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Abstract 
Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While 
model system experiments generate many plausible gene networks, validating their role in 
human phenotypes requires evidence from human genetics. Rare variants provide the most 
straightforward path for such validation. While single-gene analyses often lack power due to 
rare variant sparsity, expanding the unit of association to networks obers a powerful 
alternative, provided it integrates network connections. Here, we introduce NERINE, a 
hierarchical model-based association test that integrates gene interactions that integrates 
gene interactions while remaining robust to network inaccuracies. Applied to biobanks, 
NERINE uncovers compelling network associations for breast cancer, cardiovascular 
diseases, and type II diabetes, undetected by single-gene tests. For Parkinson’s disease 
(PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and 
synergizes human genetics with experimental screens targeting cardinal PD pathologies: 
dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in 
human neurons and NERINE converge on PRL, revealing an intraneuronal α-
synuclein/prolactin stress response that may impact resilience to PD pathologies.  
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Introduction 
Gene networks encapsulate a significant portion of the accumulated knowledge in biology 
for a good reason: genes and their products do not act in isolation but in close coordination. 
Some of these networks represent classic metabolic or signaling pathways, while others 
describe sets of interconnected regulatory interactions, physical interactions between 
proteins, or between proteins and DNA. Genetic interactions, such as coessentiality, 
capture more abstract dependencies of a gene's contributions to fitness or phenotypes. It is 
common practice to ascribe genetic phenomena—such as variations in polygenic 
phenotypes or the development of complex diseases—using the concepts of pathways and 
networks.  
 
Genetic screens in model organisms and cellular systems, increasingly assisted by 
advanced genomic perturbation technologies, aim at identifying pathways, networks, or 
gene modules that drive specific phenotypes or diseases. Existing comprehensive pathway 
databases and individual experiments targeting specific phenotypes provide a source of 
hypotheses about disease mechanisms. However, the actual relevance of these network 
hypotheses to human biology is a matter of debate. A reasonable way to settle this debate is 
to directly test the association of genetic variation in a network with the relevant phenotype 
in population-level data. 
 
Aggregate coding rare variant burden (or overdispersion) tests provide the most interpretable 
way to connect genes to common diseases. Existing methods collapse rare variants within 
a gene into a single statistical test1,2. Applications of such tests to biobank scale datasets 
have resulted in numerous interpretable discoveries2-5. Still, the tests suber from low power 
primarily due to the sparsity of rare variants in a single gene6. Expanding the unit of 
association from single genes to networks or pathways presents a natural solution to this 
limitation, as demonstrated by recent gene set-based analyses7-12. Such approaches can 
enhance power while prioritizing biologically relevant pathways, yet no robust method 
currently exists that fully integrates network connections and accounts for potential 
inaccuracies in network inference. 
 
Testing rare variant associations at the level of networks obers three apparent advantages. 
First, it enables the competitive evaluation of network hypotheses, prioritizing networks—
and the experimental assays that define them—by their relevance to human phenotypes. 
Second, it boosts statistical power by aggregating rare variants across functionally 
connected genes and obers an improved mechanistic understanding of the phenotype. 
Third, it minimizes reliance on broad or overlapping gene classifications, such as gene 
ontology, opting instead for experimentally derived relationships. These relationships are 
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characterized by defined edge geometries and weights, which enhance the biological 
specificity of the burden test. This perspective opens new opportunities for integrative 
research programs where broad genetic screens can identify network hypotheses, which are 
then tested for associations with human phenotypes. Networks showing significant 
associations can be refined and validated through focused experimental workflows, 
combining human statistical genetics with insights from model organisms and cell systems. 
Such an approach promises to bridge the gap between genetic discovery and mechanistic 
understanding. 
 
Here, we present NERINE (NEtwork-based Rare varIaNt Enrichment), a new statistical 
framework for rare variant association testing that directly incorporates information on both 
network vertices (genes) and network edges (interactions) into a hierarchical model. Our 
method is designed to be robust against inaccuracies in network specification. NERINE 
accommodates networks with genes that exert both trait-increasing and trait-decreasing 
ebects, each with varying magnitudes. NERINE performs nested hypothesis testing in a 
maximum likelihood framework, providing an asymptotic p-value. It has well-controlled Type 
I error and substantial power, as evidenced by simulations and sub-sampling experiments 
on dichotomized lipid phenotypes in UK Biobank (UKBB) treated as positive control. NERINE 
enables the selection of the most informative assays, data sources, and tissue types. 
 
Using NERINE, we conducted a comprehensive scan of canonical pathways for associations 
with breast cancer, type II diabetes (T2D), coronary artery disease (CAD), and early onset 
myocardial infarction (MI). We uncovered several compelling biological associations that 
were not detectable by single-gene tests. Notable findings include rare variant signals in 
non-lipid gene networks linked to cardiovascular diseases, associations in genes outside 
traditional tumor suppressors or oncogenes for breast cancer, and an adipogenesis-related 
gene network implicated in T2D. 
 
Finally, to showcase the potential of an integrated experimental and statistical genetics 
approach, we applied NERINE to Parkinson’s disease (PD), a complex neurodegenerative 
disease for which rare-variant analyses are thoroughly underpowered and consequently 
uninformative. We tested network hypotheses derived from common variant GWAS genes 
as well as genome-scale screens for genetic modifiers of the two core pathologies of PD:  ii) 
alpha-synuclein (ɑS) proteotoxicity and iii) human dopaminergic (DA) neuron survival. 
NERINE reinforced specific GWAS candidate loci (DYRK1A, FYN, MCCC1, USP8) with rare 
variant signal and uncovered rare variant burden in experimentally-derived gene modules 
linked to autophagy regulation (HMGB1-USP10 module) and vesicle trabicking (LRRK2-PRL-
SNCA module)—signals that eluded single-gene tests. While several specific genes, 
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including NEDD4, NDFIP1, PBX1, and RNF11, had previously been tied to PD through cell 
biology, the rare variant risk signal associated with these genes was new. We validated one 
novel finding by NERINE—an association of rare damaging missense variants at the PRL 
locus encoding prolactin with PD risk—through network-scale CRISPRi screening and 
targeted analysis in a transgenic induced pluripotent stem cell (iPSC)-based ɑS toxicity 
model. This work underscores the transformative potential of experimental screens and 
human statistical genetics as mutually reinforcing methodologies to reveal novel disease 
mechanisms.  
 
Results 
Overview of NERINE and evaluation of its performance 
We present NERINE, a new statistical framework for assessing the cumulative ebect of rare 
variants in a gene network on a dichotomous phenotype. NERINE directly incorporates 
information on network vertices (genes) and network edges (interactions) into a parametric 
model and is robust with respect to unimportant genes in the network. Many data types can 
represent interactions between genes and gene products (i.e., transcripts and proteins). 
Interactions may diber in types of relationships (from protein complexes to sets of co-
expressed genes to protein-DNA or protein-RNA interactions) and scale (from extensive 
protein interaction networks to pathways of just a dozen genes). Irrespective of the data 
source, we encode gene relationships using a positive semidefinite matrix, Σ. We assume 
that the phenotypic ebects of genes, represented as vector �⃗�, are drawn from a multivariate 
normal distribution �⃗�	~	𝑀𝑉𝑁(0, 𝜃 ∙ Σ). Here, 𝜃 is a parameter reflecting the importance of 
the group of related genes and is the object of inference (Figure 1A, Methods). This 
hierarchical model captures the biological expectation that functionally related genes have 
correlated ebect sizes (if the ebects are non-zero) and correlated chances that they do not 
have phenotypic ebects.  
 
We model rare variant counts in genes for cases and controls as samples from diberent 
Poisson distributions with the rate parameters corresponding to population allele 
frequencies renormalized between cases and controls by �⃗�. This implies that the conditional 
probability of observed rare variant count in each gene in cases, given the total rare variant 
count in the cohort, follows a binomial distribution (Figure 1A, Methods).  
 
NERINE performs nested hypotheses testing, the test statistic being the log-likelihood ratio 
(LLR). The likelihood is in the form 𝐿(𝜃|𝑿, 𝐘, �⃗�, Σ) = ∫∏𝑃(𝑋!|𝑋! + 𝑌! , 𝛼!) ∙ 𝑃(�⃗�|𝜃; Σ) ∙ 𝑑�⃗�. 
Here, 𝑿 and 𝒀 are allele counts in cases and controls.  We test the hypothesis 𝜃 = 0 vs. 𝜃 >
0 using the maximum likelihood estimate of 𝜃. Since 𝜃 lies on the boundary of the parameter 
space, the test statistic follows an asymptotic distribution arising from a weighted mixture 
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of a point mass at zero and a chi-square distribution with one degree of freedom13,14. NERINE 
draws p-values from this distribution. For significant networks with 𝜃 > 0, our procedure 
estimates the maximum likelihood gene-specific ebects under the estimated 𝜃 (Methods).  
 
We evaluated the performance of NERINE under the null model (𝜃 = 0) in extensive 
simulations with well-studied biological pathways from the canonical pathway database 
(Figure 1B). Since the performance of existing rare variant methods tends to suber in the 
presence of case-control imbalance, we simulated three diberent scenarios – (i) equal-sized 
case/control groups, (ii) the case group is larger, and (iii) the control group is larger 
(Methods). Canonical pathway gene lists were extracted from MSigDB v7.3, and 
corresponding network edges were extracted from the high confidence physical and genetic 
interactions in protein-protein interaction (PPI) databases (Methods). In all scenarios, 
NERINE’s test statistic follows the asymptotic distribution (Figure 1B). Confidence bands in 
the QQ-plots represent 95% bootstrap confidence intervals around NERINE’s test-statistic. 
We also tested the null behavior of NERINE’s test statistic in simulated networks of diberent 
sizes and diberent topological architectures and demonstrated that it asymptotically follows 
the theoretical distribution (Supplementary Figure S1).  
 
Next, we evaluated the performance of NERINE under the alternative hypothesis (𝜃 > 0) in 
two sets of simulations --- (i) when genes have only trait-increasing ebects, and (ii) when 
genes have both trait-increasing and trait-decreasing ebects using diberent well-studied 
biological pathways from the canonical pathway database (Figure 2, Methods). Under each 
scenario, we simulated networks with diberent proportions of genes abecting the trait, 
mimicking situations from having a very noisy network to a highly relevant one. Currently, no 
existing rare variant association tests take gene network topology into account.  Thus, we 
compared the performance of NERINE with gene-level rare variant association tests adapted 
to the pathway level, namely, CMC-Fisher test15, Fisher minimum p-value test16, Fisher 
combined test16, SKAT-O17, and pathway-based rare variant trend test (RVTT)7,8. The empirical 
power of each method was measured as the positive predictive value (PPV) at diberent p-
value cutobs: 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5 (Methods). In both scenarios, 
NERINE outperforms other rare variant tests (Figure 2), especially in noisy networks. We also 
demonstrated that NERINE outperforms other rare variant association tests on diberent 
simulated network architectures (Supplementary Figure S2).  
 
NERINE recaptures known biology in lipid-related traits  
We analyzed two lipid-related phenotypes in the UK Biobank (UKBB), direct LDL cholesterol 
(data field: 30780) and HDL cholesterol (data field: 30760), using publicly available exome 
sequencing data. We created two dichotomous phenotypes---(i) high LDL vs. low LDL 
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(30,007 cases and 28,673 controls), and (ii) low HDL vs. high HDL (26,800 cases and 27,178 
controls), by selecting individuals of European ancestry belonging to the top and bottom 
quartiles of the distributions for LDL and HDL cholesterol measurements (Methods). We 
competitively applied NERINE on these two phenotypes across networks from a pathway 
database consisting of all canonical pathways of five to fifty genes from the BIOCARTA 
database along with all lipid-, DNA replication-, DNA damage repair-, and cell cycle-related 
pathways from the REACTOME, KEGG, PID, and Wikipathways databases. We extracted the 
edge relationships of genes from high-confidence physical and genetic interactions from 
protein interaction databases (Methods). This analysis served as an ideal positive control 
because the genetic determinants of these phenotypes are well-annotated. Variants with a 
minor allele frequency (MAF) < 0.001 were considered rare for the test to not be influenced 
by artificial signal from common variant space propagated through linkage disequilibrium 
(LD). We stratified variants into six functional categories: LoF (i.e., frameshifts, insertions, 
deletions, and splice variants), damaging missense (i.e., missenses predicted to be 
damaging by in-silico tools), damaging (i.e., LoF and damaging missenses), missense, 
neutral (i.e., missenses predicted to be bening by in-silico tools), and synonymous. We used 
neutral and synonymous variants in a pathway as control to safeguard against technical 
biases and LD leakage. Bonferroni correction, accommodating the presence of correlated 
hypotheses in the database18, was used to control for Type I error (Methods).  
 
NERINE identified a significant burden of rare LoF, damaging missense, damaging, and 
missense variants in key LDL-cholesterol related pathways across the pathway database in 
both LDL and HDL cholesterol phenotype in UK biobank (UKBB) after multiple hypotheses 
correction (Figures 3A and 3B, Supplementary Figures S3 and S4). No significant burden of 
neutral missense or synonymous variants in these pathways was observed for either 
phenotype, serving as an internal control against technical biases.  For the LDL phenotype, 
the core module of LDL-related genes was the most significant network (Bonferroni p-value 
= 6.72e-51; damaging variants). In contrast, the core module of HDL-related genes was the 
most significant for the HDL phenotype (Bonferroni p-value = 6.18e-68; damaging variants). 
For both phenotypes, the metabolic pathway of LDL, HDL and triglycerides, composition of 
lipid particles pathway, plasma lipoprotein clearance pathway, cholesterol metabolism 
pathway, and statin pathway were among the significant hits. No non-lipid-related pathways 
were significant for either LDL- or HDL-cholesterol phenotypes. For most of the significant 
pathways in both phenotypes, NERINE provided a lower p-value than SKAT-O, which was 
applied at the pathway level aggregating the allele counts from member genes (Figure 3C). 
This result demonstrates that NERINE ebiciently incorporates network connectivity 
information to gain additional power. 
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For the significant pathways, NERINE provided maximum likelihood estimates of signed 
ebect sizes for individual genes, although these estimates are not equipped by p-values. For 
example, NERINE estimated PCSK9 and APOB to have trait-decreasing ebects and LDLR to 
have a trait-increasing ebect on LDL cholesterol which conformed with known biology19 
(Figure 3D). Similarly for HDL cholesterol, NERINE estimated ABCA1, LCAT, and APOA1 to 
be associated with low HDL cholesterol levels, and CETP, LIPC, LIPG, and SCARB1 with high 
HDL cholesterol levels (Figure 3D). To ensure our results were not driven by LDLR and 
PCSK9, which have large individual ebect sizes, we performed sensitivity analysis by 
removing LDLR and PCSK9 from the significant networks for the LDL phenotype. Even 
without LDLR and PCSK9, the module of core LDL-related genes, along with the LDL 
clearance and chylomicron clearance pathways remained significant for the LDL phenotype 
after Bonferroni correction (Supplementary Figure S5).  
 
For many disease phenotypes, the large sample sizes available for the UKBB lipid 
phenotypes, are simply not attainable. Thus, we performed a down-sampling experiment to 
evaluate the consistency of NERINE’s performance across diberent sample sizes and the 
robustness of NERINE’s performance with small sample sizes. We downsampled the high 
LDL vs. low LDL cohort at diberent case-control ratios (1/3, 1/10, and 1/60) and 
competitively applied NERINE across the pathway database (Methods). Even with a cohort 
consisting of one-tenth of the original cohort size, NERINE recovered a significant rare 
damaging variant burden in most of the lipid-related pathways that were significant in the 
original analysis. For a cohort with as few as 500 cases and 500 controls, most top pathways 
showed nominal significance in the functional categories (LoF, damaging, and damaging 
missense) without inflation in the neutral missense and synonymous categories 
(Supplementary Figure S6).   
 
Since rare variants are more susceptible to subtle ebects of population stratification than 
common variants, we performed stratified analysis of LDL phenotype in European, African 
American, American, South Asian, and East Asian ancestries individually and meta-
analyzed the results to identify gene networks with significant rare variant burden for LDL 
phenotype across diberent ancestries (Methods). Most lipid-related pathways remained 
significant networks after Bonferroni correction across ancestries; the most significant 
results were identified in the European individuals, constituting the largest ancestry group in 
our dataset (Supplementary Figure S7 and Supplementary Table T1).   
 
Elucidating the rare variant genetic architecture of common diseases with NERINE 
We applied NERINE to identify pathway gene networks with significant rare variant burden 
for four common disease phenotypes in the UK Biobank (UKBB) and MGB Biobank (MGBBB), 
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namely, breast cancer (BRCA), type II diabetes mellitus (T2D), coronary artery disease 
(CAD), and early onset myocardial infarction (MI) (Figure 4; Methods). These diseases are 
prevalent in 3-13% of the population. 
 
Previously, in the Genebass study20 on UKBB exome sequencing data, only a few genes were 
found to have exome-wide significant rare variant  burden for phenotypes like BRCA (6), T2D 
(3), CAD (1), and MI (1). There might be other genes that collectively play a causal role but 
evade single-gene analyses due to small individual ebect sizes. NERINE can detect such 
aggregated ebects of gene modules. We applied NERINE competitively across the pathway 
database by first stratifying rare variants into six categories—LoF, damaging missense, 
damaging, missense, neutral, and synonymous for each phenotype in UKBB and MGBBB. 
We then meta-analyzed the results for the two biobanks using Fisher’s combined test. 
Significant pathways were selected after Bonferroni correction, adjusting for overlap 
between the member genes (Methods). Figure 4 shows the database-wide Bonferroni-
significant pathways identified by NERINE in the four disease phenotypes and representative 
network topologies for each phenotype with predicted gene ebects.  
 
For diberent cancer phenotypes, tumor suppressor genes (TSG) and oncogenes are the 
primary drug targets, although they explain only a small proportion of the heritability due to 
common and rare variant burden21. For BRCA, NERINE identified seven (7) database-wide 
Bonferroni-significant pathway gene modules with rare variant burden in at least one of the 
LoF, damaging, and damaging missense categories (Figure 4A and Supplementary Table T2). 
No significant rare variant burden was observed in synonymous or neutral missense 
categories (Supplementary Figure S8). These pathways are highly plausible and are involved 
in cancer susceptibility, ataxia telangiectasia-mutated gene (ATM) signaling, the G2/M DNA 
damage checkpoint, regulation of cell cycle progression by PLK3, hypoxic stress-induced 
P53 accumulation and P53-dependent apoptosis, BRCA1-dependent ubiquitin ligase 
activity, and regulation of the estrogen receptor (Figure 4A, Supplementary Figure S8, and 
Supplementary Table T2). These pathways are significantly overlapping except the regulation 
of the estrogen receptor pathway (Supplementary Table T3). Thus, we visualized the cancer 
susceptibility gene module containing ATR, BRCA1, and BRCA2, and the regulation of 
estrogen receptor pathway as representative examples in Figure 4B. The cancer 
susceptibility network (BIOCARTA ATRBRCA PATHWAY; Fisher’s combined p-value: 1.55e-27 
for LoF variants) contained several tumor suppressor genes (TSG), oncogenes, or fusion 
oncogenes (i.e., genes that undergo fusion with other genes to act as oncogenes). Many of 
these genes, such as, BRCA1, BRCA2, ATM, ATR, CHEK2, FANCD2, FANCG, RAD50, and 
TP53 were previously implicated in Mendelian genetics22 and GWAS for breast cancer23. 
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NERINE-predicted gene ebects in each significant pathway per variant category are provided 
in the Supplementary Table T4.  
  
Interestingly, none of the member genes of the regulation of estrogen receptor pathway 
(BIOCARTA CARM ER PATHWAY; Fisher’s combined p-value: 3.47e-7 for LoF variants) except 
BRCA1 were previously identified to have significant rare variant burden in single-gene 
analyses; 17 out of 24 member genes were neither TSGs nor oncogenes (Supplementary 
Table T4). Among the GWAS hits in this pathway—ESR1, CCND1, and NRIP1—only ESR1 was 
predicted to have a rare LoF variant burden towards an increased risk of BRCA by NERINE 
hinting at its causal role in the disease. Notably, ESR1 is a well-known risk factor for 
resistance to hormonal therapies but has not been implicated in BRCA risk to date. Among 
the genes that were neither cancer drivers nor GWAS hits, rare LoF variants in CARM1, TBP, 
GTF2A1, HEC14, MEF2C, and PELP1 were predicted to increase the risk of BRCA by NERINE 
(Figure 4B and Supplementary Table T4); TBP already has an approved anti-neoplastic drug, 
Etoposide, which is used for BRCA treatment. In contrast, NERINE identified a trait-
decreasing ebect of rare LoF variants in MRE11, a member of the MRN complex (MRE11-
RAD50-NBS1), which detects DNA double-strand breaks (DSBs) and initiates repair, 
supporting the inhibition of MRE11 as a therapeutic strategy for BRCA24. To test how sensitive 
our finding is to the presence of BRCA1, we ran NERINE on the estrogen receptor network by 
removing—(i) the observed mutation counts in BRCA1 but keeping the gene and its 
connections in the network, and (ii) the BRCA1 gene and its edges from the network. The 
network retained significance in the UKBB cohort, indicating the importance of other genes 
in the network concerning the BRCA phenotype (Supplementary Figure S9).    
 
Exome-wide rare variant association studies for type II diabetes mellitus (T2D) to date 
identified only a handful of significant genes20,25, such as GCK, GIGYF1, and HNF1A, 
primarily involved in insulin secretion, insulin growth factor signaling, and pancreatic beta 
cell diberentiation pathways. We applied NERINE across the pathway database on the T2D 
cohorts from UKBB and MGBBB (Methods) and detected significant cumulative burden of 
rare damaging variants in the adipogenesis pathway (BIOCARTA VOBESITY PATHWAY) 
module (Figures 4A and 4C; Supplementary Tables T2 and T5). This module consisted of 
RXRA, PPARG, ADIPOQ, TNF, NR3C1, LPL, RETN, and HSD11B1, none of which were 
previously implicated in T2D in rare variant association studies (Supplementary Table T5). 
Only PPARG and LPL were implicated in GWAS studies26-28. Notably, low levels of the protein 
adiponectin, encoded by ADIPOQ, is known to be associated with insulin resistance29, 
increasing the risk of T2D. Our finding provided human genetics corroboration for ADIPOQ 
as a potential therapeutic target for T2D. The roles of TNF, NR3C1, and RETN in increasing 
the risk of T2D, as observed in NERINE’s output, are understudied and warrant further 
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investigation. NERINE’s prediction of trait-decreasing roles of RXRA and HSD11B1 aligned 
with the fact that inhibitors of these genes are currently being considered as potential 
therapeutic agents for T2D30-33. 
  
The primary gene network associated with the risk of coronary artery disease (CAD) and 
myocardial infarction (MI) consists of lipid-related genes, including LDLR, PCSK9, LPL, 
APOA5, APOC3, ANGPTL4, and LPA, where a convergence of common and rare-variant 
signals was previously observed34-36. Although several non-lipid pathways, including 
neovascularization angiogenesis, vascular remodeling, thrombosis, immune response and 
inflammation, proliferation and transcriptional regulation, have also been hypothesized to 
be also involved in these diseases, significant rare variant burden in their member genes 
have not yet been identified in exome-wide analysis36,37. We applied NERINE across all gene 
modules from the pathway database on cardiovascular phenotypes, CAD and MI, in both 
UKBB and MGBBB (Methods).  
 
For the CAD phenotype, we recaptured significant rare damaging variant burden in lipid-
related pathways—plasma lipoprotein clearance and SREBP control of lipid synthesis 
(Figures 4A and 4D, Supplementary Figure S10, and Supplementary Tables T2 and T6). 
Among the member genes, only LDLR was previously identified in both GWAS and exome-
wide rare variant analysis of CAD and is a known therapeutic target38. NERINE predicted rare 
damaging variants in APOA1, CUBN, SCARB1, CES3, SOAT2, AMN, LIPC, LDLRAP1, NCEH1, 
HMGCS1, SREBF1, and SREBF2 to increase the risk of CAD (Figure 4D, Supplementary 
Figure S10, and Supplementary Table T6). We also identified a significant burden of rare LoF 
variants in the classic and alternative complement system pathways (Figures 4A and 4D; 
Supplementary Figure S10, and Supplementary Table T2). NERINE predicted several 
complement genes, including C3, C6, C7, C8A, C9, C1QC, CFB, and CFD, involved in the 
inflammatory response, to have trait-increasing ebects on CAD (Figure 4D and 
Supplementary Table T6).    
 
When applied to the MI phenotype in UKBB and MGBB, NERINE identified 13 gene modules 
with significant rare LoF variant burden across the pathway database (Figures 4A and 
Supplementary Figure S11). Since there were significant overlaps among the member genes 
(Supplementary Table T7), we grouped them into four broad classes – (i) collagens and 
coagulation, (ii) inflammatory response, (iii) regulation of transcriptional activity, and (iv) 
MAPK signaling cascade (Supplementary Figure S11). Figure 4E shows one representative 
pathway per group. Among the genes in these pathways, structural components of the 
basement membrane—collagen type IV alpha 1,2, and 4 (COL4A1, COL4A2, and COL4A4), 
plasminogen (PLG), complement component II (C2), and interleukin-8 (CXCL8)—an 
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activator of the MAPK signaling cascade, were previously implicated in common variant 
GWAS for the MI phenotype (Supplementary Table T8). The finding around the MAPK 
signaling pathway might also be an artifact due to the CHIP (Clonal Hematopoiesis of 
Indeterminate Potential) ebect because the original biobank samples were primarily from 
blood. Notably, NERINE implicated rare LoF variants in several non-lipid-related genes 
including, basement membrane gene, COL4A3, genes involved in blood clotting (FGA, FGB, 
FGG, F7, F12, PLAT, KLKB1, and TFPI), apoptosis (CREBBP and SIRT1), inflammatory 
response (TNF, TNFRSF1A, TNFRSF1B, C3, C4B, C5, C8A, CFB, CFD, CXCL8, and IL6), 
vascular calcification (ALPL and ENPP1), calcium regulation (PLCB1, PPP3CA, PPP3CB, 
PPP3CC, CAMK1, and CAMK1G) and retinoic acid signaling (RARA)  to be associated with an 
increased risk of MI (Figure 4E, Supplementary Figure S10, and Supplementary Table T8).  
 
Selecting the most informative assay and tissue context with NERINE 
NERINE directly incorporates gene-gene relationships from diverse data sources and 
competitively selects the most appropriate network for a given analysis when multiple 
competing network topologies exist. We demonstrated this functionality of NERINE using 
the LDL-direct and HDL-direct phenotypes in UKBB (Methods, Supplementary Table T9). For 
the lipid-related pathway gene sets in our pathway database, we created network topologies 
considering three data sources --- (i) high confidence experimentally derived physical and 
genetic interactions of proteins from canonical databases, (ii) gene-gene co-expression in 
liver tissue in GTEx (v8), and (iii) co-essentiality of genes in liver cell lines in DepMap (release 
2023Q2) (Methods).  
 
Our results indicated that diberent data sources described the functional relationships 
better depending on the gene set under question. Figure 5A shows an example scenario 
where one data source provides more relevant information than the others. When comparing 
individuals with low HDL cholesterol with the ones with high HDL cholesterol in UKBB, co-
expression in liver tissue served as the best source of information for the core module of 
HDL-cholesterol-related genes (p-value: 4.48e-76). Example scenarios where data sources 
other than co-expression better described the edge relationships of a specific gene set are 
shown in Supplementary Figure S12. When comparing individuals with high LDL cholesterol 
to those with low LDL cholesterol, the VLDLR internalization and degradation pathway genes 
were best described using physical and genetic interactions (NERINE p-value: 8.33e-34). In 
contrast, we achieved a p-value of 5.25e-49 for the genes in the metabolic pathway of LDL, 
HDL, and triglycerides (TG) with the co-essentiality network constructed from the DepMap 
liver cell lines data. These observations implied that diberent data sources provided 
diberent levels of information about the edge relationships for the same set of input genes, 
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and NERINE could ebectively exploit this phenomenon to select the most informative data 
source.   
 
To demonstrate the potential for helping select the most informative tissue or cellular 
context, we applied NERINE to diberent co-expression networks representing the core 
module of HDL-related genes in all 52 tissue types available in GTEx. The co-expression 
network in liver tissue achieved the most significant p-value (Figure 5B), which indicated 
that liver tissue provides the most relevant context for the core HDL-related genes: LCAT, 
ABCA1, LIPC, LIPG, SCARB1, APOA1, CETP, APOA2, and PLTP. This result was driven by the 
fact that the edge relationships varied in diberent tissue contexts for the same set of input 
genes, and NERINE could ebectively exploit this phenomenon.   
 
NERINE reveals novel gene modules with rare variant burden in PD 
Synergizing insights from human genetics, cell systems, and model organism experiments 
provides a powerful framework for unraveling the complexities of human diseases. This 
approach is exemplified in our investigation of a complex neurodegenerative disease, PD. PD 
is the most common neurodegenerative movement disorder defined neuropathologically by 
two central features: the degeneration of dopaminergic (DA) neurons in the substantia nigra 
(SN) region of the midbrain and the accumulation of intraneuronal αS in so-call pathological 
“inclusions” called Lewy bodies39,40. Genome-wide association studies (GWAS) previously 
identified hundreds of loci mapped to approximately 100 genes implicated in PD41,42. 
However, the largest population-based genetic study of PD43 to date identified only a handful 
of replicable rare variants in PRKN, GBA1, and LRRK2—genes already known to play roles in 
Mendelian forms of PD. At the gene-level, only GBA1 was found to have an exome-wide 
significant rare variant burden replicated in multiple independent cohorts43,44. For sporadic 
PD, which constitutes ~80-85% of the patient population45, the role of rare variants remains 
poorly understood. To address this gap, we employed a three-pronged strategy with NERINE. 
First, we leveraged NERINE to analyze gene modules constructed with GWAS-identified 
genes. Second and third, we used key biological networks comprised of genes that modulate 
the two central phenotypes of PD, dopaminergic survival and αS proteinopathy, respectively. 
We assessed these in two independent PD case-control cohorts from the UKBB (Ncase = 
2,237 and Ncontrol = 167,188) and AMP-PD (Ncase = 2,117 and Ncontrol = 1,095) (Figure 
6A, Methods). 
 
Rare variant burden in a gene module of PD GWAS hits reveals potential therapeutic targets 
We applied NERINE to six GO biological process modules for which top PD GWAS-
associated genes showed enrichment (Figure 6A: left, Supplementary Table T10). We 
generated networks from these process modules by grouping semantically similar GO 
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biological process terms enriched in PD GWAS hits and then extracting the edge 
relationships of genes in each group from—(i) high-confidence physical and genetics 
interactions from protein interaction databases, (ii) co-expression in the substantia nigra 
region of mid-brain, and (iii) co-essentiality in CNS cell types (Methods). By testing these 
network topologies competitively with NERINE, we identified a significant rare LoF variant 
burden in the co-essentiality module related to Peptidyl-threonine modification in both AMP-
PD and UKBB (Fisher’s combined p-value = 7.23e-3; Figure 6B, Supplementary Tables T11 
and T12). This finding is consistent with kinase-phosphatase dysregulation being heavily 
implicated in PD and synucleinopathy46,47. We did not observe an enrichment of neutral 
missense and synonymous variants in this module.  
 
Notably, rare LoF variants in LRRK2 showed an overall trait-decreasing ebect, aligning with 
well-known biological understanding that the inhibition of LRRK2 kinase activity is protective 
for PD48,49. NERINE newly predicted rare LoF variants in MCCC1 and DYRK1A genes to have a 
trait-increasing ebect on PD (Supplementary Table T12), providing confirmatory support of 
these genes being the true genes-of-origin for the original GWAS signal, but also that loss-
of-function is likely to be the mechanism through which they confer PD risk. LoF variants in 
MCCC1 and DYRK1A might lead to mitochondrial dysfunction and exacerbate the 
degeneration of DA neurons50 , respectively, thereby increasing PD risk. In contrast, rare LoF 
variants in FYN and USP8, are predicted by NERINE to have a protective role in PD 
(Supplementary Table T12), highlighting their inhibition as a potential therapeutic strategy. 
Inhibition of FYN was previously shown to protect DA neurons and prevent locomotor 
deficits51-53, and USP8 inhibition was known to reduce ɑS accumulation in experimental 
models54,55. Thus, NERINE’s findings provide much-needed human genetic corroboration 
(and resolution of controversies) for experimental manipulation of these genes in model 
systems, and suggest inhibition of FYN and USP8 may be worthy of therapeutic 
consideration as targets in PD. 
 
A dopamine neuron essentiality gene module with rare variant burden in PD implicating 
HMGB1 and USP10 
Our second line of investigation focused on an unbiased whole-genome CRISPR screen to 
identify genes essential for DA neuron survival, with the aim of pinpointing those relevant to 
PD risk (Figure 6A: middle). Guide RNAs (gRNAs) representing 19,993 genes were 
transduced into H9 hESC lines that had been knocked in for a doxycycline-inducible Cas9 at 
the AAVS1 safe-harbor locus. In the DA neural progenitor stage, Cas9 was induced, and a 
gRNA representation was obtained through next-generation sequencing. A parallel culture 
was aged to DIV42, and gRNA representation was assessed to look for dropout. If gRNAs 
representing a specific gene consistently dropped out, that gene was considered essential 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.07.631688doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631688
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Methods). We identified 693 essentiality genes that converged onto ten (10) GO biological 
process modules (Supplementary Table T13). We generated networks from these process 
modules by grouping semantically similar GO biological process terms enriched in 
essentiality genes and then extracting the edge relationships of genes in each group from 
PPI, co-expression, and co-essentiality databases as described before (Methods). We 
tested these modules competitively with NERINE on sporadic PD cases compared to 
controls in AMP-PD and UKBB with extreme controls, i.e., controls with age >= 85 (Methods).  
 
NERINE uncovered a screen-wide significant burden of rare damaging variants in the gene 
module linked to the regulation of autophagy (Fisher’s combined p-value: 6.69e-4; Figure 6C, 
Supplementary Table T14), with no inflation observed in neutral missense and synonymous 
variants. Co-essentiality in CNS cell types provided the most informative gene-gene 
relationship for this set of genes. Key genes with trait-increasing ebect in PD (Supplementary 
Table T15) included HMGB1 and USP10, both highly intolerant to loss-of-function variants. 
While damaging variants in HMGB1 may lead to autophagy inhibition and αS accumulation56, 
such variants in USP10 may lead to ɑS toxicity in PD by disrupting ɑS-containing aggresome 
formation57—a finding now corroborated through human genetic analysis by NERINE.   
 
Rare variant burden in PD-associated submodule in an ɑS proteinopathy network pinpoints 
highly plausible PD risk genes  
Finally, we focused on a network of α-synuclein modifier genes assembled through “yeast-
to-neuron” discovery screens58 (Figure 6A: right). The αS network was generated using the 
TransposeNet methodology that connected hits from multiple genome-scale deletion and 
over-expression screens against ɑS proteotoxicity in yeast into an optimal topology by 
transposing yeast genes into the human interactome space and adding “predicted” genetic 
nodes as needed. TransposeNet introduced numerous human genes, without any known 
homologs in yeast, including SNCA (that encodes ɑS itself) and LRRK2, two genes that are 
among the most definitively connected directly to PD risk in GWAS and Mendelian linkage 
analyses41,42,59. The network, validated in human iPSC cortical and DA neurons58, converged 
with a proteome-scale proximity labeling screen for αS in neurons60.  
 
The TransposeNet αS network consisted of 17 branches representing diberent biological 
processes (Supplementary Figure S13) which provided the hypotheses to be tested with 
NERINE. Among these branches, we observed a screen-wide significant burden of rare 
damaging missense variants with NERINE in the LRRK2 and SNCA-containing vesicle 
tra]icking and protein homeostasis-related gene subnetwork associated with PD risk in both 
AMP-PD and UKBB datasets (Fisher’s combined p-value: 1.27e-3; Figure 6D and 
Supplementary Tables T16 and T17). Neutral missense and synonymous variants in this 
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network showed no significant enrichment. None of the genes in the subnetwork was 
previously shown to have a replicable exome-wide significant rare-variant burden in single-
gene analysis20,44. 
 
Intriguingly, the subnetwork highlighted by NERINE contained SNCA and its direct interactor 
LRRK2, which had previously been implicated in PD by GWAS and Mendelian genetics41,59. 
Several other direct interactors of SNCA in this subnetwork were previously implicated to 
PD-relevant pathology and pathobiology in diberent contexts: VDAC161-63, NEDD464-66, and 
TOR1A67. For the remaining direct interactor of SNCA, PRL, there was limited direct evidence 
of a causal role in PD. Beyond the direct interactors of SNCA, NERINE also predicted a trait-
increasing role for several other genes that were linked to PD in functional studies, including 
NDFIP168,69,  PBX170, and RNF1171. 
 
Convergence of unbiased functional genomics screen and NERINE on a PRL-SNCA 
interaction 
Since conventional iPSC models for neurodegenerative proteinopathies suber from poor 
reproducibility and tractability, and levels of endogenous α-synuclein far lower than found in 
the brain, recently we72,73 have established a suite of tractable iPSC models to study diberent 
aspects of neurodegenerative disease biology. Extra copy numbers of wild-type SNCA 
through gene multiplication at the SNCA locus can lead to early-onset PD and dementia with 
pathology in DA and cortical glutamatergic neurons, similar to sporadic PD with dementia. 
To create a better surrogate for this pathobiology, we engineered a CRISPRi-induced 
synucleinopathy model in cortical neurons (CiS-CN) in the widely used WTC11 genetic 
background72. This model—i) allows for cortical glutamatergic neurons generation through 
one-step trans-diberentiation with Ngn2 (an integrated dox-inducible transgene at the 
AAVS1 locus), ii) allows for flexible target gene knock-down with CRISPRi (dCas9-KRAB) 
knocked in to the CLYBL locus74; iii) have lentivirally transduced ɑS to express the protein at 
diberent levels: three hiPSC clones in CiS model were utilized in this study, namely two 
SNCA-overexpression clones (SNCA-high, SNCA-intermediate), and a control clone (SNCA-
endo1). These lines express ɑS at brain-like levels with a higher propensity for ɑS aggregation 
and toxicity than conventional PD iPSC models72,73. 
 
In this model, we first performed a surrogate human functional genomics screen “in the 
dish” to complement NERINE and look for points of convergence between the methods in 
an unbiased way. Specifically, we transduced into our CiS models a CRISPRi-optimized 
gRNA library comprising 9,852 gRNAs targeting 1,705 individual genes in our ɑS gene-
interaction networks, including our TransposeNet ɑS proteinopathy network (Figure 7A). At 
DIV0 (3 days post-Ngn2 induction), CiS neurons were transduced with the sgRNA library. We 
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cultured transduced neurons in parallel until the harvesting day. Neurons were collected at 
DIV3, 28, and 42. The proportion of cells expressing each sgRNA at each time point was 
determined by next-generation sequencing of the sgRNA-encoding locus. The MAGeCK-
iNC pipeline was used to analyze the screen results (Methods). Based on the depletion or 
enrichment of sgRNAs targeting specific genes at diberent time points, we identified hit 
genes for which knockdown was αS toxicity enhancer or suppressor. We made three 
comparisons – sgRNAs that dropped out at DIV42 in SNCA-high versus SNCA-endo, sgRNAs 
that selectively dropped out at DIV42 versus DIV28 in SNCA-endo and sgRNAs that 
selectively dropped out at DIV42 versus DIV28 in SNCA-high. We refer to these comparisons 
as Comparisons 1, 2, and 3, respectively, in Figures 7A and 7B. We defined genes passing a 
false-discovery rate (FDR) < 0.1 as hit genes. For each comparison, the gene product cutob 
for hit genes was selected dynamically by the MAGeCK-iNC pipeline. 
 
Comparisons 1 and 2 provided the key αS toxicity-specific enhancers from these functional 
genomics screens in human neurons.  Intriguingly, PRL knockdown was close to the top hit 
in both comparisons. Thus, our screen indicated that PRL knockdown within neurons is an 
enhancer of αS toxicity. This result converged with NERINE's PD genetics finding (Figure 6D), 
in which the TransposeNet subnetwork with rare variant burden pinpointed damaging 
missense variants in PRL as conferring PD risk. This finding was even more remarkable 
because, like SNCA and LRRK2, PRL was a genetic "node" predicted by the TransposeNet 
algorithm in our original αS network58. 
 
A novel intraneuronal SNCA-PRL stress response identified in human neurons 
The convergence of signals from the CRISPRi screen and NERINE at the PRL locus, which 
encodes the hormone prolactin, highlighted it as a compelling candidate for further 
experimental validation. Prolactin is expressed predominantly in neuroendocrine tissue, 
specifically the anterior pituitary gland. While prolactin has been extensively studied in the 
context of neuroprotection75 and has even been linked to PD76-79,  it is generally considered 
to be of exogenous pituitary origin. It was thus most surprising that it appeared within a 
neuronal functional genomics screen. Notably, there is a literature, albeit controversial and 
conflicting, documenting PRL expression in diberent brain regions of the rodent80, with 
speculation that its expression may only be detected under conditions of neuronal stress. 
There is also evidence that, despite mRNA expression being very low, its expression can be 
post-translationally regulated because expression of the protein is often disconnected from 
transcript levels81.  
 
Our data raised the possibility that prolactin may be part of an intraneuronal stress response 
directly related to αS. To further investigate, we performed immunostaining in neurons of 
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diberent age. Prolactin expression was significantly increased in SNCA-overexpression 
neurons, with ~7-fold-higher expression in SNCA-high, and 2.5-fold-higher in SNCA-
intermediate. than in SNCA-endo neurons at DIV7 (Figure 7C). This elevation was abrogated, 
as expected, by our sgRNAs directed to PRL (Figure 7D). Importantly, PRL levels were 
reduced over time, such that by DIV28, PRL levels in the SNCA-high lines, were only ~1.5-
fold-higher than in SNCA-endo neurons (Figure 7E). These data collectively suggest a 
potentially protective αS-induced prolactin that diminishes over time.  
 
We next tested whether inducing αS aggregation (that in turn reduces soluble αS levels)73 
could also reduce prolactin levels. αS aggregation can be induced by exposing cellular and 
animal models to pre-formed αS amyloid fibrils (PFFs)82,83. We challenged our neurons with 
seven (7) days of exposure to pre-formed αS fibrils (PFFs). This challenge led to a reduction 
of prolactin levels as indicated by immunofluorescence (Figure 7F). In our models, mRNA 
expression levels of PRL were low. We assumed this might relate to the immaturity of the 
iPSC-derived neurons. We thus turned to a well-established mouse PFF model82. We 
unilaterally injected PBS versus 5 µg of PFFs (2.5 µL volume) into the dorsal striatum of mice 
(Figure 7G: left). Mice were aged for 30 days post-injection. By this stage, as has been 
previously described84, the αS aggregation pathology “spreads” distally and reaches the 
cortex and the amygdala, two brain regions highly susceptible to αS pathologies in later stage 
PD. We harvested mRNA from the amygdala and assessed gene expression with the 
Nanostring Neuropathology panel. In comparison to PBS-injected control animals which 
showed no pS129 positive inclusions across all brain regions (not shown here), PFF-injected 
mice showed a 16.6-fold downregulation of Prl mRNA expression in the amygdala region 
ipsilateral to the site of injection (n=5 per group; 3 males/2 females; Figure 7G: right), 
consistent and indeed stronger than our findings in the shorter-term human CiS neuronal 
model. Thus, in the context of aging and fibrillar αS pathologies, prolactin levels drop 
intraneuronally, and neurons become highly sensitized to its removal. 
 
To investigate whether prolactin can directly protect from αS toxicity, we assessed 
neuroprotection against oxidative stress sensitization phenotype in our CiS models.  In aged 
neurons by DIV28, SNCA-high neurons became sensitized to the oxidative stressor, 
menadione (Figure 7H). Menadione generates reactive oxygen species (O2-) through redox 
cycling85.  These species can be identified with the fluorogenic probe CellRox (Thermo). In 
SNCA-high and SNCA-endo models, we pre-conditioned DIV6 CiS neurons with prolactin for 
24hrs before treatment with menadione (Figure 7I: top). As anticipated, exogenous prolactin 
treatment significantly decreased oxidative stress in CiS neurons (Figure 7I: bottom). Taken 
together, a notable convergence of a forward genetics iPSC screen with NERINE, identified 
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an unexpected αS-prolactin intraneuronal stress response that may have important 
implications for resilience to αS pathology in PD. 
 
Discussion 
There are two tracks in human disease genetics: one centers on the development of 
experimental techniques in easy-to-manipulate systems. It is propelled by advances in gene 
editing technology coupled with massively parallel phenotyping at the cellular level. These 
experimental studies generate mechanistic biological hypotheses, but by themselves do not 
establish relevance to human phenotypes. The second track focuses on finding associations 
in rapidly growing human genomic datasets using the increasingly sophisticated 
computational and statistical methods. This line of research identifies signals highly 
relevant to human conditions but is unable to provide mechanistic knowledge. The 
promising path towards building mechanistic hypotheses is through combining statistical 
human genetics and direct experimentation.  We developed NERINE to directly integrate 
results of experimental screens, competitively test hypotheses about gene relationships, 
and guide follow-up focused experiments. NERINE shows improved performance over 
existing rare variant tests, albeit with a few limitations (see Methods). 
 
We demonstrated two avenues of applications of NERINE. First, we used pre-existing 
biological knowledge in the form of gene networks systematically assembled by the 
community with no regard to a specific human phenotype. We tested these networks for 
associations with four highly prevalent human diseases---breast cancer (BRCA), type II 
diabetes (T2D), coronary artery disease (CAD), and early onset myocardial infarction (MI). 
Second, we demonstrated an integrative approach by testing bespoke gene networks 
originated from genome-wide experimental screens in model systems targeting two main 
pathophysiological features of Parkinson’s disease—the degeneration of DA neurons and α-
synuclein proteotoxicity and helping prioritize targets for downstream experiment.  
 
Our investigation of common diseases in UKBB and MGBB with NERINE provided new 
insights into the biology of BRCA, T2D, CAD, and MI by uncovering a significant rare variant 
burden in non-lipid-related pathways in cardiovascular diseases, adipogenesis in T2D, and 
the estrogen receptor pathway in BRCA, elucidating their causal role. The implication of 
collagens, key structural proteins in the extracellular matrix, in MI is consistent not only with 
their primary role in maintaining the stability of atherosclerotic plaques86 but also with their 
indirect role in coagulation via platelet ebects and interactions with clotting factors87. 
Furthermore, the significant rare variant burden in networks linking inflammatory response 
genes to the risk of both CAD and MI supports the potential of anti-inflammatory therapies 
as an alternative to LDL-lowering drugs for treating cardiovascular diseases88.  
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Our findings further highlighted two key insights. First, we provided human genetics 
corroboration for genes identified only in functional studies in model systems. For example, 
several member genes of the LRRK2-SNCA-containing vesicle tra]icking and protein 
homeostasis subnetwork of the αS proteotoxicity network, including NEDD4, NDFIP1, 
VDAC1, PBX1, TOR1A, and RNF11 have been previously implicated in PD in model systems 
experiment61-71,89-91—now corroborated with human genetics evidence by NERINE. Second, 
our study provides additional clarity on the directionality of gene ebects in networks where 
conflicting evidence exists from functional studies. For example, there is biological data 
suggesting haploinsubiciency of DYRK1A—a member of the peptidyl-threonine modification 
gene module implicated in PD by NERINE—reduces its kinase activity and exacerbates DA 
neuron degeneration in mice50. There is also data arguing the opposite through 
phosphorylation of ɑS92.  By providing genetic evidence in favor of the latter direction, 
NERINE provides some resolution of the matter.   
 
We do recognize the fact that currently individuals of European ancestry constitute the 
largest group in our study cohorts. Thus, real data applications of NERINE in this study 
primarily focused on individuals of European ancestry. Concentrated eborts in building large 
biobanks with diverse participants are already underway93 and will enable NERINE to 
overcome this limitation and provide more insight into the contribution of rare variants to 
common disease etiology across populations. Additionally, the cohort sizes in MGBBB are 
smaller compared to UKBB for several phenotypes requiring us to adjust the MAF cutob 
accordingly for MGBBB in some comparisons. For cardiovascular phenotypes, our results 
included several pathways involved in the complement system cascade, especially in the 
MGBBB cohort which might either be a true signal for cardiac phenotypes or a technical 
artifact because bio-samples were likely collected from patients at a time close to the 
occurrence of a cardiac event. Similarly, the significant rare variant burden near the MAPK 
signaling pathway in the MI phenotype might also be due to the CHIP ebect since the patient 
samples primarily came from blood. 
 
Prolactin, a pleiotropic hormone, is encoded by PRL—a gene where NERINE’s findings from 
human genetics converged with experimental evidence from forward genetic screens in our 
tractable synucleinopathy hiPSC and mouse models. This was a notable finding, especially 
given the abundant controversies about whether PRL is expressed outside the pituitary 
gland. Interestingly, there has been considerable speculation that prolactin may be 
responding to intracellular stress, explaining some of the controversy80, and this is indeed 
what our data point to.  Numerous studies have linked prolactin to neuroprotection against 
a variety of toxic insults through reduction in oxidative stress, cytotoxicity, and 
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inflammation75,94,95, but with minimal evidence from genetics. Our own data indicate an early 
and likely post-translational intraneuronal response in which prolactin is elevated in specific 
response to ɑS overexpression. This response diminishes with time, and with ɑS aggregation. 
This decrease in turn associated with a sensitization to PRL knockdown and to exogenous 
stress. This reduction in PRL expression also occurs with a more chronic treatment of mice 
with fibrillar ɑS. Interestingly, even beyond the known ebect of dopamine on prolactin 
reduction, prolactin levels in CSF emerged as the top feature of a classifier model for 
classifying PD patients versus controls78. Together with human genetic evidence from 
NERINE, our cellular and mouse data suggests a causal connection between the PRL-SNCA 
stress loop in PD risk and resilience. Thus, NERINE systematically brings experimental 
biology and human genetics together to enable mechanistic discoveries in human 
phenotypes. This may be particularly powerful in complex diseases like PD for which 
population sizes are limited and existing rare-variant methodology have been hitherto 
unrevealing. 
 
Methods 
Estimating rare-variant burden in a gene network with NERINE 
NERINE models the “variant-gene-network” hierarchy as follows:  it encodes gene-gene 
relationships in a network of m genes by a positive semidefinite matrix, Σ. We assume that 
phenotypic ebects of genes within a network, represented as vector �⃗�, are drawn from a 
multivariate normal distribution �⃗�	~	𝑀𝑉𝑁(0, 𝜃 ∙ Σ). Here, 𝜃 is a parameter reflecting the 
cumulative ebect of the gene network on a phenotype and is the object of inference (Figure 
1A). Under this model, an edge between two genes in the network implies that they have 
either correlated non-zero ebect sizes or correlated chances of having no phenotypic 
ebects. Since the marginal distributions of the multivariate normal distributions are 
univariate normal distributions which are unbounded, we leveraged variable transformation 
to map the marginals to beta distributions bounded between 0 and 1 (Supplementary Note). 
The transformed gene-ebects within the network are represented by a vector, 𝛼">>>⃗ . We 
account for the skew in the sizes of case- and control-groups within the cohort by controlling 
the shape parameters of the 𝛼">>>⃗  distributions (Supplementary Note). 
 
We model rare variant counts in genes for cases and controls as two independent Poisson 
distributions as follows,  
 

Allele counts in cases in gene 𝑖,  𝑋! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁#$%& , 𝜆!#$%&) 
Allele counts in controls in gene 𝑖,  𝑌! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁#'()*'+ , 𝜆!#'()*'+) 
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Here, 𝑁#$%&  and 𝑁#'()*'+  represent the case- and control-cohort sizes and 𝜆#$%&!  and 𝜆#'()*'+!  
denote the rate parameters for case- and control- allele count distributions in gene 𝑖. The 
rate parameters correspond to population allele frequencies renormalized between cases 
and controls by transformed network-gene ebect, 𝛼!". This implies that the conditional 
probability of observed rare variant count in each gene in cases, given the total rare variant 
count in the cohort, follows a binomial distribution (Supplementary Note).  

𝑃(𝑋! = 𝑘|𝑋! + 𝑌! = 𝑛) = E𝑛𝑘F G
𝜆#$%&!

𝜆#$%&! + 𝜆#'()*'+! H
,

G
𝜆#'()*'+!

𝜆#$%&! + 𝜆#'()*'+! H
(-,

≈ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝛼!") 

 
NERINE infers the network-ebect, 𝜃 on a dichotomous phenotype using the maximum 
likelihood estimation (MLE) framework, where the likelihood is given by,  

𝐿(𝜃|𝑿, 𝐘, �⃗�, Σ) = LMN𝑃(𝑋!|𝑋! + 𝑌! , 𝛼!)
.

!/0

O ∙ 𝑃(�⃗�|𝜃; Σ) ∙ 𝑑�⃗� 

We approximate the integral	 leveraging	 multivariate	 Gaussian-Hermite	 quadrature	 with	
pruning	(Supplementary Note):	

𝐿(𝜃|𝑿, 𝐘, �⃗�, Σ) ≈eMN𝑃(𝑋!|𝑋! + 𝑌! , 𝛼!")
.

!/0

O ∙ 𝑃f𝛼">>>⃗ |𝜃; Σg
1!2222⃗

 

We calculate the conditional probability of allele counts in cases and counts in each gene 
using the probability density function of a standard binomial distribution as described above 
which makes the computation fast and tractable. To calculate the probability of network-
gene ebects (𝛼">>>⃗ ) for a given network topology (Σ) and network ebect (𝜃), we use a lookup 
table approach (Supplementary Note).  
  
NERINE performs nested hypothesis testing; the null hypothesis being 𝐻4:	𝜃=0 and the 
alternative set of hypotheses being 𝐻5: 𝜃 = 𝜃5>0. The test statistic of NERINE is the log-
likelihood ratio (LLR):  

𝐿𝐿𝑅5 = 2 × (𝑙𝑜𝑔(𝐿(𝐻5)) − 𝑙𝑜𝑔(𝐿(𝐻4))) 
We denote the maximum-likelihood estimate of network ebect with 𝜃o = argmax

6/6"
(𝐿𝐿𝑅5). 

Since 𝜃 lies on the boundary of the parameter space, the test statistic asymptotically follows 
the distribution of a weighted mixture of a point mass at zero and a chi-square distribution 
with a degree of freedom of one (𝑑𝑜𝑓 = 1)13,14. NERINE draws its asymptotic p-values from 
this distribution. For significant networks with 𝜃>0, NERINE calculates the maximum 

likelihood gene-specific ebects (𝛼">>>⃗s ) under the estimated 𝜃o as follows: 

𝛼">>>⃗s = argmax
1!2222⃗

𝐿f𝛼">>>⃗ |𝑿, 𝐘, 𝜃o, Σg ≈ argmax
1!2222⃗

MN𝑃(𝑋!|𝑋! + 𝑌! , 𝛼!")
.

!/0

O ∙ 𝑃f𝛼">>>⃗ |𝜃o; Σg 
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The search space for possible network-gene ebects (𝛼">>>⃗ ) is determined by the estimated 𝜃o,  
the network structure (Σ), and the lookup table entries (see Supplementary Note).  
 
NERINE has several limitations. Currently the test is designed to accommodate 
dichotomous traits only. Continuous traits need to be dichotomized before NERINE can be 
run on them. Covariates correction is not directly included in the test. For continuous traits, 
it can be done as a preprocessing step using a regression-based approach and then the trait 
can be dichotomized. For binary traits, NERINE currently performs ancestry-stratified 
analysis and combines the p-values using Fisher’s combined test post-hoc. For large 
networks with > 50 genes, NERINE’s test statistic falls outside the asymptotic regime, hence 
we recommend using NERINE with networks up to 50 genes. 
 
Simulations under the null model 
To evaluate the performance of NERINE under the null model (𝜃=0), we performed extensive 
simulations with well-studied biological pathways, namely, NOTCH signaling (m=6), WNT 
signaling (m=24), protein export (m=24), and EGFR signaling (m=50), from the canonical 
pathway database (Figure 1B) and diberent simulated network architectures—(i) clique: 
complete graph with all nodes connected to each other; (ii) path: each node connected to 
two other nodes except the first and the last nodes; (iii) random: randomly generated scale-
free graph of 𝑚 nodes; and (iv) isolated genes: nodes not connected with each other 
(Supplementary Figure S1). For the canonical pathways, gene lists were extracted from 
MSigDB (v7.3) and high confidence physical and genetic interactions from protein-protein 
interaction (PPI) databases were used as network edges between pathway genes. We 
simulated three diberent scenarios – (i) equal sized case/control groups (𝑁#$%& =
1,000;	𝑁#'()*'+ = 1,000) (ii) case group is larger (𝑁#$%& = 3,000;	𝑁#'()*'+ = 1,000), and (iii) 
control group is larger (𝑁#$%& = 1,000;	𝑁#'()*'+ = 3,000).  
 
Under diberent network architectures and case-control skews, we simulated allele counts 
in cases and controls using independent binomial distributions under the null model. For 
each gene, we assumed the presence of up to five qualifying loci each with minor allele 
frequency (MAF) of 0.001. The binomial probabilities for case- and control-groups are 
adjusted according to the group sizes and MAF of variants assuming no gene-specific ebects 
under the null model (𝜃 = 0). For each scenario, we performed 1,000 iterations to generate 
the QQ-plots.  
 
We used the pchibarsq function from the emdbook (v1.3.13) in R (v4.3.2) to calculate the p-
values from the mixture of chi-square distribution with one degree of freedom (𝑑𝑜𝑓 = 1) and 
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the delta function at zero (0). We calculated 95% bootstrap confidence intervals around 
NERINE’s test-statistic for visualization.  
 
We also tested the null behavior of NERINE’s test statistic in simulated networks of diberent 
sizes (𝑚 = 5, 10, and 25 genes) and diberent topological architectures (i.e., clique, path, 
random, and isolated nodes) for equal sized case- and control-groups (Supplementary 
Figure S1). For each scenario, we performed 1,000 iterations to generate the QQ-plots. The 
allele counts in cases and controls were generated from independent binomial distributions 
following the same procedure as above.  
 
Performance benchmarking with simulated data 
We evaluated the performance of NERINE under the alternative hypothesis (𝜃>0) in two sets 
of simulations—(i) when genes have only trait-increasing ebects, and (ii) when genes have 
both trait-increasing and trait-decreasing ebects using the same four database pathway 
network topologies used for the null simulations. For each scenario, we simulated diberent 
noise profiles i.e., diberent proportions of genes within the network with ebects on the trait 
given the network topology. This mimics situations from having a very noisy network (i.e., 
~10-30% genes with an ebect on the trait) to a highly relevant network (i.e., ~70-90% genes 
with an ebect on the trait). We simulated allele counts from cases and controls using 
independent binomial distributions under the alternative model with 𝜃 = 0.2. For each gene, 
we assumed the presence of 1-5 qualifying loci per gene with minor allele frequency (MAF) 
of 0.001. The binomial probabilities for case- and control-groups are adjusted according to 
the group sizes and MAF of variants assuming possible gene-specific ebect configurations 
under the alternative model (i.e., �⃗� given the network topology (Σ) and network ebect, 𝜃 =
0.2). Using this setup, we simulated a cohort of 2,000 cases and 2,000 controls.  
 
Currently, there are no existing rare variant association tests that take gene network topology 
into account Thus, we compared the performance of NERINE with existing gene-level rare 
variant association tests adapted to the pathway level, namely, CMC-Fisher test15, Fisher 
minimum p-value test16, Fisher combined test16, SKAT-O17, and pathway-based rare variant 
trend test (RVTT)7,8. For each noise profile, we performed 250 iterations. Empirical power of 
each method was measured as the positive predictive value (PPV) across iterations using 
diberent p-value cutobs (𝑐): 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5. Here, 
 

𝑃𝑃𝑉 = 	
#	Positive	zindings	with	p-value < 𝑐	

total	#	of	test	cases  
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Additionally, we benchmarked NERINE’s performance against other rare variant association 
tests on diberent simulated network architectures for 25 genes (Supplementary Figure S2). 
As before, we performed two sets of simulations—(i) when genes have only trait-increasing 
ebects, and (ii) when genes have both trait-increasing and trait-decreasing ebects for four 
network topologies—clique, path, random graph, and isolated nodes. We simulated allele 
counts in 1,000 cases and 1,000 controls using independent binomial distributions under 
the alternative model with network ebect, 𝜃 = 0.5. We simulated diberent network-noise 
profiles ranging from 0-90% following the same procedure as above. Empirical power of each 
method was calculated as PPV across 250 iterations per noise profile per network topology. 
Since RVTT, by design, assumes that all qualifying rare variants in a pathway have the same 
direction of ebects, we compared RVTT’s performance with NERINE in simulations with 
genes having only trait-increasing ebects. Moreover, RVTT computes a permutation-based 
p-value, and for 10,000 iterations its p-values cannot be < 1e-4. Hence, we compared RVTT’s 
performance only at cutob values ≥ 1e-4.  
 
Study cohorts 
We used whole exome sequencing (WES) data from two population-scale biobanks, namely, 
the UK biobank (UKBB) and the Mass General Brigham biobank (MGBBB) and whole genome 
sequencing (WGS) data from the AMP-PD consortium.  
 
Utilizing jointly genotyped variant calls from 469,589 individuals in the UKBB, we first 
performed positive control experiments with NERINE in two lipid related phenotypes: direct 
LDL cholesterol (LDL-C; data field: 30780) and HDL cholesterol (HDL-C; data field: 30760). 
We created two dichotomous phenotypes: (i) high LDL vs. low LDL and (ii) low HDL vs. high 
HDL, by selecting individuals belonging to the top and bottom quartiles of the distributions 
for LDL and HDL cholesterol measurements. European ancestry groups had the largest 
sample sizes: LDL-C (30,007 cases and 28,673 controls), and HDL-C (26,800 cases and 
27,178 controls). We performed stratified analysis of LDL-C phenotype in all five major 
ancestry groups (i.e., European, American, African American, South Asian, and East Asian) 
and meta-analyzed the results using Fisher’s combined test. Bonferroni correction was 
applied on the meta p-values. For the down-sampling experiment under the LDL-C 
phenotype in the European ancestry group, we created three additional cohorts by randomly 
sampling individuals without replacement from cases and controls: (i) 10,000 cases vs 
10,000 controls, (ii) 3,000 cases vs 3,000 controls, and (iii) 500 cases vs 500 controls.  
 
We performed database-wide investigations for four disease phenotypes in the UKBB with 
NERINE, namely, breast cancer (BRCA), type II diabetes mellitus (T2D), coronary artery 
disease (CAD), and early onset myocardial infarction (MI). The cohorts were selected 
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primarily based on the summary diagnoses recorded in the data field 41270 as ICD-10 
codes. For BRCA, the case group consisted of unrelated females of European ancestry with 
ICD-10 code C50 and the control group consisted of unrelated European females of age 60 
or above with no history of neoplasms (ICD-10 codes: C00-C97 and D00-D48). The resulting 
cohort had 10,648 cases and 91,886 controls. For T2D, we included unrelated European 
individuals with ICD-10 code E11 in the case group and unrelated European individuals with 
no endocrine, nutritional and metabolic diseases (ICD10 codes: E00-E90) in the control 
group. The resulting cohort had 22,502 cases and 68,370 controls. We created an age-
stratified case-control cohort for the CAD phenotype where cases consisted of unrelated 
European individuals of age <=65 with ICD-10 code I25 and controls consisted of unrelated 
European individuals of age > 65 with no diseases of the circulatory system (ICD-10 codes: 
I00-I99). This left us with 4,561 cases and 12,321 controls. Finally, for the MI phenotype, our 
cohort consisted of 2,521 cases and 5,012 controls. Cases included unrelated European 
individuals with ICD-10 code I 21. Only males with age <=55 and females with age <=65 were 
included in the case group. Whereas controls consisted of unrelated European individuals 
of age >= 69 who have no history of any disease of the circulatory system (ICD-10 codes: I00-
I99).  
 
For the three-pronged analysis of the Parkinson’s disease (PD) phenotype, we created a 
discovery cohort from the UKBB individuals by including 2,237 unrelated European 
individuals of age 40 or above with ICD-10 code = G20, no history of T2D, and no family 
history of PD as cases. Control group consisted of 167,188 unrelated European individuals 
of age >= 60 who had no history of T2D, PD, and other diseases of the nervous system (ICD-
10 codes: G00-G99). We termed this cohort as “UKBB-Sporadic”. For analyzing the 
dopamine (DA) neuron essentiality screen gene modules, we used a subset of the controls 
consisting of individuals who had an age of 85 or above as super controls. The case group 
was the same as before. We termed this cohort with super controls as UKBB-Extreme (Ncase 
= 2,237 and Ncontrol = 2,553). For the UKBB-sporadic cohort, we used MAF < 0.001 as the 
cutob to select rare variants. For the UKBB-extreme cohort, the cutob was fixed at 0.01.  
 
For the database-wide investigations of BRCA, T2D, CAD, and MI, we created replication 
cohorts using the jointly genotyped WES data from 53,343 individuals in MGBBB, a 
biorepository of consented patient samples at Mass General Brigham (parent organization 
of Massachusetts General Hospital and Brigham and Women’s Hospital). Same 
inclusion/exclusion criteria were used for each phenotype to ensure consistency between 
the biobanks. The resulting cohort sizes are as follows: BRCA (Ncase = 1,113; Ncontrol = 
2,459), T2D (Ncase = 747; Ncontrol = 2,188), CAD (Ncase = 902; Ncontrol =1,488), and MI 
(Ncase = 326; Ncontrol = 2,068). For the BRCA cohort, we used an MAF cutob of 0.001 to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.07.631688doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631688
http://creativecommons.org/licenses/by-nc-nd/4.0/


select rare variants. For the other three phenotypes, variants with MAF <0.03 were 
considered to be “rare” and tests for synonymous and neutral missense categories were 
performed for each pathway to make sure that there is no LD leakage.  
 
For the three-pronged analysis of PD, we created a replication cohort using the WGS data 
from 10,418 individuals from AMP-PD (Accelerating Medicines Partnership: Parkinson's 
Disease) v3 release (2022). Any individual belonging to the genetic registry and genetic 
cohort group as well as subjects without evidence of dopamine deficit (SWEDD) and 
subjects belonging to the prodromal categories and the AMP-LBD cohort were excluded from 
the analysis. As AMP-PD cohort predominantly consists of individuals of European ancestry, 
we included only unrelated individuals of the same ancestry group in our analysis. We called 
the resulting cohort as “AMP-PD-sporadic” which consisted of 2,117 sporadic PD cases and 
1,095 neurotypical controls. We used an MAF cutob of 0.001 to select rare variants for this 
cohort.  
 
We performed both variant- and sample-level quality control (QC) steps on each dataset to 
ensure the study cohorts are free from technical biases as much as possible (see 
Supplementary Note for detailed steps). We retained only high-quality biallelic variants 
passing GATK best practices filters and having maximum 10% missingness for our analysis. 
We annotated variants with their functional consequences and gnomAD allele frequencies 
with VEP (v109) and dbNSFP (v4.3a) database. We used six masks to group variants into 
functional categories: (i) Damaging missense: missense variants predicted to be either ‘‘P’’ 
or ‘‘D’’ by PolyPhen2 or ‘‘deleterious’’ by SIFT, (ii) LoF: variants labelled as splice donors, 
splice acceptors, splice region variants, stop-gained, stop-lost, start-lost, frameshifts, in-
frame insertions, and in-frame deletions; (iii) Damaging: LoFs and damaging missenses, (iv) 
Missense, (v) Neutral: missense variants predicted to be either ‘‘B’’ by PolyPhen2 or 
‘‘tolerated’’ by SIFT, and (vi) Synonymous. After removing sample outliers based on Ts/Tv, 
Het/Hom ratios, and per-haploid SNV counts, we retained only unrelated European samples 
for our analyses.  
 
Pathway database construction 
For this study, we created a pathway database with all canonical pathways of five to fifty 
genes from the BIOCARTA database along with all lipid-, DNA replication-, DNA damage 
repair-, and cell cycle-related pathways from the REACTOME, KEGG, PID, and Wiki pathways 
databases. The lists of member genes for these pathways were extracted from the Molecular 
Signatures Database (MSigDB v7.3; https://www.gsea-msigdb.org/gsea/msigdb). The 
database contained 306 pathways with a median pathway length of 25 genes 
(Supplementary Table S18). Due to the pleiotropy of genes, many biological pathways tend 
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to overlap significantly with each other. Thus, we determined the ebective number of 
independent hypotheses (𝑚&77) in our pathway database of 𝑚 pathways by adapting 
Nyholt’s approach18. First, we calculated the pathway-by-pathway correlation matrix, M, 
using Jaccard similarity and converted it to its nearest positive definite matrix using the 
nearPD function from the Matrix package (v1.6-5) in R (v4.3.2). Then we determined the 

eigenvalues (𝜆) of the positive-definite correlation matrix. The ebective number of 
hypotheses/pathways was computed using the following formula18: 

𝑚&77 = 1 + (𝑚 − 1) M1 −
𝑉𝑎𝑟f𝜆g
𝑚 O 

For our pathway database, we found the ebective number of independent hypotheses, 𝑚&77  
to be 300, which was used for Bonferroni correction to determine database-wide 
significance.  
 
Gene-network topology extraction 
NERINE’s methodology treated the gene-gene network as an input. For a screen that 
provided the gene network topology, we used that network as is. For example, for the 𝛼-
synuclein proteotoxicity screen in PD, we used the published TransposeNet humanized 𝛼-
synuclein-modifier network stems with our method. In absence of the true network topology 
for a particular gene set, we adopted the following approach to construct one. 
 
For the pathway gene sets in the database, we constructed physical/genetic network 
topologies by extracting the binary edge relationships of genes from the following sources—
(i) high confidence physical interactions (weight >= 0.7) from STRING v11.596, (ii) InWeb inBio 
Map database97, (iii) HuRI98, (iv) genetic interactions from Megchelenbrink et al. study99, and 
(v) humanized 𝛼-synuclein-, 𝛽-amyloid-, and TDP-43-modifier networks58. For a specific 
pathway gene set, NERINE represented these edge relationships by a gene-by-gene 
variance-covariance matrix, Σ, where ob-diagonal elements contained information about 
the edges (i.e., covariances) and the diagonal contains priors on genes (i.e., variances). We 
considered all genes to have the same variance for this study; the magnitude of the variance 
being set at two (2). The binary edge relationships were represented by either one (1: 
presence of an edge) and zero (0: absence of an edge). Finally, for this network matrix, Σ, we 
computed the nearest positive definite matrix using the nearPD function from the Matrix 
package (v1.6-5) in R (v4.3.2).  
 
We also constructed co-expression networks in relevant tissue types for diberent 
phenotypes using the bulk tissue expression data from the Genotype Tissue Expression 
database100 (GTEx v8). We computed a real-valued gene-gene co-expression networks in a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.07.631688doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631688
http://creativecommons.org/licenses/by-nc-nd/4.0/


specific tissue where the edges between two genes represent the Pearson correlation of 
their expression profiles in that tissue types. For lipid-related phenotypes, we constructed 
co-expression networks using the bulk expression data from liver tissue. For Parkinson’s 
disease, we used bulk expression data from the substantia nigra region of the mid-brain. 
 
To construct co-essentiality networks in relevant cell lines for diberent phenotypes, we used 
the gene dependency data from CRISPR knockout screens from project Achilles, as well as 
genomic characterization data from the Cancer Cell Lines Encyclopedia (CCLE) project from 
the DepMap portal101,102 (release: 23Q2). We computed a gene-gene co-essentiality 
networks in relevant cell lines where the edges between two genes represent the Pearson 
correlation of their dependency profiles in those cell lines. For lipid-related phenotypes, we 
constructed co-expression networks using the bulk expression data from liver cell lines. For 
Parkinson’s disease, we used bulk expression data from cell lines pertaining to the central 
nervous system (CNS). The cell lines used in this study are listed in Supplementary Table 
S19.  
 
Genome-wide CRISPR/Cas9 screen in midbrain DA neurons  
We performed genome-wide CRISPR/Cas9 screen in DA neurons diberentiated from WA-09 
(H9) embryonic stem cells. Guide RNAs (gRNAs) representing 19,993 genes were 
transduced into H9 hESC lines. At DIV14-16 of the diberentiation, we induced iCas9 
expression by doxycycline addition using the AAVS1 safe-harbor locus as previously 
described103, while cells were neural progenitors. Then, we waited until DIV25 when they 
diberentiated into DA neurons to take our initial sample to obtain gRNA representation 
through whole genome sequencing (DIV26). The remaining neurons were allowed to stay in 
the dish until our final collection time (DIV42) when neuronal cell death began. Stem cells 
were transduced with the Gattinara human CRISPR pooled knockout library104 at an MOI of 
0.3-0.5 and 1000x representation. Transduced stem cells were selected by puromycin and 
diberentiated toward DA neurons until reaching the neural progenitor stage as described by 
Kim and colleagues105. Sample were processed for library preparation and sequenced and 
sequencing reads were aligned to the screened library and analyzed using MAGeCK-MLE 
from the MAGeCKFlute106 (v2.6.0) package in R (v4.3.2). Essentiality genes were classified as 
having Wald test FDR-adjusted p-value < 0.05 and beta < -0.58. Broadly essential genes106 
that are not specific to DA neurons, were removed from the list of essentiality genes. We 
identified 693 essentiality genes. 
 
Constructing GO biological process modules 
For PD GWAS genes as well essential genes for DA neuron survival, we first performed gene 
set enrichment analysis using the enrichr function from the GSEApy package (v 1.1.3) in 
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python (v 3.12.4) and identified all GO biological processes with nominal significance (p-
value < 0.05). We then grouped semantically similar GO terms using REVIGO 
(http://revigo.irb.hr/) to identify GO biological processes modules with minimal overlap. We 
only kept modules of 10 or more genes for our analysis. For PD GWAS genes, we identified 
six such modules (Supplementary Table T10) and for DA neuron essentiality genes, we 
identified 10 such modules (Supplementary Table T13). To impose network topology on 
these gene sets, we extracted edge relationships of genes in each group from three diberent 
data sources as described above: (i) high-confidence physical and genetics interactions 
from protein interaction databases, (ii) co-expression in the substantia nigra region of the 
mid-brain, and (iii) co-essentiality in CNS cell types.  
 
Human iPSCs culture and induced neuron diTerentiation 
Human iPSCs were cultured in Stemflex (Gibco/Thermo Fisher Scientific; Cat. No. A33493) 
on 6-well plates coated with Matrigel Matrix (Corning; Cat. No. 356231) diluted 1:100 in 
Knockout DMEM (Gibco/Thermo Fisher Scientific; Cat. No. 10829-018). Briefly, Essential 8 
Medium was replaced every day. When 80% confluent, cells were passaged with StemPro 
Accutase Cell Dissociation Reagent (Gibco/Thermo Fisher Scientific; Cat. No. A11105-01). 
Human iPSCs engineered to express NGN2 under a doxycycline-inducible system in the 
AAVS1 safe harbor locus were diberentiated following previously published protocol. Briefly, 
iPSCs were released as above, centrifuged, and resuspended in N2 Pre-Diberentiation 
Medium containing the following: Knockout DMEM/F12 (Gibco/Thermo Fisher Scientific; 
Cat. No. 12660-012) as the base, 1X MEM Non-Essential Amino Acids (Gibco/Thermo Fisher 
Scientific; Cat. No. 11140-050), 1X N2 Supplement (Gibco/Thermo Fisher Scientific; Cat. No. 
17502-048), 10ng/mL NT-3 (PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. 
No. 450-02), 1 μg/mL Mouse Laminin (Thermo Fisher Scientific; Cat. No. 23017-015), 10nM 
ROCK inhibitor, and 2μg/mL doxycycline hydrochloride (Sigma-Aldrich; Cat. No. D3447-
500MG) to induce expression of mNGN2. iPSCs were counted and plated on Matrigel-coated 
plates in N2 Pre-Diberentiation Medium for three days. After three days, hereafter Day 0, pre-
diberentiated cells were released and centrifuged as above, and pelleted cells were 
resuspended in Classic Neuronal Medium containing the following: half DMEM/F12 
(Gibco/Thermo Fisher Scientific; Cat. No. 11320-033) and half Neurobasal-A (Gibco/Thermo 
Fisher Scientific; Cat. No. 10888-022) as the base, 1X MEM Non-Essential Amino Acids, 0.5X 
GlutaMAX Supplement (Gibco/Thermo Fisher Scientific; Cat. No. 35050-061), 0.5XN2 
Supplment, 0.5XB27 Supplement (Gibco/Thermo Fisher Scientific; Cat. No. 17504-044), 
10ng/mL NT-3, 10ng/mL BDNF, 1μg/mL Mouse Laminin, and 2μg/mL doxycycline 
hydrochloride. Pre-diberentiated cells were subsequently counted and plated on BioCoat 
Poly-D-Lysine coated plates (Corning; Cat. No. 356470) in Classic Neuronal Medium. On 
DIV7 and each week after, medium change was performed without doxycycline added. In the 
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PFF exposure experiment, a complete medium change to the medium containing 10 µg/mL 
synthetic PFF was performed on DIV21 neurons, and the neurons were fixed at DIV28 for 
immunostaining. 
 
CRISPRi screen and analysis  
A customized CRISPRi library containing 9,852 sgRNAs targeting 1,705 α-synuclein network 
genes and negative controls were selected from the CRISPRi v2 H1 library107. The library was 
packaged into lentivirus by the Virus Core at Boston Children’s Hospital. A small-scale 
preliminary experiment was conducted to determine the functional MOI. In this experiment, 
D0 neurons were transduced with the viral library. At DIV3, neurons were released, and a 
flow-based assay was performed to assess BFP++ population. The titer was calculated to 
achieve a functional MOI (= the fraction of BFP-positive cells) of 0.43. Based on these 
preliminary data, screening experiments were conducted using 56 million D0 neurons per 
CiS line with a functional MOI of 0.43, corresponding to a library representation of ~400 cells 
per library element. Briefly, 6 BioCoat Poly-D-Lysine 10-cm dish (Corning; Cat. No. 356469) 
were seeded with D0 neurons/each CiS line in 10mL of the virus-containing differentiation 
medium supplemented with Dox and ROCK inhibitor and left in the tissue culture hood for 
15 minutes to allow even distribution and attachment before moving to the incubator. At 
DIV3, 2 dishes/each CiS line were pelleted and stored at -80C. Full medium change was 
performed for other dishes. Weekly medium change schedule was followed starting at DIV7. 
2 dishes/each CiS line was pelleted DIV28 and DIV42 and stored at -80C. Genomic DNA was 
extracted from all neuron pellets in parallel with NucleoBond Xtra Maxi EF or Midi EF 
(Macherey-Nagel; Cat. No. 740424.10 or 740420.50, respectively). Samples were prepared, 
and sgRNA-encoding region were amplified for sequencing based on previously described 
protocols74,108,109. Sequencing and annotation were conducted at Memorial Sloan Kettering 
Cancer Center. Data was analyzed using the MAGeCK-iNC pipeline74. Hits were classified as 
having FDR-adjusted p-value < 0.1 and gene product cutob was selected by the MAGeCK-
iNC pipeline dynamically for each comparison.  
 
Immunostaining and microscopy imaging 
Neurons are fixed with 4% PFA (EM Sciences; Cat. No. 15710) for 15 minutes at room 
temperature, and then permeabilized with 0.5% Triton X-100 and blocked with 0.05% Triton 
X-100 and 5% BSA in PBS for 1hr at room temperature. Samples were incubated with primary 
antibodies (PRL: Thermo Fisher; Cat. No. MA1-10597; 1:200 dilution) at 4°C overnight, 
followed by incubation with secondary antibody and Hoechst 33342 (Thermo Fisher; Cat. 
No. H3570; 1:2000 dilution) for 1hr at room temperature. Images were captured with 
identical settings for parallel cultures using Nikon Eclipse Ti microscope or Nikon TiE/C2 
confocal microscope. Image analysis was performed with ImagJ (NIH). Prolactin level was 
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determined by D (D = total prolactin intensity / total DAPI number in a given image). 
Immunostaining images were analyzed with ImageJ Macro Software (Supplementary Note).   
 
Oxidative stress assay  
DIV0 CiS neurons were seeded at a density of 40,000 cells/well of poly-L-ornithine-
coated 96-well plate. At DIV6, the neuron media was fully changed for 100uL Prolactin-
containing (Cat. No. 100-07-10UG media at a concentration of 0,1 or 10 nM. 24hrs post-
treatment, the neuron media was fully changed for 100uL of Menadione-containing (Cat. No. 
ICN10225925) media at a concentration of 0 or 100uM and incubated for an hour at 37°C. 
After an hour, CELLROX™ Green Reagent (Cat. No. C10444) was added on top of the 
Menadione-treated media to a final concentration of 5 uM CELLROX™ for 30 minutes at 37°C. 
All media was then removed, and wells were washed 3 times with PBS. After the third wash, 
the PBS was replaced with neuron media. The plates were then taken to the Incucyte S3 live-
cell analysis system (Sartorius) for imaging. Incucyte analysis was perform with S3 software, 
and CellRox = total integrated intensity/neuron was reported.  
  
Mouse model 
Wildtype B6C3F1 mice (Stock 100010; The Jackson Laboratories) were used for the 
stereotactic injection studies described. Animals were maintained on a 12-hour light/dark 
schedule and provided with food ad libitum. All housing, breeding, and procedures were 
performed according to the NIH Guide for the Care and Use of Experimental Animals and 
approved by the University of Pennsylvania Institutional Animal Care and Use Committee.  
 
ɑS and PFF preparation 
Full-length mouse ɑS was expressed in BL21 (DE3) RIL-competent E. coli cells (Agilent 
Technologies 230245) transformed with pRK172/mSyn containing ɑS cDNA. Protein 
purification was previously described (Luk et al., 2012; Volpicelli-Daley et al., 2014). 
Cultures expanded in Terrific Broth (12 g/L of Bacto-tryptone, 24 g/L of yeast extract 4% 
(vol/vol) glycerol, 17 mM KH2PO4 and 72 mM K2HPO4) containing ampicillin (Fisher 
Scientific) were harvested and sonicated in high salt buber (750 mM NaCl in 10 mM Tris, pH 
7.6,). After boiling for 15 mins, the supernatant was dialyzed against 10 mM Tris, pH 7.6, 50 
mM NaCl, 1 mM EDTA overnight at 4ºC, filtered and concentrated using Amicon Ultra-15 
centrifugal filter units (Millipore UFC901008). Gel filtration using a Superdex 200 column 
(Cytiva) was performed and fractions containing ɑS pooled and dialyzed in 10 mM Tris, pH 
7.6, 50 mM NaCl, 1 mM EDTA overnight. The product was polished using a HiTrapQ HP 
column (Cytiva 645932) and eluted over an ionic gradient (25 to 1,000 mM NaCl). Fractions 
containing ɑS were combined and dialyzed into DPBS, sterile filtered and concentrated to 5 
mg/mL and frozen at -80°C until used. PFFs were assembled by shaking monomer at 5 
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mg/mL using a Thermomixer C (Eppendorf) set at 1,000 rpm for 7 days at 37ºC. Fibril content 
was validated by sedimentation at 100,000 x g for 30 minutes and Thioflavin T fluorimetry. 
 
Stereotaxic administration of PFFs  
Prior to injection, PFFs were diluted to 2 mg/mL in Dulbecco’s PBS and sonicated using a 
bath sonicator (Biorupter UCD-300, Diagenode) on high power for 10 cycles (30 sec on; 30 
sec ob) at 10ºC. Each mouse received a single unilateral injection of PFFs (5 µg of PFFs in 
2.5 µL volume) into the dorsal striatum using a Hamilton syringe (33 gauge) using the 
following co-ordinates: AP +0.2 mm relative to Bregma; ML +2.0 mm; depth 2.6 mm beneath 
the dura. DPBS injected into the same region was used as a negative control. Mice were 
perfused transcardially with heparinized PBS at 30 d.p.i. and brains flash frozen at -80ºC until 
use. 
 
RNA isolation and NanoString analysis 
The amygdala region ipsilateral to PFF- or PBS injection was microdissected from each brain 
and homogenized in 1 ml of TRI Reagent (Sigma-Aldrich, T9424) using TissueRuptor II 
(Qiagen, 9002755) with a disposable probe (Qiagen, 990890). RNA was then isolated using 
Direct-zol RNA MiniPrep kit with in-column DNaseI treatment (Zymo, R2050). Samples were 
quantitated with a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific) and 
assayed for RNA integrity on a 4200 TapeStation (Agilent, G2991AA). NanoString 
hybridization of the resultant RNA was carried out for a constant 18 hours at 65° C on the 
Mus musculus Neuropathology panel (v1.0). Post-hybridization processing in the nCounter 
Prep Station used the High Sensitivity settings. The cartridge scanning parameter was set at 
high (555 FOV). RNA isolation and NanoString studies were performed at the Wistar 
Genomics core facility. Genes with hybridization counts >20 were normalized to the 
geometric mean of panel positive controls as recommended by the manufacturer. 
Diberential expression was analyzed using a generalized linear model in the nCounter 
module in Rosalind (Rosalind.bio). Adjusted p-values were calculated using the Benjamini-
Hochberg method using treatment (i.e. PFF vs PBS). 
 
Data and code availability 
We downloaded the canonical pathway gene set collections under MSigDB (v7.3) from 
https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp. Physical interactions in 
humans in the STRING (v11.5) database were downloaded from https://string-
db.org/cgi/download. HuRI ppi was downloaded from http://www.interactome-
atlas.org/download. The inBio Map protein–protein interaction (PPI) network database can 
be obtained from97 (https://www.intomics.com/inbio/map: last accessed on Jan 2022). 
Genetic interactions data from the Megchelenbrink et al. study was obtained from the 
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supplement of the paper99. TransposeNet’s humanized 𝛼-synuclein-, 𝛽-amyloid-, and TDP-
43-modifier networks were obtained from our previously published study58.  Bulk expression 
data in TPM format (GTEx v8) from diberent human tissue types were downloaded from the 
GTEx portal (https://www.gtexportal.org/). Data on gene dependencies in diberent cell lines 
from the DepMap project (release: 2023Q2) was downloaded from the DepMap portal 
(https://depmap.org/portal/data_page/?tab=allData).    
 
UK Biobank 500K whole exome sequencing (WES) data was accessed through application 
41250 and is available through https://ams.ukbiobank.ac.uk and was processed using the 
DNAnexus platform. MGB Biobank 50k WES data was accessed through the 
https://biobankportal.partners.org/. Whole genome sequencing data (v3 release, 2022) from 
the Accelerating Medicines Partnership Parkinson’s disease (AMP-PD) is available on the 
AMP-PD Knowledge Platform (https://www.amp-pd.org).  
 
The source code for NERINE is available on github (https://github.com/snz20/NERINE). RVTT 
was run adapting the code from https://github.com/snz20/RVTT. CMC-Fisher test, Fisher’s 
combined test, SKAT-O, and MAGeCK-MLE analysis were performed using R (v4.3.2) 
packages stats (v4.3.2), SKAT (v2.2.5), and MAGeCKFlute (v2.6.0). Gene set enrichment of 
GO biological process terms was performed using the GSEApy (v1.1.3) package in python 
(v3.12.4).  
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Figure 1. Overview of NERINE and its performance in null simulations.  
A. Schematic diagram of NERINE, a new statistical framework that infers the e9ect of rare 
variants aggregated across a gene network on a trait. Input to NERINE includes observed 
allele counts per gene in cases (denoted by !) and controls (denoted by ") in whole-
genome or whole-exome sequencing (WGS or WES) datasets and a gene network 
represented as a symmetric positive-definite matrix, #. Network edges between genes can 
encode a wide range of relationships including physical and genetic interactions, co-
expression, co-essentiality, pathway membership, etc. and can be extracted either from 
existing databases, literature, or novel experimental assays. NERINE models individual 
gene-e9ects, $⃗, using a multivariate normal distribution whose variance-covariance 
parameter is controlled by the input network structure, # and the overall network e9ect, & 
(object of inference). This allows the network genes to have either zero e9ect or varying 
degrees of trait-increasing and decreasing e9ects. NERINE infers & using a maximum 
likelihood estimation (MLE) framework where the likelihood function, ' is an integral over 
the product of two terms --- (i) the product of the per-gene conditional probability of 
observing allele count ! in cases given the allele count in the overall cohort in the network, 
and (ii) the probability of observing a particular combination of gene-e9ects given the 
network structure and network e9ect size.  NERINE tests for network significance by nested 
hypothesis testing using the log-likelihood ratio (LLR) as the test-statistic and provides an 
asymptotic p-value from the mixture of delta function and a chi-square distribution with a 
degree-of-freedom of one. It also estimates the most likely combination of gene e9ects, $⃗( 
with the estimated network e9ect, &(. B. Simulations at null showing that NERINE’s test-
statistic asymptotically follows the theoretical distribution of a mixture of the delta 
function and a chi-square distribution with a degree-of-freedom of one. Simulations were 
performed with di9erent network architectures for well-studied pathways of di9erent sizes 
namely, NOTCH pathway, WNT pathway, protein export pathway, and EGFR signaling 
pathway. Pathway gene lists were extracted from MSigDB v7.3 and high confidence 
physical and genetic interactions from protein-protein interaction (PPI) databases were 
used as network edges between pathway genes (see Methods). Simulations were 
performed in cohorts with di9erent case-control skews. Confidence bands in the QQ-plots 
represent 95% bootstrap confidence intervals around NERINE’s test-statistic.  
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Figure 2. Comparing the performance of NERINE with existing rare variant association 
tests in simulations. Empirical power of the methods was measured for a simulated 
binary disease trait in a cohort of 2,000 cases and 2,000 controls with network e9ect, & =
0.2, in four well-studied database pathways in two scenarios: (i) genes in the network 
having only trait-increasing e9ects, and (ii) genes in the network having both trait-
increasing and trait-decreasing e9ects. From left to right, the power plots show settings in 
which di9erent proportions of genes within the network have e9ects on the trait, mimicking 
scenarios from having a very noisy network to a highly relevant network. Power was 
calculated as the positive predictive value at di9erent p-value cuto9s: 1e-2, 5e-3, 1e-3, 5e-
4, 1e-4, 5e-5, and 1e-5. In all scenarios, NERINE outperforms existing rare variant tests. 
Note that, RVTT p-values were calculated from 10,000 permutations, hence we don't report 
RVTT’s power for the cuto9s below 1e-4. Also, RVTT is a test to look for monotonic trends in 
rare variant occurrences within a pathway. Hence, it was excluded from the comparison in 
scenario (ii). 
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Figure 3. Performance of NERINE while comparing high LDL-direct vs low LDL-direct 
individuals and low HDL-direct vs high HDL-direct individuals in the UK biobank.  
A. While comparing individuals with high LDL cholesterol with the ones with low LDL 
cholesterol in UKBB, NERINE identifies significant cumulative e9ect of rare (MAF < 0.001) 
variants in LoF (i.e., frameshifts, insertions, deletions, and splice), damaging missense (i.e., 
missenses predicted to be damaging by in-silico tools), damaging (i.e., damaging missense 
and LoF), and missense categories in key lipid-related pathways. No significant burden of 
neutral missense and synonymous variants was observed. The tests were performed 
across our canonical pathway database of 306 pathways. Pathway gene lists were 
extracted from MSigDB v7.3 and high confidence physical and genetic interactions from 
protein-protein interaction (PPI) databases were used as network edges between pathway 
genes (see Methods). The dashed grey line represents the Bonferroni-corrected p-value 
threshold of 0.05. The core module of LDL genes, which contains LDLR and PCSK9, was 
identified as the most significant hit which serves as a positive control. B. While comparing 
individuals with low HDL cholesterol with the ones with high HDL cholesterol in UKBB, 
NERINE identifies significant cumulative e9ect of rare (MAF < 0.001) variants in LoF, 
damaging missense, damaging, and missense categories in key lipid-related pathways. 
Notably, the module of core HDL genes, which contains ABCA1, CETP, LIPC, and LIPG, was 
the most significant hit, serving as a positive control. No significant burden of neutral 
missense and synonymous variants was observed. The tests were performed across the 
same canonical pathway database. The dashed grey line represents the Bonferroni-
corrected p-value threshold of 0.05. C. Comparison of SKAT-O p-values against NERINE p-
values for rare LoF variant burden across the significant pathways in both the LDL (high vs 
low) and HDL (low vs high) phenotypes. For most of the pathways in both phenotypes, 
NERINE provides a lower p-value than SKAT-O. SKAT-O was applied at the pathway level 
aggregating the allele counts from member genes.  D. NERINE’s estimates of gene e9ects 
in the most significant pathways with rare damaging variant burden in the LDL (high vs low) 
and HDL (low vs high) phenotypes. Trait-increasing e9ects are represented by di9erent 
shades of orange and trait-decreasing e9ects are represented by di9erent shades of blue 
as shown on the scale. Darker color represents more pronounced e9ect. For example, 
PCSK9 and APOB shows trait-decreasing e9ects and LDLR shows a trait-increasing e9ect 
on LDL cholesterol (high vs low) phenotype. Similarly, ABCA1 and LCAT show trait-
increasing e9ects, while LIPC and LIPG show trait-decreasing e9ects for the HDL (low vs 
high) phenotypes. These findings agree with known lipid biology. Note, NERINE’s predicted 
gene e9ects represent the “most likely scenario” with the observed allele counts per gene 
and the gene-gene network topology under the estimated network e9ect.  NERINE does not 
provide p-values on per-gene predictions. 
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Figure 4. NERINE identifies significant rare variant burden in pathway gene modules in 
breast cancer (BRCA), type II diabetes (T2D), coronary artery disease (CAD), and early 
onset myocardial infarction (MI) in the UK and MGB biobanks.   
A. Bonferroni-significant findings for di9erent disease phenotypes across a database of 
306 pathways in three functional categories of rare variants—(i) LoF (i.e., frameshifts, 
insertions, deletions, and splice), (ii) damaging missense (i.e., missense variants predicted 
to be damaging by in-silico tools), and (iii) damaging (i.e., LoF and damaging missense 
variants) are shown. For each variant category, pathways were tested individually in UKBB 
and MGBBB cohorts and p-values were meta-analyzed with Fisher’s combined test. Figure 
shows negative log-transformed Fisher’s combined p-values for significant pathways. The 
dashed gray line represents the Bonferroni threshold of 0.05. B. Representative pathway 
gene modules with significant rare LoF variant-burden in BRCA are shown with individual 
gene e9ects. Since there were significant overlaps between BIOCARTA ATRBRCA PATHWAY 
(cancer susceptibility pathway) with the other significant pathways except BIOCARTA 
CARM ER PATHWAY (estrogen receptor pathway), we showed two pathways with minimal 
overlap (i.e., one gene, BRCA1) as representatives. NERINE predicted a trait-increasing role 
for known tumor suppressor genes (TSG), oncogenes, or fusion oncogenes such as, 
BRCA1, BRCA2, ATM, ATR, CHEK2, FANCD2, FANCG, RAD50, and TP53 in the cancer 
susceptibility pathway. It also indicated a trait-increasing role for several genes in the 
estrogen receptor pathway which were neither cancer drivers nor GWAS hits for BRCA, 
such as, CARM1, TBP, GTF2A1, HEC14, MEF2C, and PELP1. C. Individual gene e9ects 
predicted by NERINE in the adipogenesis pathway (i.e., BIOCARTA VOBESITY PATHWAY) are 
shown for the T2D phenotype. Member genes include RXRA, PPARG, ADIPOQ, TNF, NR3C1, 
LPL, RETN, and HSD11B1—none of which were previously implicated in T2D in rare variant 
association studies. D. NERINE’s estimates of gene e9ects in the two database-wide 
significant pathways—plasma lipoprotein clearance and alternative complement 
cascade—in CAD are shown. NERINE predicts rare damaging variants in APOA1, CUBN, 
SCARB1, CES3, SOAT2, AMN, LIPC, LDLRAP1, NCEH1, HMGCS1, SREBF1, and SREBF2, 
and rare LoF variants in complement genes, including C3, C6, C7, C8A, C9, C1QC, CFB, 
and CFD, to have trait-increasing e9ects on CAD.  E. NERINE identified 13 gene modules 
with significant rare LoF variant burden in MI, broadly grouped into four classes – 
inflammatory response, extracellular matrix proteins and coagulation, regulation of 
transcriptional activity, and the MAPK signaling cascade. One representative pathway per 
group is shown. NERINE newly implicated rare LoF variants in several genes involved in 
blood clotting, myocardial remodeling, apoptosis, inflammatory response, vascular 
calcification, calcium regulation, and retinoic acid signaling.  Trait-increasing e9ects are 
represented by di9erent shades of orange and trait-decreasing e9ects are represented by 
di9erent shades of blue as shown on the scale. Darker color represents more pronounced 
e9ect.  
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Figure 5. NERINE selects the most informative data source and context describing 
gene-gene relationships. A. For core HDL-cholesterol-related genes, NERINE 
competitively selects co-expression in the liver tissue as the most informative source 
among three data sources describing the edge relationship of genes—(i) high-confidence 
physical or genetic interactions from protein-protein interaction (PPI) databases, (ii) co-
expression in a specific tissue from GTEx v8, and (iii) co-essentiality in liver cell lines from 
DepMap. For each data source, NERINE assessed the enrichment of rare damaging 
variants in core HDL-related genes in individuals with low HDL (bottom 10%) as compared 
to individuals with high HDL (top 10%) in the UK biobank (UKBB). We achieved the most-
significant p-value with the co-expression network suggesting that co-expression might 
provide the most accurate representation of the relationship of these genes. Trait-
increasing e9ects are represented by di9erent shades of orange and trait-decreasing 
e9ects are represented by di9erent shades of purple as shown on the scale. Darker color 
represents more pronounced e9ect in each direction. For co-expression and co-
essentiality networks in A, positive correlation between two genes is indicated by red edges 
and negative correlation is indicated by blue edges. The thickness of the edge corresponds 
to the strength of the correlation. The edges in the physical and genetic interactions 
network do not represent correlations but binary relationships and are therefore colored in 
gray. B. NERINE identifies liver as the most informative tissue context for the core HDL-
related gene module among all tissue types in GTEx. For all 52 tissue types in GTEx, we 
extracted the co-expression network relationships for the core module of HDL-related 
genes. We tested each network topology for the enrichment of rare damaging variants in 
low HDL vs high HDL individuals in UKBB with NERINE. Our method achieved the most 
significant p-value with the co-expression network in liver tissue. 
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Figure 6. NERINE identifies networks enriched in rare qualifying variants in Parkinson’s 
disease (PD) patients. A. Schematic diagram indicates a three-pronged approach for 
interrogating PD pathophysiology using NERINE. Network hypotheses were generated 
based on (i) known GWAS genes, (ii) essentiality genes for dopaminergic (DA) neurons, and 
(iii) $-Synuclein ($S) toxicity modifier genes. Among GWAS genes, we identified six GO 
biological process (BP) modules; from essentiality genes, we identified 10 GO BP modules, 
and from the TransposeNet humanized $-Synuclein modifier gene network, we tested 17 
subnetworks. For GO biological process modules identified from GWAS and DA essentiality 
genes, we tested the edge relationships based on i) high-confidence physical or genetic 
interactions from PPI databases; ii) co-expression of genes in the substantia nigra region of 
the mid-brain, and iii) co-essentiality of genes in cell lines from central nervous system 
(CNS) in the DepMap database (see Methods). For $S modifier genes, we directly used the 
TransposeNet network topology57. B. GWAS genes enriched in the GO biological process 
module related to Peptidyl-threonine modification show significant rare LoF variant (i.e., 
frameshifts, insertions, deletions, and splice variants) burden in sporadic PD cases 
compared to controls in two independent datasets: AMP-PD and UK Biobank (UKBB). Co-
essentiality in CNS cell-types provided the most informative edge relationships for this 
module. Notably, rare LoF variants in LRRK2 shows an overall trait-decreasing e9ect which 
aligns known biology (whereby LRRK2 gain-of-function mutations are considered 
detrimental), serving as a positive control. C. In sporadic PD cases compared to extreme 
controls (controls with age >= 85) in both the AMP-PD and UKBB, there is screen-wide 
significant burden of rare damaging variants (i.e., predicted damaging missense variants, 
frameshifts, insertions, deletions, and splice variants) in the GO biological process module 
related to the regulation of autophagy. Co-essentiality in CNS cell-types provided the most 
informative edge relationships for this module. D.  A LRRK2-SNCA-containing protein 
traUicking and homeostasis-related subnetwork of $S-modifier genes show screen-wide 
significant burden of rare damaging missense variants in sporadic PD cases compared to 
controls in both AMP-PD and UKBB datasets. For B, C, and D, screen-wide significance 
was determined by applying Bonferroni correction over the Fisher combined p-values. The 
absence of enrichment of neutral missense and synonymous variants in the networks 
served as an internal control. In each scenario, trait-increasing e9ects are represented by 
di9erent shades of orange and trait-decreasing e9ects are represented by di9erent shades 
of purple as shown on the scale. Darker color represents more pronounced e9ect in each 
direction. For co-essentiality networks in B and C, positive correlation between two genes 
is indicated by red edges and negative correlation is indicated by blue edges. The thickness 
of the edge corresponds to the strength of the correlation. The edges in the TransposeNet 
module in D do not represent correlations but binary relationships and are therefore 
colored in gray. 
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Figure 7. Unbiased functional genomics screens converge on an intraneuronal SNCA-
PRL stress response. A. Top: Timeline of CiS-CN di9erentiation. Bottom: iPSCs were 
transduced to overexpress either mCherry (control) or SNCA-mCherry, generating 
the SNCA-endo1 and SNCA-high lines, respectively. At DIV0, neurons were transduced 
with the sgRNA library. Neuronal samples were harvested and sequenced at DIV3, DIV28, 
and DIV42 using next-generation sequencing.	Comparison 1 shows the comparison of the 
sgRNA frequencies in DIV42 SNCA-high neuron vs DIV42 SNCA-endo neurons. Comparison 
2 compares the sgRNA frequencies of SNCA-endo neurons in DIV42 vs DIV28. Comparison 
3 compares the sgRNA frequencies of SNCA-high neurons in DIV42 to DIV28. B. Left: PRL 
sgRNA containing neurons dropped out in Comparison 1, indicating PRL knockdown was 
toxic to SNCA-high neurons compared to SNCA-endo1 neurons. Middle: No significant 
drop-out in PRL sgRNA containing neurons was observed in Comparison 2, indicating PRL 
knock-down was non-toxic to DIV42 SNCA-endo neurons compared to DIV28 SNCA-endo 
neurons. Right: PRL sgRNA containing neurons dropped out in Comparison 3, indicating 
PRL knockdown was toxic to DIV42 SNCA-high neurons compared to DIV28 SNCA-high 
neurons. C. Left: Immunostaining data shows prolactin was upregulated in DIV7 SNCA-
high neurons (n=3, one-way ANOVA). Right: Representative images acquired with Nikon 
Eclipse Ti microscope, with solar power at 10%, 50ms exposure time for prolactin. Scale 
bar: 20um. D. PRL knockdown was validated with two di9erent PRL sgRNAs from the 
screen library (n=3, one-way ANOVA). DIV0 SNCA-high neurons were transduced with 
either control sgRNA, or PRL sgRNA at MOI=5. At DIV7, neurons were stained with prolactin 
antibody and Hoechst. Images captured with Nikon Eclipse Ti microscope. Prolactin 
intensity per neuron is reported here. E. Immunostaining data shows prolactin-
upregulation was diminished in DIV28 SNCA-high neurons (n=3, one-way ANOVA). Images 
were captured with Nikon Eclipse Ti microscope, with solar power at 30% and 30ms 
exposure time for prolactin. F. Immunostaining data shows prolactin-upregulation was 
diminished in DIV28 SNCA-high neurons treated with PFF (n=3, one-way ANOVA). Images 
were captured with Nikon Eclipse Ti microscope, with solar power at 30% and 30ms 
exposure time for prolactin. G. Left: Illustration of PFF-induced mouse model. Amygdala 
tissue, micro-dissected from mice and injected with ɑS PFFs, was subjected to 
transcriptomic analysis using the NanoString Neuropathology panel (see Methods).  Right: 
In comparison to PBS-injected control animals which showed no pS129 positive inclusions 
across all brain regions, PFF-injected mice showed a 16.6-fold downregulation of Prl mRNA 
expression in the amygdala region ipsilateral to the site of injection (n=5 per group; 3 
males/2 females). H. CellRox assay shows that, with menadione treatment, oxidative 
stress in DIV28 SNCA-high neurons was significantly higher than in others of the same age 
(n=3, two-way ANOVA). I. Top: Timeline of exogenous prolactin assay. Bottom: CellRox 
assay shows that exogenous prolactin significantly decreased menadione-triggered 
oxidative stress in DIV7 SNCA-OE neurons (n=3, two-way ANOVA). 
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