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Abstract: Various nanoparticles have been applied as chemical demulsifiers to separate the crude-
oil-in-water emulsion in the petroleum industry, including graphene oxide (GO). In this study, the
Janus amphiphilic graphene oxide (JGO) was prepared by asymmetrical chemical modification on
one side of the GO surface with n-octylamine. The JGO structure was verified by Fourier-transform
infrared spectra (FTIR), transmission electron microscopy (TEM), and contact angle measurements.
Compared with GO, JGO showed a superior ability to break the heavy oil-in-water emulsion with a
demulsification efficiency reaching up to 98.25% at the optimal concentration (40 mg/L). The effects
of pH and temperature on the JGO’s demulsification efficiency were also investigated. Based on
the results of interfacial dilatational rheology measurement and molecular dynamic simulation, it
was speculated that the intensive interaction between JGO and asphaltenes should be responsible
for the excellent demulsification performance of JGO. This work not only provided a potential high-
performance demulsifier for the separation of crude-oil-in-water emulsion, but also proposed novel
insights to the mechanism of GO-based demulsifiers.

Keywords: heavy oil-in-water emulsion; demulsification; Janus graphene oxide; molecular
dynamic simulation

1. Introduction

The treatment of liquids produced from crude oil production has become a great
challenge in the petroleum industry [1–7]. With excessive exploitation, most oilfields have
reached the high water cut stage, a circumstance in which crude-oil-in-water emulsion
was usually generated in the produced liquids [8,9]. In the case of heavy oil production,
the ubiquitous asphaltene acts as natural emulsifier to readily adsorb on the oil/water
interface and dramatically enhance the emulsion stability [10–12]. The extremely stable
emulsion can cause serious problems to the downstream process, such as the generation
of large amounts of polluting oily wastewater [13,14]. Therefore, it is an urgent issue to
develop a highly efficient demulsifier to separate the oil from the emulsion generated in
heavy oil exploitation.

The proposed strategies for oil–water separation mainly include adsorption [15], coa-
lescence technology [16], membrane separation [17], gravity separation [18], flotation [19],
and ultra-centrifugation [20]. Among these methods, chemical demulsification is widely
applied owing to the tunable structure of demulsifier, high efficiency, and convenient oper-
ation [21]. Various chemical demulsifiers have been developed in last few decades, such as
block copolymer [22], polysiloxane [23], hyperbranched polymer [24], dendrimer [25], and
ionic liquids [26]. Chemical demulsifiers are widely used to break water-in-oil emulsions
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during the early stage of oilfield development. With the continuous development of oil-
fields, the study of oil-in-water emulsions has attracted a great deal of attention. While the
increasing concern on environmental protection restricts the practical application of these
chemicals [27], the research and development of novel demulsifiers is still a challenging
and study-worthy topic for petroleum engineers.

Recently, nanomaterials have been regarded as another crucial category of chemical
demulsifiers [28]. Nikkhah et al., verified that the settling time of nano-titania was sig-
nificantly less than conventional chemical demulsifiers [29]. Zhang et al., fabricated the
cyclodextrin-modified magnetic composite particles (M-CD) and evaluated its demulsifica-
tion performance. M-CD could effectively separate various types of emulsions and exhibit
excellent recycling ability [30]. Ren’s group systematically studied the demulsification
performance of graphene oxide (GO) and its derivatives [31–33]. They concluded that the
asphaltenes could effectively stabilize the oil-in-water emulsions under certain conditions,
which created a large number of problems in practical production of the oilfield, and they
proposed that the amphiphilic GO-based materials could adsorb on the oil/water interface
to promote the coalescence of emulsion droplets.

It is well accepted that the amphiphilicity of GO is relatively weak due to its high
content of hydrophilic oxygen-containing groups [34], while these active groups also
provide the possibility for chemically hydrophobic modification of GO to improve its
interfacial activity [35]. Janus graphene oxide (JGO) refers to GO with one side modified
and has been applied in various fields due to its unique structure and properties [36,37].
For the petroleum industry, Luo et al., reported the application of JGO as a promising
nano-fluid for enhanced oil recovery [38]. JGO with improved amphiphilicity can easily
migrate to oil/water interface and interact with asphaltene, which may exhibit a better
demulsification performance than GO.

Today, molecular dynamics (MD) simulations are employed extensively in the petroleum
industry, which can reveal some interfacial properties of multiphase systems at the
molecular level [39–46]. Stephan et al., investigated the vapor–liquid interface proper-
ties of binary mixtures (cyclohexane + CO2) via MD simulations [47]. Chakraborty et al.,
used MD simulations to study the vapor–liquid interface properties of n-heptane/nitrogen
at different temperatures and pressures [48]. Lian et al., discussed the interaction of
zwitterionic surfactant with various components of crude oil (asphaltene, resin, saturate,
and aromatic) at the molecular level [49]. Liu et al., researched the emulsification and
demulsification capabilities of a gas switchable surfactant through molecular dynamics
simulations [50].

In this study, the JGO was synthesized by grafting n-octylamine on one surface
of GO, and the successful modification was verified by FTIR, TEM, and contact angle
measurements. Then, the demulsification efficiency of JGO was systematically investigated
and compared with GO, including the effects of dosage, pH, and temperature. Based on
the effects of JGO on the interfacial rheological properties and molecular dynamic (MD)
simulation on the interaction between JGO and asphaltene, the passible demulsification
mechanism of JGO was proposed.

2. Results and Discussion
2.1. Characterization of JGO

The FTIR spectra of GO and JGO were measured to verify the conjunction of n-
octylamine on the JGO surface (Figure 1). The additional peaks between 3100 and 2800 cm−1

for the JGO sample were assigned to the stretching vibration of C-H (-CH2- and -CH3),
which directly indicates the existence of n-octylamine with the hydrocarbon chain. More-
over, the weaker peaks at 1730 cm−1 (C=O) and 1208 cm−1 (C-O-C) in JGO’s curve than
those in GO’s curve reflect that the n-octylamine was successfully grafted on the JGO
surface via the reaction between amido group and epoxy/carboxyl groups.
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Figure 1. FTIR spectra of GO and JGO.

Figure 2 presents the TEM images of GO and JGO. It is obvious that the modified
n-octylamine hardly changed the morphology and size of GO-based nanosheets, but only
resulted in more overlapped parts in JGO due to the additional hydrophobic interaction.
To further demonstrate the Janus structure of JGO, the JGO interfacial film constructed
at the octane/water interface was transferred to the glass substrate to measure water
contact angles of both sides of the JGO. As shown in Figure S1, the unmodified side of
JGO was relatively hydrophilic with a water contact angle of 32◦, which was attributed
to the abundant oxygen-containing groups. For the n-octylamine grafted side of JGO,
the water contact angle increased to 85◦ due to the hydrophobic hydrocarbon chain. The
opposite affinity to water for both sides of JGO directly confirmed the generation of the
Janus structure.

Figure 2. TEM images of GO (a) and JGO (b).

2.2. Demulsification Efficiency Tests

The demulsification efficiency of GO and JGO for the stable heavy oil-in-water emul-
sions (prepared with 5% heavy oil) was evaluated by the bottle test (Figure 3). The
blank sample exhibited excellent stability, with almost no separated oil from the emul-
sion (Figure S2). The optimal demulsification efficiency of JGO was achieved at the much
lower concentration (40 mg/L), and the oil content was sharply reduced to 825 mg/L. The
emulsion color became lighter with additional demulsifiers (GO or JGO), and the emulsion
droplets spontaneously aggregated to form a separated oil layer. Meanwhile, there were
flocculent aggregates on the top of the water phase. The higher demulsification efficiency
of JGO (98.25%) than that of GO (92.5%) indicates that the asymmetrically modified n-
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octylamine can greatly improve the demulsification performance of GO-based nanosheets.
Higher concentrations of JGO slightly decreased the demulsification efficiency, which may
be ascribed to the adsorbed oil on the JGO surface.

Figure 3. The demulsification efficiency (a) and oil concentrations (b) of GO and JGO with different
dosages.

To systematically investigate the demulsification performances of JGO (30 mg/L)
under different conditions, the effects of pH and temperature were studied via a series of
experiments (Figure 4). It is well known that the solution pH value can significantly affect
the surface physiochemical properties of the demulsifiers to impact their performances [27].
For JGO, the demulsification efficiency at acidic and natural conditions was excellent, but
the alkaline environment was adverse to its performance (Figure 4a). On the one hand,
the organic acid in crude oil would react with alkali to generate a surface-active substance,
which could largely improve the emulsion stability. On the other hand, the variation of zeta
potential of JGO and emulsions at different pH values should be the other factor for the
pH-dependent demulsification efficiency of JGO (Figure S3). With increasing pH values,
both JGO and emulsion droplets became more negatively charged. Therefore, the inten-
sive electrostatic repulsion between JGO and emulsion droplets at the alkaline condition
(pH = 8) would weaken the demulsification efficiency of JGO. In addition, the demulsifica-
tion efficiency of JGO slightly increased with increased temperature (Figure 4b). Although
the higher temperature may disturb the interaction between JGO and emulsion droplets,
the accelerated thermal movements of emulsion droplets facilitated their coalescence. More
importantly, it was verified that JGO can effectively separate heavy oil-in-water emulsions
in a wide temperature range.

2.3. Demulsification Mechanism of JGO

For the emulsions prepared in this study, the emulsion stability is mainly dependent
on the surface-active substance in crude oil, asphaltene in particular. Asphaltene could
fabricate a protective film at the oil/water interface to prevent the coalescence of the
emulsion droplets [31]. Therefore, the additional demulsifier should primarily destroy
the asphaltene film to achieve demulsification. To investigate the effects of GO and JGO
on the interfacial properties of the crude oil/water interface, the interfacial dilatational
rheology experiment was conducted. As shown in Figure 5, the dilatational modulus of
crude oil/water system was 12.32 mN/m, which should be attributed to the interfacial
adsorption of asphaltene. The addition of GO or JGO in the water phase causes the
evident increase of the dilatational modulus in different degrees. GO with the hydrophilic
edge and the hydrophobic plane is generally regarded as the amphiphile [51], whereas
the amphiphilicity of JGO was further improved by the asymmetric modification with
n-octylamine. Then, the interfacial film is the combination of asphaltene and GO or JGO.
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For the blank and GO system, the interfacial film was basically elastic, with the phase angle
around 10◦, while the phase angle of JGO system increased dramatically, indicating the
typical viscoelastic property of the interfacial film. The smaller E and larger E” in the JGO
system could be ascribed to the Janus structure. Considering GO and JGO nanosheets are
2D materials with an average literal size around 500 nm, the adsorbed GO or JGO at the
interface should be overlapped with each other. The overlapped parts of JGO nanosheets
may not be as rigid as those of GO nanosheets due to the hinderance of n-octylamine.
Therefore, the JGO adsorbed interface of the emulsion would be much easier to deform,
leading to the lower E and more distinct viscous characteristic.

Figure 4. The effects of pH (a) and temperature (b) on the demulsification performance of JGO
(30 mg/L).

Figure 5. Effects of GO and JGO on the interfacial rheology of crude oil/water interface.

Based on the results of interfacial rheology, the possible demulsification mechanism
of JGO could be proposed (Figure 6). The adsorbed asphaltene molecules constructed the
protective film at the oil/water interface, generating a new phase to stabilize the heavy
oil-in-water emulsion from the thermodynamic aspect (Figure 6a) [41,52]. After JGO was
added to the emulsion system, it could disperse well in the water phase (Figure 6b). Then,
JGO with improved amphiphilicity could adsorb at the oil/water interface to interact with
asphaltene (Figure 6c). During the shaking, the emulsion droplets collided with each other
(Figure 6d). The intensive interaction between the amphiphilic JGO and the surface-active
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substance asphaltene could destroy the original interfacial film, and parts of asphaltene
desorbed from the oil/water interface, leading to the coalescence of smaller ones without
the protective film (Figure 6e). Finally, after settling, the larger oil droplets moved upward
to form a separated oil layer, and the JGO/asphaltene aggregation also moved to the upper
region of the water phase due to the highly improved hydrophobicity (Figures 3a and 6f).
The greater amphiphilicity of JGO should be responsible for its higher demulsification
efficiency than GO.

Figure 6. Schematic of the demulsification mechanism of JGO; (a) stable emulsion; (b) adding JGO;
(c) adsorption of JGO; (d) shaking; (e) aggregation of oil droplets; (f) after settling.

2.4. Verification of the Mechanism via Molecular Dynamic Simulation

To verify the mechanism of the JGO as a high-performance demulsifier, the behavior
of GO and JGO in the crude oil/water system was simulated via molecular dynamic (MD)
simulation. As shown in Figure S4, GO and JGO nanosheets were randomly placed in the
water phase in the initial configuration, which could achieve the dynamic equilibrium after
50 ns MD simulation (Figure S5). The Gibbs partition surfaces of two systems were located
at ~5.1 nm and ~14.0 nm, and the density peaks of asphaltene (including asphaltene-1,
asphaltene-2, and asphaltene-3 in Scheme S1), GO, and JGO in two systems were all around
the Gibbs partition surface, indicating that the GO-based nanosheets can spontaneously
adsorb at the crude oil/water interface and interact with asphaltene (Figure 7). Compared
with GO, there was more JGO adsorbed at the interface with the n-octylamine modified
side toward the oil phase. Meanwhile, the density peak of asphaltene in the JGO system
was much greater than that in the GO system.

To quantificationally investigate the interaction energy between GO/JGO and asphal-
tene, the nonbonded interaction, including Lennard–Jones potential and Coulomb potential,
during the whole simulation process was extracted (Figure 8a,b). The much larger total
interaction energy between JGO and asphaltene (~−650 kJ/mol) than that between GO and
asphaltene (~−250 kJ/mol) further confirmed their more intensive interaction (Figure 8c).
It is worth noting that the much larger interaction energy in the JGO-asphaltene system
was mainly derived from the stronger Lennard–Jones potential, which should be ascribed
to the hydrophobic interaction among the alkyl chains on both JGO and asphaltene.
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Figure 7. Final simulation configuration (at 50 ns) of GO (a) and JGO (c) in the oil/water system.
Oil components are colored in cyan except asphaltene which is colored in red, and GO and JGO
are colored in blue. Water molecules are not shown for clarity. Number density of three asphaltene
in oil, GO (b), and JGO (d) along the z-direction. Gray dash lines in (b,d) represent the Gibbs
partition surface.

Figure 8. Intermolecular interaction energy between GO/JGO and asphaltene at the oil/water
interface: Lennard–Jones potential (a), Coulomb potential (b), and total interaction energy (c).

As mentioned in the proposed mechanism, the asphaltene-constructed protective film
was essential for the emulsion stability. Then, the distribution characteristic of asphaltene
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at the crude oil/water interface was further analyzed by calculating and plotting the two-
dimensional (2D) number density map in the XY plane (Figure 9). The color distribution of
the 2D number density maps directly indicates the asphaltene distribution and compactness
in the GO-free, GO, and JGO systems. In the GO-free system, the more green and less
yellow/red areas reflect the uniform distribution of asphaltene at the crude oil/water
interface (Figure 9a). Compared with that in the GO system, the generation of dark
red and red areas represents the much greater asphaltene density at the local interface
(Figure 9b,c). On the one hand, the uneven distribution of asphaltene should be attributed to
the constraint of the intensive interaction between JGO and asphaltene. On the other hand,
the uneven distribution of asphaltene may cause the evident weakness in the protective
film, resulting in the easy coalescence of the emulsion droplets.

Figure 9. Two-dimensional number density maps of asphaltene distribution in the XY plane at the
oil/water interface in the GO-free (a), GO (b), and JGO (c) systems.

3. Experimental
3.1. Materials

Graphene oxide (GO) was purchased from Shengzhen Turing Evolution Technical
Company, China. Paraffin wax (with a melting point around 58−60 ◦C), kerosene, n-
octylamine (>98%), ethanol (>99.5%), n-octane (>99%), and NaCl (>99.5%) were products
from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China.

3.2. Preparation of JGO

The method applied for the preparation of JGO was reported by Luo et al. [53]. First,
200 mL GO aqueous solution (1 mg/mL), 6 g NaCl, and 50 g paraffin wax were heated to
75 ◦C and stirred with a homogenizer at 10,000 rpm for 10 min to form emulsions, which
were cooled to ambient temperature and filtered to obtain GO-coated wax particles. After
the GO-coated wax particles were washed by NaOH solution (pH ~10), deionized (DI)
water, and ethanol successively, the wax particles were added into the n-octylamine ethanol
solution (0.4489 mg/mL) and magnetically stirred overnight. Then, the wax particles were
washed with ethanol and dissolved in toluene to remove the wax, and JGO was obtained
by centrifugation. Finally, JGO was dried at 60 ◦C and then dispersed in DI water at
certain concentrations.

3.3. Characterization

The Fourier-transform infrared spectra (FTIR) of GO and JGO were recorded by a
PerkinElmer Spectrum Two spectrometer (PerkinElmer, Waltham, MA, USA). Transmission
electron microscopy (TEM) images of GO and JGO were obtained with a JEOL JEM-1400
transmission electron microscope (JEOL, Tokyo, Japan).

The contact angle measurements were conducted to the affinity of both sides of JGO.
First, the interfacial film was fabricated by shaking the glass tube filled with JGO aqueous
solution and n-octane, then the n-octane was removed by evaporation. To measure the
contact angle of the n-octylamine modified (hydrophobic) side of JGO, the pre-cleaned
glass slide was lifted below the JGO interfacial film to deposit the film on the glass substrate.
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To measure the contact angle of the unmodified (hydrophilic) side of JGO, the pre-cleaned
glass substrate was pressed onto the interfacial film and rotated immediately. After the
obtained glass substrates were dried at 40 ◦C, the water contact angle measurement was
conducted with a contact angle goniometer (JC2000D5M, Zhongchen, China).

3.4. Demulsification Efficiency Test

The heavy oil used in this study was obtained from Shengli oil field. To prepare stable
heavy oil-in-water emulsions, 5 g heavy oil and 95 g NaCl aqueous solution (3000 mg/L)
were mixed at 60 ◦C and stirred with a FJ200-S homogenizer at 12,000 rpm for 10 min.
For the demulsification test, a certain amount of JGO (or GO as control sample) aqueous
solution was added into the prepared emulsion stored in the measuring cylinder. Then, the
cylinder was shaken for 1 min to ensure the thorough mixture of JGO and the emulsion.
Then, the cylinder was placed at ambient temperature and the oil/water separation process
was recorded by a camera. The oil content in the water phase after demulsification process
was determined by UV–Vis spectrophotometer. The standard curve of oil content as a
function of absorbance at 256 nm was obtained by measuring the absorbance of a series of
mixture with different oil content. The demulsification efficiency (ED) was calculated by
the following equation:

ED =
C0 − C1

C0
× 100% (1)

where C0 is the initial oil content before demulsification, and C1 is the oil content
after demulsification.

3.5. Interfacial Dilatational Rheology Measurement

The interfacial property was measured by a dynamic interfacial oscillatory drop
tensionmeter (Tracker, Teclis, France). A drop of crude oil (20 µL) was injected into the
solutions through an inverted needle, and the volume of the oil drop changed in sinusoidal
oscillatory motion, which was achieved by a motor system connected to the syringe. Based
on the shape variation of the oil drop recorded by a CDD digital camera, the IFT was
calculated according to the Laplace–Young equation and the Plane hydrostatic equation by
computer software. At the same time, the dilatational modulus (E) was calculated by the
software using the following equation [54]:

E =
dγ

dlnA
(2)

where γ is the interfacial tension (mN/m), and A is the interface area (m2).
The dilatational modulus can also be expressed in plural form:

E = E′ + E′′ = E′ + iωηd (3)

where E′ is the elastic modulus, E” is the viscous modulus, ω is the interfacial dilatation
frequency, and ηd is the interfacial dilatation viscosity.

3.6. Simulation Method
3.6.1. Construction of Crude Oil/Water System

The crude oil model in this simulation was constructed based on the typical heavy oil
model, which is composed by asphaltene, resin, aromatic, and saturate components [55,56].
Based on previous literature, three typical asphaltenes molecules and six types of resin
molecules were applied in this crude oil model [55,56]. The aromatic components mainly
include toluene and benzene. As for saturates, cycloheptane, cyclohexane, nonane, octane,
heptane, and hexane were incorporated. The detailed information of the crude oil com-
ponents was listed in Table S1, and the molecular structures of asphaltene and resin were
depicted in Scheme S1.
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To obtain the crude oil model, all component molecules were added randomly into
a cubic box (12 × 12 × 12 nm3), and 20 ns MD simulation under NPT ensembles was
performed to achieve the reasonable density. The final crude oil model was obtained with
the cubic box size of 9.4 × 9.4 × 9.4 nm3, and the box was extended along z-direction to
9.4 × 9.4 × 18.8 nm3. The empty parts of the extended crude oil box were filled with water
molecules and counterions (Na+) to establish the initial oil/water interface. Finally, 50 ns
MD simulation under NPT ensemble was carried out to achieve the dynamic equilibrium
of crude oil/water simulation system.

3.6.2. Construction of GO and JGO in Crude Oil/Water System

The single layer of GO was built with 286 carbon atoms as the substrate, 6 carboxyl
groups on the edge, 25 epoxy groups on each side, 10 hydroxyl groups on each side, and
12 hydroxyl groups on the edge [57]. Based on the model of GO, six n-octylamine molecules
were attached on one surface of GO via the ring-opening of epoxy groups to form JGO.
The molecular structures of GO and JGO were illustrated in Scheme S2. Then, 10 GO/JGO
were randomly inserted into the water phase of a pre-equilibrated crude oil/water system.
The 50 ns MD simulation under NPT ensemble was carried out to achieve the dynamics
equilibrium of the simulation system.

3.6.3. MD Simulation Methods

The GROMACS (version 2019.6) software package was used to perform MD simula-
tions with optimized potentials for liquids simulation-all atom (OPLS-AA) force field [58].
Molecular parameter sets were generated from the LigParGen web server [59]. The TIP4P
model was adopted to describe the water molecule. The steepest descent method was used
to minimize the simulation system, and the convergence criterion of energy minimization
was 50 kJ/(mol·nm). Then, the MD simulation with NPT ensemble at 1 atm and 303 K
was carried out for each system. In the simulation, the velocity rescaling thermostat and
Berendsen (first 10 ns) + Parrinello-Rahman (last 40 ns) pressure coupling were employed
as temperature coupling method and pressure coupling method, respectively [60–62]. The
LINCS algorithm was used to constrain the bonds with H atoms [63]. The cut off scheme
was applied in the van der Waals (vdW) interaction. Coulomb interaction was computed
using the Particle-Mesh Ewald (PME) method [64]. The simulation time step was 2 fs and
trajectories were saved every 10 ps for further analysis, which was visualized by visual
molecular dynamics (VMD) software [65].

4. Conclusions

In conclusion, we successfully synthesized n-octylamine-modified JGO. Compared
with GO, JGO exhibited superior ability to effectively separate the heavy oil-in-water emul-
sion with a demulsification efficiency as high as 98.25% at the much lower concentration
(40 mg/L). The interfacial dilatational rheology measurements demonstrated that the ad-
ditional JGO to heavy oil-in-water emulsion systems could improve the viscoelasticity of
the elastic oil/water interface, which facilitated the deformation of the interface and the
destruction of the protective film. Moreover, the MD simulation further verified the more
intensive adsorption of JGO on the crude oil/water interface and the stronger interaction
between JGO and asphaltene in comparison to the GO system. Therefore, it is believed
that the remarkable demulsification ability of JGO should be attributed to its powerful
attraction with asphaltene, leading to the easily deformable oil/water interface and the
uneven distribution of asphaltene. This study indicates that JGO could be applied as a
high-performance demulsifier to separate heavy oil-in-water emulsions in the oil industry,
and the proposed mechanism of JGO could be inspiring for a new strategy of chemical
demulsifier design.



Molecules 2022, 27, 2191 11 of 13

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27072191/s1, Scheme S1: Molecular structures of different
asphaltenes and resins; Scheme S2: Molecular structures of GO and JGO; Figure S1: The water
contact angle of the unmodified side of JGO (a) and n-octylamine grafted side of JGO (b); Figure S2:
Demulsification performance of GO and JGO; Figure S3: Zeta potential of JGO and oil droplets with
increasing pH values; Figure S4: The initial configuration of GO and JGO in the crude oil/water
system, oil components are colored in cyan excepting asphaltenes which are colored in red, and GO
and JGO are colored in blue. Water molecules are not shown for clarity; Figure S5: Total energy curves
in the simulation process with 10 GO (a) and JGO (b) randomly inserted into oil/water systems;
Table S1: Compositions of the crude oil model.
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