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Abstract—Goal: To investigate whether a deep learn-
ing model can detect Covid-19 from disruptions in the
human body’s physiological (heart rate) and rest-activity
rhythms (rhythmic dysregulation) caused by the SARS-
CoV-2 virus. Methods: We propose CovidRhythm, a novel
Gated Recurrent Unit (GRU) Network with Multi-Head Self-
Attention (MHSA) that combines sensor and rhythmic fea-
tures extracted from heart rate and activity (steps) data
gathered passively using consumer-grade smart wearable
to predict Covid-19. A total of 39 features were extracted
(standard deviation, mean, min/max/avg length of seden-
tary and active bouts) from wearable sensor data. Biobe-
havioral rhythms were modeled using nine parameters
(mesor, amplitude, acrophase, and intra-daily variability).
These features were then input to CovidRhythm for pre-
dicting Covid-19 in the incubation phase (one day before
biological symptoms manifest). Results: A combination of
sensor and biobehavioral rhythm features achieved the
highest AUC-ROC of 0.79 [Sensitivity = 0.69, Specificity
= 0.89, F0.1 = 0.76], outperforming prior approaches in
discriminating Covid-positive patients from healthy con-
trols using 24 hours of historical wearable physiological.
Rhythmic features were the most predictive of Covid-19
infection when utilized either alone or in conjunction with
sensor features. Sensor features predicted healthy sub-
jects best. Circadian rest-activity rhythms that combine
24 h activity and sleep information were the most disrupted.
Conclusions: CovidRhythm demonstrates that biobehav-
ioral rhythms derived from consumer-grade wearable data
can facilitate timely Covid-19 detection. To the best of our
knowledge, our work is the first to detect Covid-19 using
deep learning and biobehavioral rhythms features derived
from consumer-grade wearable data.

Index Terms—Biobehavioral rhythms, Covid-19, deep
learning, passive assessment, multi-head self attention,
physiological signs.

Impact Statement—CovidRhythm demonstrates that
biobehavioral rhythms that combine physiological (heart
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rate) and rest-activity rhythms can be facilitate early Covid-
19 detection, and has the potential to improve passive mon-
itoring of Covid-19.

I. INTRODUCTION

COVID-19 is an infectious disease caused by the Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) [1]. Covid-19 was unknown before its first outbreak in Wuhan,
China, in late December 2019 and was declared a global pan-
demic by the World Health Organization (WHO) on March
11, 2020 [2]. Covid-19 vaccinations were introduced in early
2021, significantly reducing adverse outcomes including non-
Intensive Care Unit (ICU) hospitalizations and deaths by 63.5%
and 69.5% respectively in United States [3]. However, vaccina-
tion faces several challenges as an intervention. Some subjects
are unwilling to receive Covid-19 vaccines for various reasons
including its perceived safety [4] and religious beliefs [5]. Due
to its fast transmission rate, the Covid-19 pandemic highlighted
the need for early detection of viral infections to facilitate timely
public health interventions, clinical management and disease
spread.

Most living organisms have an internal biological clock and
bio-rhythms that regulate their physiological functions, includ-
ing performance, sleep, rest-activity cycles, and mood. The
biological clock is controlled by the human brain and ensures
synchrony between an organism’s external and internal envi-
ronment, which is critical to the well-being and survival of an
organism [6]. A lack of synchrony can have significant health
ramifications [7]. Based on the periodicity with which these
bio-rhythms reoccur, they can be categorized as ultradian (<
24 hrs), circadian (= 24 hrs), or infradian (> 24 hrs). Persis-
tent disruption of a human being’s rhythms is associated with
various health conditions including cardiovascular disorders [8],
psychiatric and neurodegenerative disease [9], obesity [10], and
depression [11]. The link between circadian rhythms and viral
diseases has previously been established by [12], [13]. Recent
studies have found that viruses, including SARS-CoV-2, disrupt
circadian regulation in order to enhance their replication [14].
Viruses invade host cells bound to angiotensin-converting en-
zyme II (ACE), which displays circadian expression patterns in
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Fig. 1. Daily rhythm of RHR for Subject A0VFT1N when (a) Healthy (b) Covid-Positive. Average profile of RHR and steps over all days (Healthy
vs Infected) is depicted.

tissues from which it is released. Over-expression of the ACE2
enzyme increases the replication of SARS-CoV-2, resulting in
symptom severity [15].

Actigraphy devices have been widely employed in healthcare
and in chronobiology, facilitating the understanding of circadian
rhythms, sleep-wake cycles or rest-activity cycles and their
relationship with various health conditions [16], [17], [18].
Widely-owned mobile devices and smart wearables can now
passively monitor physiological data such as heart rate, physical
activity, sleep, and body temperature, which has paved the
way for passive, continuous monitoring and study of circadian
rhythms and ailment-specific disruptions without requiring spe-
cialized research-grade equipment [19]. It is important to note
that while ailment-specific tests are often invasive and require
visits to the clinics, the disruptions in circadian rhythms caused
by such ailments can be measured by consumer grade wearables,
facilitating low burden monitoring outside the clinic.

The overarching goal of this paper is to explore the de-
tectability of Covid-19 infection using deep learning approaches
using biobehavioral rhythm features derived from wearable data.
Prior research and studies about Covid-19 assessment using
circadian rhythms derived from wearable data have mainly fo-
cused on: I) Establishing statistical relationships between Covid-
19 and circadian rhythms [20], [21], II) Exploiting circadian
rhythms to improve the clinical management of Covid-19 [22],
and III) Investigating the impact of lifestyle changes (lock-
down, social distancing) during Covid-19 pandemic on circadian
rhythms [23], [24], [25]. Only Mayer et al. [26] previously
studied the impact of heart rate circadian rhythms on machine
learning prediction of Covid-19, finding that circadian phase
uncertainty is a strong predictive attribute for pre-detection of
Covid-19 infection. However, their study only focused on heart
rate circadian rhythms and trained the model on a balanced
dataset by focusing on parameter classification between spe-
cific windows. Moreover, their training dataset did not contain
participants who were healthy throughout the study duration
(healthy controls) [27]. Our work is different in that we aim to
detect Covid-19 infection using biobehavioral rhythm features
derived from heart rate and rest-activity (sleep-wake) data, train-
ing the model on an imbalanced dataset with unequal numbers
of healthy and infected subjects. To mitigate balance class

distributions, minority class samples were replicated, an ap-
proach demonstrated to be effective by prior studies. Deep
learning was also employed, which typically outperforms tra-
ditional machine learning for most tasks as long as adequate
data is available. Although some of the existing work studies
abnormal physiological signs captured from consumer-grade
smart wearables for Covid-19 detection [28], [29], [30], our
work is the first to utilize biobehavioral rhythms (broadly in-
cludes cyclic physiological (heart rate), psychological (mood),
environmental (weather), and rest-activity patterns [31]) derived
from consumer-grade wearables for the passive detection of
Covid-19.

Fig. 1 shows the daily average Resting Heart Rate (RHR)
and steps profile of a subject when healthy (thin line) and
Covid-positive (bold line). During nighttime (12:00 AM to 8:00
AM), the subject’s RHR decreases when infected vs. healthy. A
sudden disruption is apparent for the rest of the day, highlighting
the misalignment in the RHR rhythm. Similarly, Fig. 1(b) shows
a decrease in the amount of physical activity. Even though the
subject aimed to perform physical activity, a drastic decrease can
be observed in the step counts over the day. These findings were
further established from actograms of the rest-activity patterns
(See Fig. 2). When healthy, the subject displayed a distinct and
regular day-night pattern, with more activity being displayed
during the day than night (see Fig. 2(a)). However, when in-
fected, this distinction and regularity were less apparent. Patients
also exhibited some daytime napping and decreased physical
activity. These observations provide preliminary qualitative ev-
idence that Covid-19 infection disrupts the physiological (heart
rate) and rest-activity rhythms. The rest of the paper focuses
on determining whether these disruptions can be leveraged to
predict Covid-19 infection using a neural networks model.

We propose CovidRhythm, a novel neural networks model
for passively detecting Covid-19 from wearables data.
CovidRhythm builds on prior work [20], [21], [32], [33] that has
demonstrated qualitative and associative statistical relationships
between bio-rhythms and Covid-19. CovidRhythm analyzes
hourly heart rates and step data, gathered passively using a Fitbit
wearable. A total of 39 sensor features were extracted including
those that captured resting heart rate (standard deviation and
slope) and physical activity (total number of active bouts, length
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Fig. 2. Double plot of circadian rest activity rhythm for subject A0VFT1N when (a) Healthy (b) Covid-19 Positive. Day 1 and Day 2 are plotted
consecutively (48 h) and beneath one another to enhance visualizations of the patterns.

Fig. 3. Workflow of our approach for Covid-19 classification using a fusion of Sensor and Rhythmic Features. The Heart rate and steps
measurements over a day are first preprocessed, followed by features extraction using overlapping windows. The extracted features were further
used to extract the bio-behavioral rhythmic features. Both features sets are then concatenated and utilized for final prediction.

of sedentary and active bouts, total steps when physically active).
Additionally, biobehavioral rhythmic features were extracted
including mesor, amplitude, M10, L5. These features were then
input to CovidRhythm to identify each subject as healthy or
infected during the incubation period (one day before symptom
onset). CovidRhythm utilizes a Gated Recurrent Unit (GRU) to
learn temporal patterns in sensor features, followed by a Multi-
Head Self Attention (MHSA) module that combines information
in different parts of an input sequence, yielding richer and more
predictive representations. CovidRhythm then concatenates the
resultant output with rhythmic features, which is utilized for
the final prediction. In our evaluation using five-fold cross-
validation with subject-wise splitting, CovidRhythm achieved
an average Area Under the Curve (AUC) of 0.79, with 0.69
sensitivity and 0.89 specificity. Rhythmic features were the most
predictive of Covid-19 infection when utilized either alone or
in conjunction with sensor features. Sensor features predicted
healthy subjects best. Covid-19 affected circadian rhythms,
which repeat every 24 hours, the most. Rest-activity rhythms,
which combines activity and sleep information, were the most

disrupted, reflecting the sedentary behaviors and irregular sleep
patterns of subjects once infected. The rest of the paper is as
follows: Section II describes our methodology including an
overview of the dataset, pre-processing techniques, feature ex-
traction, and classification. Section III evaluates CovidRhythm,
and Section IV highlights important findings, future work and
limitations of the study. Section V concludes the paper.

II. MATERIALS AND METHODS

This section describes CovidRhythm, our proposed deep
MHSA-based GRU neural network for capturing disruptions in
biobehavioral rhythms for the purpose of detecting Covid-19
infection. Fig. 3 provides a general overview of our proposed
approach.

A. Covid-19 Dataset

We analyzed a dataset previously gathered by Mishra et al.
that explored early detection of Covid-19 using physiological
data gathered from a smartwatch [34]. The study enrolled 5,262
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Algorithm 1: Calculating Resting Heart Rate (RHR).
Input: Heart Rate: h1 . . . hT and Step : s1 . . . sT
Output: RHR (Resting heart rate)
1: function Resting heart ratehr[ ], s[ ]
2: RHR← null
3: T ← length(hr)
4: pre_hr← 0
5: for k ← 1 to T do
6: Sum← 0
7: for m← k to k + 5 do
8: Sum← Sum+ s[m]
9: if Sum == 0 then

10: RHR[k] = h[k]
11: pre_hr = h[k]
12: else
13: RHR[k] = pre_hr
14: return RHR

participants, out of which 3325 used a Fitbit, 984 used an Apple
device, 428 reported using a Garmin device and the remaining
used other devices, including Oura Ring, BioStrap, Empatica.
Since most enrolled participants used Fitbit, the study gathered
data from only Fitbit users and had 70 healthy, and 25 Covid pos-
itives individuals. For creating a labeled dataset, we randomly
selected a 24-hour interval starting from 00:00 to 23:59 from
healthy subjects and labeled them as healthy. In contrast, one day
before symptom onset date was selected as an infected sample.
Since the number of healthy and infected subjects was highly
imbalanced, the infected samples were replicated to the number
of healthy samples [35] to guide the detection model weighted
in favor of the minority class.

B. Pre-Processing

First, Resting Heart Rate (RHR) was computed, defined as
the user’s heart rate when they were inactive for a sufficiently
long time [36]. RHR is considered to be the true representation
of cardiac health as it is not influenced by any external factor
such as physical activity. Algorithm 1 shows our pseudocode for
calculating the Resting Heart Rate (RHR). For all timestamps
(Line 5), we summed the steps over the next five minutes
(Line 6–8). If the subject is inactive (steps count is zero), we
consider the heart rate as resting heart rate. If the steps are
greater than zero, the last recorded RHR value is considered
as the current RHR (Line 13). Data from all days that had
missing values exceeding 10% of overall readings on that day
were discarded. As Fitbit Charge 3 & 4 needs about 1-2 hours
to charge [37], the threshold of 10% was set to preclude the
case of missing values that were generated only because the
devices were removed for charging. For the remaining days,
missing values were filled using linear interpolation given as:
f(x) = f(x0) +

f(x1)−f(x0)
x1−x0

(x− x0) (Supplementary Table I).
To synchronize multiple data streams, we resampled the RHR
to a one-minute resolution, and then aggregated using step data

based on the RHR timestamp. Finally, we used the simple mov-
ing average SMAn =

∑n−1
t=n−T

xt

T to smooth the time series
data over 24 h period.

Segmentation: The raw sensor data was segmented into 60-
minute windows with a 50% overlap of consecutive windows.
The impact of various overlapping sizes on performance will be
studied in Section III.

C. Feature Extraction

CovidRhythm analyzes two types of features. I) Sensor
II) Biobehavioral Rhythmic. This section provides a general
overview of the features extracted with their mathematical ex-
pressions described in Table I.

1) Sensor Features: Statistical and behavioral features of
RHR, and steps, motivated by prior work by Doryab et al. [31],
[38] and Singh et al. [39], were extracted from raw Fitbit sensor
data.

� Resting Heart Rate (RHR): 21 features including
i) Mean ii) Median iii) Variance iv) Standard deviation
v) Interquartile Range (IQR) vi) Range vii) Skewness
viii) Kurtosis ix) Second Momentum x) Entropy xi) Slope
xii) Max., Min., and average positive change xiii) Max.,
Min., and average negative change xiv) Max., Min., and
average absolute change, and xv) No change

� Steps: 18 features including i) Total no. of steps ii) Average
no. of steps iii) Standard Deviation iv) Variance v) Entropy
vi) Max. no. of steps taken in any 5-minute interval vii)
Total no. of active bouts viii) Total no. of sedentary bouts
ix) Max., Min. and average length of active or sedentary
bout x) Min., Max., and average no. of steps over all active
bouts and xi) Slope.

2) Biobehavioral Rhythmic Features: We used the Cosi-
nor [40] for rhythm analysis due to its ability to: I) Model both
equidistant and non-equidistant data, and II) Provide means
to estimate the rhythmicity parameter that we used further in
our deep learning model. Based on the trigonometry regression
model, Cosinor presents a fundamental method that obtains
an estimate of the Midline Statistic of Rhythm (MESOR), the
amplitude, a measure of phase (acrophase) for the chosen period
using cosinor curve fitting. When the period is known, the model
is defined as:

y(t) =

N∑
i=1

(
Ai,1 ∗ sin

(
t

P/i
.2π

)
+Ai,2 ∗ cos

(
t

P/i
.2π

))

+M + e(t)

where t corresponds to the time points to be observed within
the time series, N is the number of components, M is MESOR,
P is the observed period, e(t) is the error term, and Ai,1

and Ai,2 are the parameters of the model. If the period is
unknown, different feasible ranges can be evaluated to identify
the optimal period. We employed CosinorPY [41], a publicly
available Python implementation of cosinor-based methods for
rhythmicity detection. For each sensor feature, we extracted nine
biobehavioral rhythmic features for the period of 24 h, given as:

� MESOR is the midline of the oscillatory function and refers
to the mean daily activity.



SARWAR et al.: COVIDRHYTHM: A DEEP LEARNING MODEL FOR PASSIVE PREDICTION OF COVID-19 25

TABLE I
LIST OF SENSOR AND BIOBEHAVIORAL RHYTHMIC FEATURES EXTRACTED

� Acrophase is the time when the rhythm reaches its maxi-
mal value for the first time in the cycle.

� Amplitude refers to the maximum value a rhythm can rise
above or below the mesor.

� Relative Amplitude is defined as the amplitude of the
circadian rhythm model divided by mesor.

� Multi-Scale Entropy (MSE): calculates the pearson’s sam-
ple entropy, a measure of the complexity of time series
data, at different time scales.

� Most Active 10 h (M10) and Least Active 5 h (L5): M10
refers to the mean activity during the most active 10 h,
while L5 represents the mean activity during the least
active 5 h.

� Rest activity Relative Amplitude (RA): is defined as the
difference between a person’s daily activity (M10) and
nocturnal activity (L5).

� Intra-daily Variability (IV): is a measure of circadian
disturbance, namely, capturing how activity level shifts
between two consecutive hours.

D. Feature Selection

As previously described, we extracted 39 sensor features from
heart rate and steps data collected using smart wearables. For
each sensor feature, we further computed nine rhythmic features,
resulting in total of 39× 9 = 351 features which is quite large
compared to the relatively few data samples for training. We
thus used Mutual Information (MI, also referred as Information
Gain) [42] to select the most relevant features for predicting
the target variable. MI quantifies the amount of information
contained by features with respect to the target variable as
I(X,Y ) = H(X)−H(X|Y ) where where X and Y are two
random variables, I(X,Y ) is the MI for X and Y , and H(X)

is the entropy of X . For both sensor and rhythmic features, we
selected ten features (discussed in Section III) with the highest
information gain, leaving the following features:

1) Rhythmic Features:
� Resting Heart Rate: M10 for RHR Skewness, M10 for

RHR Max Positive Change
� Step: Intra-daily Variability for Total Steps taken, Average

Steps taken, and Standard Deviation, MSE for Variance,
L5 for Max Sedentary Bout length, Relative Amplitude for
Average Sedentary Bout length, Mesor and L5 for Slope.

2) Sensor Features:
� Resting Heart Rate: Mean, Median, Slope, Min Positive

Change, Max Positive Change, Min Negative Change,
Average Negative Change, Min Absolute Change

� Step: Max Steps taken in any 5-min interval, and Max
Steps taken in active bout.

E. Model Architecture

An overview of CovidRhythm architecture is shown in Fig. 4.
The model analyzes input sensor features of a whole day seg-
mented into hourly intervals with 50% overlap between adjacent
segments, yielding a tensor of shape 47 X 10, where 47 refers
to the number of timestamps utiilized, calculated by segmenting
raw sensor data collected over a day into 60-minute windows
with 50% overlap between consecutive windows, and ten sensor
features selected per timestamp. The input is passed from a
single Gated Recurrent Unit (GRU) [43] layer, in order to learn
temporal dependencies between timestamps. A GRU was se-
lected as they I) Learn rare content better such as abnormal phys-
iological signs that occur for very short time periods and have
values that have very slight differences from baseline values. II)
Can outperform other temporal neural networks architectures
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Fig. 4. Architecture of CovidRhythm.

TABLE II
COVIDRHYTHM VS. BASELINES (SENS. REFERS TO SENSITIVITY, SPEC. TO SPECIFICITY AND AUC TO AUC-ROC)

(LSTM, RNN) in terms of speed of convergence, and general-
ization [44]. In time series data, not every data point has the same
importance. Especially in terms of vital signs, medical practi-
tioners generally examine only critical measurements rather than
reviewing all points. Multi-Head Self-Attention (MHSA) [45]
learns different weighted representations of data inputs, i.e., the
most important dependencies to achieve high attention scores,
suppressing irrelevant information. Consequently, an MHSA
is employed right after the GRU layer in order to learn the
most important datapoints for making the final prediction. The
resultant output is concatenated with the rhythmic features (1
X 10), and passed through two fully connected layers, followed
by dropout (0.25), to estimate the joint representation of sensor
and rhythmic features. Finally, the sigmoid is used to produce
the final output, i.e., whether the subject is infected or healthy.

III. EVALUATION AND RESULTS

A. Comparing CovidRhythm to Baselines

CovidRhythm was compared to eight baseline models that
have previously been utilized to predict infection from physio-
logical signs. CovidRhythm outperformed all baselines with an

AUC-ROC of 0.79, a sensitivity of 0.69, a specificity of 0.89,
and an F0.1 score of 0.76 when trained with an overlap of 50%
among consecutive windows (See Table II, and supplementary
Fig. 3). We observed that overlapping sizes are associated with
an improved performance, which in our case increases by 0.05
for AUC-ROC and sensitivity, 0.06 for specificity, whereas a
significant increase was seen in F0.1, which increases from 0.64
to 0.76 when the model is trained with no vs. 50% of overlapping.
For some metric, the performance of a few learning algorithms
were comparable to that of CovidRhythm. For instance, Gradient
Boosting achieved an AUC-ROC of 0.78, sensitivity of 0.78,
and specificity of 0.79 when trained with an overlap of 25%
between two consecutive windows. However, when comparing
the precision, recall, and F0.1 of all the algorithms, we found that
although Gradient Boosting performed close to CovidRhythm’s,
a significant difference was observed in the F0.1 score, with the
former achieving an F0.1 of 0.6. In comparison, CovidRhythm
achieved the highest F0.1 score of 0.76.

B. Feature Importance

Fig. 5 highlights the top 25 most important rhythmic fea-
tures, computed by Mutual Information (MI). Disruption in
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Fig. 5. Top 25 Rhythmic Features. The top 10 Features (Shown in Blue) are utilized by CovidRhythm for Prediction. RA = Relative Amplitude,
Sed. = Sedentary, Act. = Active, and Chng = Change.

Fig. 6. Effect of Different Numbers of Sensor Features selected by Mutual Information on the performance of CovidRhythm.

rest-activity rhythms was the most prominent, as 20 of the top 25
features were related to the disruption in rest-activity rhythms. In
contrast, only five relate to physiological rhythms (resting heart
rate). The findings implied that although Covid-19 infection
affects both physiological and rest-activity rhythms, the latter
are more predictive of the infection.

C. Dimension Reduction

In order to achieve the best possible results, it was necessary
to select the optimal number of features to input to the model.
Mutual Information (Section II-D) was utilized to reduce the
dimensions of the feature space. Result in Fig. 6 show that the
optimal performance was achieved when 10 sensor features were
used. Subsequently, we utilized only 10 rhythmic features for
training CovidRhythm.

D. Contribution of Rhythmic Features

To drill down further into the importance of biobehavioral
rhythmic features for passive identification of Covid-19, we
trained CovidRhythm and baseline models on combinations of
sensor and rhythmic features (See Table III for detailed results,
and supplementary Fig. 1–3 showing confusion matrices). We

observed that rhythmic features significantly impacted perfor-
mance when used alone or in combination with sensor features.
All classifier types could accurately use sensor data to identify
healthy subjects; however, they fail to predict Covid-19 infected
samples. However, rhythmic features were more predictive of
infection. After fusing the sensor data with rhythmic features,
CovidRhythm outperformed all combinations. When trained
on sensor + rhythmic features, the performance of traditional
machine learning algorithms dropped due to their inability to an-
alyze time series data. On the other hand, when they were trained
only on rhythmic features, their performance was comparable
to CovidRhythm. Naive Bayes achieved the highest sensitivity
of 0.75 among all the algorithms and combinations; however,
it obtained the F0.1 of 0.51, indicating a high false positive
rate.

E. Evaluation of the Effects of Different Numbers of
Heads

In this section, we aimed to evaluate how the different number
of heads in MHSA influence the performance of CovidRhythm.
Fig. 7 showed the results when trained with 0, 1, 2, 4, and 8 heads,
where 0 refers to not implementing the multi-head attention. We
found that I) Using no MHSA head produced the worst results,
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TABLE III
RESULTS OF COVIDRHYTHM VS BASELINES ON COMBINATIONS OF SENSOR AND RHYTHMIC FEATURES

Fig. 7. Value of Evaluation Metrics (Sensitivity, Specificity, AUC-ROC,
and F0.1) for Various Numbers of Heads in Multi-Head Self Attention.

indicating that MHSA was necessary to capture relationships
between inputs, II) Optimal performance was achieved when
CovidRhythm was trained using two MHSA heads, implying
that input data were related with each other in 2 aspects, and III)
Beyond two heads, performance reduced indicating that MHSA
heads were becoming redundant as no additional relationships
could be leveraged between the data inputs. As the data points
contribute unequally in making the final predictions from time-
series data, determining the best representations for employing
MHSA boosted performance.

F. Sub-Sequence Resolution

CovidRhythm aims to predict Covid-19 infection from heart
rate and steps measured over 24 h, segmented into hourly
windows with 50% overlapping, yielding 48 segments. In this
analysis, we aim to determine whether using the entire se-
quence of 48 segments achieves the highest performance or if
there exist a sub-sequence length/resolution that can achieve
better/same results. We trained CovidRhythm on a time series
of different sub-sequence lengths, i.e., length = 1, 2, 3, . . ..47,
to determine the optimal length. Fig. 8 provides the results as

Fig. 8. Value of Evaluation Metrics (Sensitivity, Specificity, AUC-ROC,
and F-Beta(0.1)) for Different Sub-Sequence Lengths.

a function of different sub-sequence resolutions. We observed
that CovidRhythm achieved the highest metric values at the
sub-sequence length of 1, 46, and 47. However, even though
the performance is promising in terms of sensitivity, specificity,
and AUC-ROC at the length of 1, the F0.1 is low, suggesting
that CovidRhythm is generating too many false positives. We
found that the ideal sub-sequence length is either 46 or 47. The
selection of appropriate sub-sequence resolution varies greatly
with the question: “What is more important - identifying healthy
subjects or infected ones?”. We selected 47 as the sub-sequence
resolution as it has more stable performance in terms of correctly
identifying the healthy subjects and F0.1.

G. Rhythm Periodicity

Based on their patterns of reoccurrence, bio-behavioral
rhythms are categorized as ultradian, circadian, and infradian. To
investigate which rhythms were more disrupted by Covid-19 in-
fection, we trained CovidRhythm on features extracted over 24 h,
48 h, and 96 h period. Fig. 9 shows the results of CovidRhythm
when trained with rhythmic features extracted over three peri-
ods. The results show that for Covid-19 patients, the variations in
circadian rhythms are the most obvious ones. We speculate that
this is because heart rate and rest-activity/sleep-wake rhythms
undergo marked fluctuations over the 24-h day [46], [47] com-
pared to 48hr and 96hr, conveying more meaningful information
in terms of rhythm disruption.
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Fig. 9. Performance of CovidRhythm as a Function of Different Inter-
vals for Measuring Rhythmicity.

IV. DISCUSSION

Main Findings: Consumer-grade wearables have opened up
new opportunities for the passive assessment of Covid-19 at
scale. Even though the reliability of these wearables compared to
clinical-grade wearables, has always been questioned, the recent
literature demonstrates that they can be a valuable resource for
analyzing bio-rhythms. This study analyzed the biobehavioral
rhythms extracted from heart rate and steps measurements cap-
tured using Fitbit to predict Covid-19 infection.

Rhythmic Features were predictive of Covid-19 infection: In
contrast, sensor features (RHR Mean/Entropy/Slope, Max/Min
positive change in RHR, Max. no. of steps taken in 5-min
interval, Max steps taken in active bout) were more effective in
identifying healthy subjects. We speculate that this was probably
linked with the low Recall (Sensitivity) achieved by prior studies
in which one type of sensor data (heart rate, and steps) was
collected passively in the wild and employed to predict Covid-19
infection. When sensor and rhythmic features were combined
and used for training CovidRhythm, the sensor features identified
healthy subjects accurately, while rhythmic features (M10 for
RHR Skewness and Max Positive Change, IV for Total Steps
taken and average Steps taken) contributed in predicting Covid-
19 cases, jointly achieving an F0.1 score of 0.76, sensitivity of
0.69, and specificity of 0.89.

Covid-19 infection disrupts Rest-Activity Rhythms the most:
As computed using Mutual Information, the top three most
important rhythmic features were related to physical activity
(steps), i.e. L5 and MESOR of steps slope, and IV of steps STD.
This captures the fact that infected people get less physically ac-
tive and exhibit a more irregular sleep schedule, disrupting their
rest-activity rhythms. These disruptions are the most prominent
ones and predict Covid-19 more effectively than abnormalities
in heart rate rhythms.

Circadian Rhythms were the most disrupted rhythms by
Covid-19: The recurrence of rhythms can range from less or
greater than 24 hours up to days, months, and even years.
Our experiments revealed that lack of rhythms seen during the
24-hour period was the most accurate for distinguishing the sub-
jects with Covid-19 from healthy controls. This may be because
heart rate and rest-activity/sleep-wake rhythms undergo marked
fluctuations over the 24-h day, thus the circadian rhythm conveys
more meaningful information in terms of rhythm disruption.

Deep learning outperformed traditional machine learning
techniques: In our analysis, we found that I) Due to MHSA’s
ability to compute mulitple weighted representations relevant

to the final prediction, employing MHSA boosted performance,
increasing F0.1 from 0.62 to 0.76, and AUC-ROC from 0.69 to
0.79 when none vs. two heads were utilized. II) Machine learning
techniques performed well on rhythmic features, however, they
did not perform as well when applied on rhythmic+ sensor
features due to their inability to analyze time series data III) Even
in cases where the performance of traditional machine learning
is comparable to that of deep learning, the former achieved a
low F0.1 score depicting a high false positive rate.

Study limitations: Despite the encouraging results and find-
ings, our work had a few limitations. First, all subjects were
Fitbit users and may not be truly representative of the general
population. Second, symptom-onset dates were self-reported,
and may be inaccurate and effect results. Third, although we
utilized a relatively large dataset, the power and generalizability
of our analysis were constrained by the dataset size, presenting
a challenge for the model to accurately learn baseline behaviors
for all subjects. Lastly, other non-Covid factors and conditions
such as influenza, chronic pain, and stress can also confound
biobehavioral rhythms. To strengthen our findings, additional
research with a more diverse dataset is required to distinguish
behavioral rhythmic disruptions caused by Covid from other
non-Covid factors.

Future work: In the future, we aim to investigate the following
ideas: I) Are our results confirmed in a larger, more diverse
dataset that includes Covid-19 positive patients, healthy controls
as well as subjects with infections other than Covid-19? II) Are
the results improved if we employ techniques that are not data-
hungry and can effectively learn from smaller datasets? III) Can
the data from other types and models of wearables reproduce
the same results? IV) Apart from steps and heart rate data, how
well does other modalities such as sleep, body temperature, and
respiration rate perform?

V. CONCLUSION

This paper proposed CovidRhythm, a deep multi-head self-
attention-based gated recurrent unit network to predict Covid-19
from biobehavioral rhythmic features extracted from physiolog-
ical data captured using Fitbit wearables. We extracted 39 fea-
tures from sensor data (heart rate and steps) and combined them
with 351 biobehavioral rhythmic features, to predict Covid-19
during the incubation period (one day before symptom onset).
CovidRhythm achieved an AUC-ROC of 0.79, sensitivity of 0.69,
specificity of 0.89, and F0.1 of 0.76. Variations in biobehav-
ioral rhythms, including rest-activity and physiological (heart
rate) rhythms performed best in identifying Covid-19 positive
cases using physiological data collected passively in-the-wild.
Rhythmic features had the most discriminating power either
used alone or in conjunction with the sensor features. Rhythmic
features were more predictive of infection, while the sensor
features were more predictive of healthy subjects. Circadian
rest-activity rhythms that combine 24 h activity and sleep in-
formation were the most disrupted. In future, using a larger,
more diverse dataset collected from more types of wearables,
we believe CovidRhythm can be utilized for passive assessment
of Covid-19 and ultimately, reducing its spread.
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VI. SUPPLEMENTARY MATERIAL

The supplementary material provides impact of data impu-
tation methods on CovidRhythm, validation protocol, optimal
hyper parameters, confusion matrices (Fig. 1–3) and data set
employed for this study.
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