.
Step 8: Choose the optimal sensor placement through the parameter R2.

Candidate 

locations
Feature 

extraction

Data

DF 

algorithm

MVF 

algorithm

The degree of 

redundancy L

Information redundancy

calculation
Change 

A,B,L

A× Emat+B× amat

Result 1

Result 2

Result n

R2 Final 

result

Velocity curves 

fitting

Angle curves 

fitting

Sensor placement

optimization algorithm

Evaluation of the results

Emat

amat

Figure 4. Sensor placement optimal algorithm.

3.2. The Optimal Sensor Placement Algorithm
3.2.1. Feature Extraction

For different flow-field speeds, the robotic fish’s deflection angle, the deviation dis-
tance of the robotic fish, the diameter of obstacles, etc., the hydrodynamics simulations
simulation is performed. First, the features of the pressure data of different flow fields are
extracted. Refer to the feature selection in the paper [23]; this paper has determined the
same four frequency-domain features and ten time-domain features. Since all the features
are extracted from the pair of sensors, the feature vector of the pair of sensors is constructed
as (1).

F = [Tm,l , Tm,r, f j,l , f j,r, f10] (1)

where Tm,l and Tm,r(m = 1...4) respectively represent frequency-domain features extracted
from the left and right sensors, f j,l and f j,r(j = 1...9) respectively represent time-domain
features extracted from the left and right sensors, f10 is pressure difference between two
sensors (left minus right).

3.2.2. The Feature Importance Algorithm

1. The DF algorithm
Six pairs of experimental scenarios are conducted in Section 2.2 to simulate the natural

underwater world. We change only one flow-field parameter in each team of experiments,
such as speed, deflection angle, etc. Each experiment means one kind of working condition.
The DF algorithm aims to calculate the distance evaluation factor, representing this feature’s
ability to distinguish different working conditions.

Each experimental scenario in Figure 2 has conducted C times. The distance between
experiments under the same working condition can be considered to be the distance within
this working condition, and the distance between the three working conditions in a group,
i.e., Figure 2(1–3), can be considered to be the distance between the working conditions. The
number of working conditions is M, the number of features is K, the number of optional
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sensor pairs is N. In this paper, M = 18, K = 27, N = 31. The evaluate algorithm method
is as follows.

Step 1: Calculate the distance within the working condition.

di,j,k(in) =
1

C(C− 1)

C

∑
m,n=1

|Fi,j,k(m)− Fi,j,k(n)| (2)

where m, n = 1, 2, ..., C, m 6= n, i = 1, 2, ..., M, j = 1, 2, ..., N, k = 1, 2, ..., K, Fi,j,k(m) and
Fi,j,k(n) represent the ith condition’s jth sensor’s mth and nth sample’s kth feature. Then
the average distance within the M class working conditions is calculated.

Dj,k(in) =
1
M

M

∑
i=1

di,j,k(in) (3)

Step 2: Calculate the distance between the working conditions.
First calculate the average value of jth sensor’s kth feature.

Fj,k(avr) =
1
M

M

∑
i=1

Fi,j,k (4)

Then, the average value of the distance between the working conditions of the kth
feature of the jth sensor is calculated.

Dj,k(out) =
1
M

M

∑
i=1
|Fi,j,k − Fj,k(avr)| (5)

where j = 1, 2, ..., N, k = 1, 2, ..., K, Fi,j,k represent the average value of the kth feature of the
jth sensor of the ith condition.

Step 3: Calculate the distance evaluation matrix.
Calculate the distance evaluate parameter of jth sensor’s kth feature.

αj,k = Dj,k(out)/Dj,k(in) (6)

The distance evaluate parameter αj,k reflects the ability of the jth sensor’s kth feature
to distinguish between M kinds of working condition. The greater the αj,k is, the more
sensitive the jth sensor’s kth feature to distinguish M kinds of working conditions.

Step 4: Remove the features with small distance evaluate parameter and
data normalization.

To avoid the influence of small values on the experimental results, we can calculate
the average value of distance evaluate parameter αavg.

αavg =
1

N × K

N

∑
j=1

K

∑
k=1

αj,k (7)

Then remove the distance evaluate parameter smaller than αavg, which means αj,k = 0.
Normalize the distance evaluation matrix:

αmat(i, j) =
αmat(i, j)−min(αmat)

max(αmat)−min(αmat)
(8)

Then we can obtain the distance evaluate parameter matrix.

αmat =

 α1,1 ... α1,K
... ... ...

αN,1 ... αN,K

 (9)
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2. The MVF algorithm
In the two different working conditions, the feature’s average value is normalized

by the features’ variance. If the average deviation value is considerable, this feature’s
importance increases, which means it can distinguish two types of working conditions.
If the average cannot be distinguishable, the importance of this feature diminishes. The
following are the specific implementation steps of the method.

Step 1: The importance parameter E is calculated for each feature of each pair of
sensors. Emat is the important matrix.

First, the importance of each group of sensors is calculated.

Si,j,k =

√
Var(Fj,k)

M
+

Var(Fi,k)

M
(10)

Ei,j,k(imp) =
|mean(Fj,k)−mean(Fi,k)|

Si,j,k
(11)

where i, j = 1, 2, 3...N, i 6= j, k = 1, 2, 3...K, Var(Fj,k) represents the variance of the kth
feature of the jth sensor in M kinds of working conditions; average (Fj,k) represents the
average value of the kth feature of the jth sensor in M kinds of working conditions.

Step 2: Choose the maximum value of the kth feature of the ith sensor between the
other (N − 1) group of sensors as the feature importance parameter.

Ej,k(imp) = max(Ei,j,k(imp)) (12)

Step 3: To avoid the influence of small values on the experimental results, we can
calculate the average value of feature importance Eavg.

Eavg =
1

N × K

N

∑
j=1

K

∑
k=1

Eimp (13)

Then remove the distance evaluate parameter smaller than Eavg, which means Eavg = 0.
Additionally, we achieve a more efficient evaluate matrix Emat.

Emat =

E1,1 ... E1,K
... ... ...

EN,1 ... EN,K

 (14)

3. The synthesis of the two methods
The method of distance evaluation factor ends up with a N × K matrix αmat, and the

method of characteristic importance end up with a N × K matrix Emat, normalize the two
matrices and add them. We can achieve a more efficient matrix D.

D = A× Emat + B× αmat (15)

where A = 1− B and A ∈ (0, 1), A and B are the weights of these two algorithms.

3.2.3. The IR Algorithm

When two features are highly dependent, if one of them is removed, the respective
class-discriminative capabilities would not change much [25]. If two sensors collect similar
features, the information efficiency between the two pairs of sensors may decrease. The
different sensors’ redundant information should be as little as possible to ensure that the
ALLS can achieve more efficient flow information. Inspired by the minimal redundancy
used for feature selection in paper [25], the following IR algorithm is added to select
mutually exclusive sensor pairs.

Step 1: Normalize the different features of different sensors.
Step 2: Calculate the probability of different sensors’ different features in different intervals.
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After normalization, all data are between 0.1 and 1. Then, we divide them into
nine intervals to calculate the occurrence probability of the Nth sensor’s Kth feature in
different intervals.

Step 3: Calculate the information entropy H1 for different features.

H1( fi,j) = −∑ Pr( fi,j) log Pr( fi,j) (16)

where Pr( fi,j) represents the occurrence probability that the ith sensor’s jth features in the
interval r.

Step 4: Calculate the conditional entropy between two different features of the sensors.

P( fm,j,a| fn,j,a) =
1

Fm,j,a
Fn,j,a

+
Fn,j,a
Fm,j,a

(17)

H2( fm,j| fn,j) = ∑ P( fn,j)
M

∑
a=1

P( fm,j,a| fn,j,a) log P( fm,j,a| fn,j,a) (18)

where Fm,j,a, Fn,j,a respectively represent the value of mth and nth sensor’s jth feature in the
ath condition.

Step 5: Calculate the mutual information between the different features of two sensors.

L( fm,j| fn,j) = H1( fm)− H2( fm,j| fn,j) (19)

Step 6: Add sensors’ different feature’s mutual information.
The result is the mutual information between two pairs of sensors. The more informa-

tion the two sensors contain, the more redundant information is.

3.3. Evaluation of Different Sensor Placements

1. Change flow velocity in the UF and KVS, and fit the velocity curve.
Getting the flow velocity value from the original pressure signal is the critical issue in

this paper [26] estimates the speed by the pressure difference between the fish’s tip and
body. The pressure signal of the sensor at the tip of the fish is the total pressure, and the
total pressure cannot directly obtain the flow velocity, as water is an incompressible flow in
the Bernoulli equation:

P = ρgh + p0 +
1
2

ρv2 (20)

Since the water elevation does not change over time, and no changes in the bulk flow,
so gravity is not considered, the formula (20) can be changed to:

P = p0 +
1
2

ρv2 (21)

where P is the total pressure measured, p0 is static pressure, ρ is fluid density, v is the
fluid velocity.

v =

√
2(P− p0)

ρ
(22)

In this formula, p0 can be measured at the point on the fish’s head, where the flow
speed is equal to the free flow speed. However, None of our sensors is mounted at this
point, so P− p0 cannot be directly measured. However, it can be replaced by P− pa, where
P is the mean value of pressure on both sides of the robotic fish, pa is the pressure at the nose
of the robotic fish. However, it cannot be replaced directly. By trial, we find that there is a
proportional relationship between the two data. Specifically, that is: P− p0 = Cs(P− pa).
So, the velocity can be calculated as below equation.
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v =

√
2Cs(P− pa)

ρ
(23)

2. Change the deflection angle in the UF and KVS, and fit the deflection angle curve.
In a uniform flow-field, if the robotic fish is deflected to a certain angle, the pres-

sure value of the two sensors on both sides of the robotic fish will inevitably have a
difference [13]. The pressure difference of the robotic fish increases as the deflection angle
increases from 0◦ to 90◦. In our experiment, as the angle gradually increases, the pressure
difference will increase sharply, which is similar to a quadratic function curve, not a linear
relationship. Therefore, the corresponding relationship is set to second order to reduce the
error in calculating the deflection angle.

y = ax2 + bx + c (24)

where y presents the pressure difference between a pair of sensors, x presents the deflection
angle of the robotic fish.

Performance of the fitting curves is evaluated with R2. R2 is known as the goodness
of fit, which is a parameter that evaluates the quality of the fitted model by comparing
the estimated error with the sum of the squared errors. It is usually used to estimate the
consistency of the fitted model.

4. Result Analysis

The data processing is coded in Matlab and implemented on a PC with a 3.10-GHz
i7-5558U CPU, 4.00GB of RAM, and Windows 10 of 64 bits. The detailed result analysis is
as follows.

4.1. Optimal Sensor Placement
4.1.1. Change Three Parameters and Obtain Different Sensor Placements

Except for the sensor on the robot fish mouth, according to [23], setting up four pairs
of sensors on the ALLS can obtain sufficient flow information and guarantee calculation
efficiency. Therefore, optimal sensor placement is to select four sensor pairs from the
optional 31 sensor pairs.

In Section 3.2.2, two algorithms are proposed to calculate the feature importance. The
two algorithms are combined by changing the weight factors of the two feature impor-
tance algorithms. Moreover, the information redundancy degree is changed by changing
the distance between the selected sensor pairs. By changing these three parameters, ob-
tained when L ≥ 1, 2, 3, 4, 5 cm, A = 0, 0.1, 0.2, 0.3, . . . , 1, we can obtain 55 sensor positions.
Figure 5 shows a part of the sensor placements.

a=0, b=1 a=0.5, b=0.5 a=1, b=0

L>=1

L>=3

L>=5

Figure 5. Change three parameters A,B,L, and obtain different sensor placements.

4.1.2. Evaluation of Different Sensor Placements

To evaluate the optimal sensor placement algorithm, it is necessary to establish an
evaluation model for different sensor placements. In Section 3.3, this paper introduces four
fitting models: change velocity in the UF, change the deflection angle in the UF, change
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velocity in the KVS, and change the deflection angle in the KVS. Through the fitting models,
we can evaluate the goodness of different sensor placements.

The ALLS collects and processes the pressure information in different flow fields, and
it can identify the flow-field parameters. We conducted four experiments in Section 2.4. In
each experiment, one flow parameter was changed, i.e., velocity, deflection angle. Figure 6
shows four kinds of fitting curves. Change three weight factors of the three algorithms
mentioned above; multiple sensor placements are obtained. We selected three of them and
drew four kinds of fitting curves. Assume that the selected sensor pairs are i, j, m, and n.
In Figure 6a,b, the horizontal coordinate is P− pa, where P = ( f1,i + f1,j + f1,m + f1,n)/4
and pa = f1,0. f1,i = ( f1,i,l + f1,I,r)/2, where f1,i,l and f1,i,r respectively represent the first
time-domain feature extracted from the left and right sensors. f1,0 represent the first time-
domain feature extracted from the sensor that located at the snout of the robotic fish. In
Figure 6c,d, the horizontal coordinate is the deflection angle between robotic fish’s body
and flow. The vertical coordinates are the pressure difference between both sides of the
fish’s body. y = ( f10,i + f10,j + f10,m + f10,n)/4.
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Figure 6. Model curve fitting with 4 conditions: (a) the UF Velocity condition, (b) the KVS Velocity
condition, (c) the UF Angle condition, (d) the KVS Angle condition.

We can achieve different kinds of sensor placements by changing three factors A, B,
and L. Different sensor placements are evaluated by fitting four curves. We can calculate
the evaluation parameter R2 of the fitting curves. Figure 7 shows the parameter R2 of
different sensor placements. The x-coordinate of these four subgraphs is A, which is the
weight of the MVF algorithm. B is the weight of the DF algorithm. L is the distance between
the selected sensor pairs. The dotted lines in the graphs are the R2 value of different sensor
placements selected by the optimal sensor placement algorithms. These four subgraphs
show the goodness of different sensor placements. The larger R2 indicates that this sensor
placement can predict flow parameters more accurately.



Sensors 2021, 21, 3980 13 of 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.985

0.99

0.995

1

1.005

A

R
2

L>=1

L>=2

L>=3

L>=4

L>=5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.98

0.985

0.99

0.995

1

1.005

A

R
2

L>=1

L>=2

L>=3

L>=4

L>=5

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.98

0.985

0.99

0.995

1

1.005

A

R
2

L>=1

L>=2

L>=3

L>=4

L>=5

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.94

0.95

0.96

0.97

0.98

0.99

1

A

R
2

L>=1

L>=2

L>=3

L>=4

L>=5

(d)

Figure 7. The parameter R2 change with three weight parameters in 4 conditions: (a) the UF Velocity
condition, (b) the KVS Velocity condition, (c) the UF Angle condition, (d) the KVS Angle condition.

4.1.3. The Optimal Sensor Placement

Using the curve fitting method, we calculate the evaluation parameter R2, and the
optimal sensor placement is obtained according to R2. Add up the evaluation parameter
R2 of the above four fitting models, choose the sensor placement with the largest R2 as the
optimal sensor placement. After calculation, we obtain Result 1 subject to the condition that
A = 0.3, B = 0.7, and L ≥ 5. In the recent study, sensors in the ALLS are often distributed
evenly, which means pairs of sensors are placed at the halfway point of the robotic fish’s
head, and another two pairs of sensors are placed at the one-third point and two-thirds
point of the robotic fish’s tail. This sensor placement is Result 2. In paper [4], two pairs
of sensors are distributed evenly on the robotic fish’s head. To imitate this kind of sensor
placement, we place four pairs of sensors evenly on the head of the robotic fish, and this
sensor placement is Result 3. Figure 8 shows three kinds of sensor placements. Sensors’
coordinates of these three sensor placements are shown in Table 3.

Result2

Result3

Result1

x

y

Figure 8. Sensor placement: the optimal placement; the uniform placement; the uniform placement
in the head.

Table 3. Coordinates of sensors’ positions.

1st Sensor 2nd Pair 3rd Pair 4th Pair 5th Pair

Result 1 (400, 0) (442.1,±26.3) (525.6,±39.6) (574.0,±28.6) (622.5,±17.6)
Result 2 (400, 0) (450.6,±31.6) (506.2,±44.0) (564.4,±30.8) (622.5,±17.6)
Result 3 (400, 0) (425.3,±15.8) (450.6,±31.6) (476.8,±45.4) (506.2,±44.0)
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4.2. Performance Validation

To verify the effectiveness of the optimal sensor placement algorithm, we conducted
four groups of experiments. The experimental condition is shown in Section 2.4. In each
experiment group, we change the flow velocity or the deflection angle in the UF or KVS.
The features analyzed in Figure 9 are the same as Figure 6. The curve fitting method is
used to predict water flow parameters; the evaluation parameter R2 of the fitting curve was
calculated to evaluate the accuracy of different sensor placements’ parameter prediction
ability. These three sensor placements are evaluated by comparing the curve fitting indexes
R2. Figure 9 shows four fitting curves of three sensor placements. Figure 10 shows the
evaluation parameter R2 of three sensor placements in four conditions. 1–4 in Figure 10
respectively represent UF Velocity condition, KVS Velocity condition, UF Angle condition,
and KVS Angle condition. Table 4 shows the numerical comparison results of each case
in Figure 10. As can be seen, due to the disturbance in the experiment, the fitting curves
are not good enough compared with the simulation result. However, in general, Results
1 is superior to Result 2 and Result 3. Only in the KVS Angle condition, the evaluation
parameter R2 of Result 1 is smaller than Result 2. When the deflection angle is less than 15◦,
the curve fitting result is not good enough in the KVS Angle condition. We think that the
fitting model of changing the angle in KVS is not accurate enough to predict the deflection
angle because of the vortex’s disturbance.
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Figure 9. Experiment curves fitting in 4 conditions: (a) the UF Velocity condition , (b) the KVS
Velocity condition, (c) the UF Angle condition, (d) the KVS Angle condition.
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Figure 10. Three results’ curves fitting parameter R2 in four conditions.

Table 4. The fitting parameter R2 in four conditions.

R2 Condition 1 Condition 2 Condition 3 Condition 4

Result 1 0.9912 0.9923 0.9996 0.9780
Result 2 0.9907 0.9919 0.9992 0.9857
Result 3 0.9476 0.9853 0.9984 0.9569

4.3. Discussion

According to the algorithm in Section 3.2.3, the result of the information redundancy
between different sensor pairs is calculated and shown in Figure 11. The horizontal co-
ordinate represents the distance between two sensor pairs, and the vertical coordinate
represents the degree of information redundancy between two sensor pairs. As the figure
shows, the further the distance between two sensor pairs are, the fewer redundant infor-
mation is. The information redundancy between two sensor pairs can be divided into five
standards, and the corresponding distances between sensor pairs are shown in Table 5.
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Figure 11. The relationship between information redundancy and the distance between sensors.
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Table 5. The calculated information redundancy.

The Distance between the Sensors (cm) L

1 96.48%
2 90.65%
3 84.77%
4 79.55%
5 74.55%

5. Conclusions

To control robotic fish efficiently, the ALLS must accurately distinguish flow-field
type, flow velocity, deflection angle, and other flow parameters. The sensor placement of
the ALLS has a significant influence on flow parametric recognition. An inappropriate
sensor placement may result in information loss or redundancy, leading to mistakes in
flow parametric recognition. Therefore, this paper presents a sensor placement optimal
algorithm for the ALLS.

This paper puts forward a sensor placement optimal method based on the feature
importance and information redundancy. The DF algorithm and the MVF algorithm can
calculate the importance of features, respectively. Both are efficient. Through the feature
importance algorithm, we can choose sensors with better working condition identification
capabilities. Moreover, the IR algorithm is proposed to evaluate the degree of information
redundancy between sensors. Using this algorithm, multiple sensor information can be
combined to identify the working conditions. We can achieve the optimal sensor placement
through these three algorithms, the DF, the MVF, and the IR. Simulation and experiments
show that the sensor placement chosen by this method can provide higher accuracy for
flow-field parametric identification. Compared with the uniform sensor placement used in
the recent studies, we find that the optimal sensor placement can provide higher accuracy
to identify the flow parameters, i.e., velocity and deflection angle. The optimal sensor
placement of the ALLS improves the accuracy of flow-field parametric identification, which
helps to realize the closed-loop control of the robotic fish. To some extent, the resemblance
to the shape of some aquatic robots (robotic boats or robotic fish), so this optimal method
will be useful for the ALLS in other robotic fish.

In the future, we will continue this study by considering the size and shape of the
robotic fish and more investigated scenarios to verify the effectiveness of the layout op-
timization method. Moreover, we will study sensor placement optimization in three-
dimensional space to identify the three-dimensional flow-field’s information.
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