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Glioblastoma multiforme (GBM) is the most aggressive malignant primary central nervous
system tumor. Although surgery, radiotherapy, and chemotherapy treatments are
available, the 5-year survival rate of GBM is only 5.8%. Therefore, it is imperative to find
novel biomarker for the prognosis and treatment of GBM. In this study, a total of 141
differentially expressed genes (DEGs) in GBM were identified by analyzing the GSE12657,
GSE90886, and GSE90598 datasets. After reducing the data dimensionality, Kaplan-
Meier survival analysis indicated that expression of PTPRN and RIM-BP2 were
downregulated in GBM tissues when compared with that of normal tissues and that
the expression of these genes was a good prognostic biomarker for GBM (p<0.05). Then,
the GSE46531 dataset and the Genomics of Drug Sensitivity in Cancer (GDSC) database
were used to examine the relationship between sensitivity radiotherapy (RT) and
chemotherapy for GBM and expression of PTPRN and RIM-BP2. The expression of
PTPRN was significantly high in RT-resistant patients (p<0.05) but it was not related to
temozolomide (TMZ) resistance. The expression level of RIM-BP2 was not associated with
RT or TMZ treatment. Among the chemotherapeutic drugs, cisplatin and erlotinib had a
significantly good treatment effect for glioma with expression of PTPRN or RIM-BP2 and in
lower-grade glioma (LGG) with IDH mutation. (p < 0.05). The tumor mutational burden
(TMB) score in the low PTPRN expression group was significantly higher than that in the
high PTPRN expression group (p=0.013), with a large degree of tumor immune cell
infiltration. In conclusion, these findings contributed to the discovery process of potential
biomarkers and therapeutic targets for glioma patients.

Keywords: glioblastoma, prognosis, GEO, radiotherapy, chemotherapy, immunotherapy, TMB
INTRODUCTION

An estimated 86,010 new cases of primary brain and other central nervous system (CNS) tumors
were diagnosed in the US in 2019 (1). Glioblastoma multiforme (GBM) is the most common and
aggressive primary CNS tumor (2). Despite the availability of several treatment options, including
surgery, radiotherapy, and chemotherapy, the median overall survival (OS) of GBM remains
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approximately 15 months, and the 5-year survival rate is 5.8%
(3). In 2016, the updated World Health Organization (WHO)
classification was the first to integrate molecular parameters with
histology to define many tumor entities, including GBM (4), thus
formulating a new concept for how GBM diagnoses should be
structured in the molecular era. Although IDH1/2 mutations,
MGMT promoter methylation, and 1p/19q loss have been
recognized as appropriate diagnostic and prognostic markers
(5, 6), patients with GBM still have poor outcomes, with one of
the worst 5-year OS rates among all human cancers (7).
Therefore, it is vital to develop appropriate and effective novel
molecular signatures to improve survival and treatment response
prediction for patients with GBM. With the development of
next-generation sequencing (NGS) technologies, a large amount
of data on differentially expressed genes (DEGs), non-coding
RNAs, and protein modifications have been identified and stored
in public databases. Gene Expression Omnibus (GEO, https://
www.ncbi. nlm.nih.gov/geo/), The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov), and Chinese Glioma
Genome Atlas (CGGA, http://www.cgga.org.cn) provide us
with the opportunity and resources to explore, integrate, and
reanalyze the existing data for new GBM biomarker discovery.

Although genomic analysis of cancers is at the forefront of
drug and molecular pathogenesis discovery (8), much of the
research has focused on biomarkers related to GBM prognosis.
Only a few studies have explored potential therapeutic options
related to novel molecular signatures.

In this study, bioinformatics methods were used, and we
found two potential markers, PTPRN and RIM-BP2, associated
with OS in patients with GBM. Furthermore, our goal was to
provide information for designing radiotherapy and
chemotherapy regimens by monitoring these biomarkers.
MATERIALS AND METHODS

Data Source
The Series Matrix Files for gene expression microarray datasets
were downloaded from the National Center of Biotechnology
Information (NCBI) Gene Expression Omnibus(GEO). GBM
tumor samples smaller than 6 and without normal or adjacent
tumor tissue in GEO data were considered inappropriate samples
in this study. In addition, to rule out interference, samples that
had undergone chemotherapy or radiotherapy were also
excluded.Among them, 3 independent GEO datasets,
GSE12657, GSE90886, and GSE90598, including 7 samples of
GBM and 5 samples of normal brain tissue, 9 samples of GBM
and 9 samples of normal brain tissue, and 16 samples of GBM
and 7 samples of normal brain tissue, respectively, were included.
The dataset was based on the GPL8300, GPL15207, and
GPL17692 platforms of the Affymetrix Human Genome U133
Plus 2.0 Array (Affymetrix, Santa Clara, CA, United States).
Then, gene profiles were standard normalized by spatially variant
apodization (SVA) within and among samples. To analyze the
sensitivity of radiotherapy based on hub genes, the Gene
expression microarray dataset GSE46531, which is only
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qualified and relevant data, was extracted for subsequent
analysis. Glioma stem cell(GSC)culture lines were established
from fresh GBM tumors. Treatment-resistant clones, including
sensitive clones (n=6), RT-resistant clones (n = 3) and RT+TMZ-
resistant clones (n = 3), obtained by irradiating the cultured cells
with a certain dose of radiation and adding TMZ to the cell
culture, were used for microarray analysis to explore different
molecules involved in response therapy (9). The GBM RNA
sequencing data (RNA-seq) were downloaded from the TCGA
database (https://portal.gdc.cancer.gov). A total of 174 RNA-seq
datasets were extracted for subsequent validation.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Annotation
GO and KEGG enrichment analyses were performed on the
survival-related genes. The Metascape database (www.
metascape.org) was used to annotate and visualize GO terms
and KEGG pathways. Min overlap≥3 and P < 0.01 were set as
threshold values.
Identification of Optimal Diagnostic
Gene Biomarkers
The LASSO algorithm was applied with the glmnet package
(https://cran.r-project.org/web/packages/glmnet/) (10). The
Boruta algorithm (https://cran.r-project.org/web/packages/
Boruta/) employs a wrapper approach built around a random
forest classifier (11). The DEGs between GBM and normal
controls were retained for feature selection, and biomarker
genes for GBM were identified with the above algorithms. The
optimal biomarker genes for GBM were then identified by
overlapping the biomarkers derived from these two algorithms.
Based on these optimal gene biomarkers, the Boruta package was
used further to evaluate the diagnostic value of these biomarkers
in GBM.
Tumor-Infiltrating Immune Cell Analysis
The CIBERSORT package was used to explore the differences in
immune cell subtypes including B cells, T cells, natural killer
(NK) cells, macrophages, and dendritic cells (DCs), based on the
expression data (12). Samples with P < 0.05 in CIBERSORT
analysis results were used for further analysis. Spearman analysis
was used to compare differences in immune cell subtypes in the
high hub-gene and low hub-gene groups.
Gene Set Variation Analysis (GSVA)
The gene set variation analysis (GSVA) method is nonparametric
and unsupervised and bypasses the conventional approach of
explicitly modeling phenotypes within the enrichment scoring
algorithm (13). GSVA calculates samples gene set enrichment
scores as a function of the genes inside and outside the gene set.
Furthermore, it estimates the variation in gene set enrichment
over the samples independently of any class label. In this study,
gene sets were obtained from the Molecular Signatures Database
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v7.0. GSVA was used to compute single-sample enrichment
scores to describe the potential changes in biological function.

Drug Sensitivity Analysis
The largest publicly available pharmacogenomics database,
Genomics of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org/) has characterised 1000 human cancer cell
lines and screened them 100s of compounds, was used to obtain
drug IC50 values and predict the chemotherapeutic response of
each sample (14). The prediction procedure was performed by
the R software package “prophetic”. Tenfold cross-validation was
used to assess the prediction accuracy based on the GDSC
training set (15).

Tumor Mutational Burden Analysis
The TMB was defined as the number of somatic, coding, base
substitution, and indel mutations identified by next-generation
sequencing (NGS). Mutations obtained from SNPs in GBM
samples were downloaded from the database using VarScan2 and
SAMtools (16). To estimate the TMB of the training set, we counted
all coding somatic base substitutions and indels in the targeted
regions, including “stop/start-loss/frameshift/missense/
inframe” alterations.

GeneMANIA Analysis
GeneMANIA (http://genemania.org) is a flexible, user-friendly
website for generating hypotheses about gene functions,
analyzing gene lists, and prioritizing genes for functional assays
(17).Given a query gene list, GeneMANIA finds functionally
similar genes using a wealth of genomics and proteomics data. In
this mode, it weights each functional genomic dataset according
to its predictive value for the query. In this study, GeneMANIA
was used to visualize the molecular network analyses to explore
possible hub genes and their mechanisms in GBM.

Statistical Analysis
All P-values were two-sided, and values lower than 0.05 were
considered significant. Statistical significance is indicated in the
figures as follows: * P <0.05, * * P < 0.01. R Studio (version 3.6)
and corresponding packages was used for all statistical analyses.
The glmnet R package was used for LASSO analysis. Survival
curves plotted by the Kaplan–Meier method were compared to
the log-rank test. The mutation were analyzed by cBioportal
package. The CIBERSORT package was used to explore the
differences in immune cell subtypes. The prophetic package
was performed to predict the chemotherapeutic response.
RESULTS

Construction of a Prognostic Classifier
Based on DEGs in GBM
GBM gene expression microarray data (GSE12657, GSE90886,
and GSE90598) with a total of 53 samples (32 GBM and 21
Frontiers in Oncology | www.frontiersin.org 3
control) were downloaded from the NCBI GEO. The spatial
variant apodization (SVA) algorithm was used to normalize the
datasets, and the principal component analysis (PCA) plot shows
the batch effect before and after normalization (Figures 1A, B).
The package limma was used to perform the data analysis. Fold
change > 1 and p < 0.05 were set as the cutoffs to screen for
DEGs. Compared with normal brain tissues, the limma package
identified 141 DEGs (Supplementary Table 1) in GBM, of which
30 were upregulated and 111 were downregulated (Figure 1C).
GO and KEGG pathway enrichment analyses suggested that
these genes mainly participated in the following pathways:
chemical synaptic transmission, presynapse, postsynapse,
synaptic membrane, and axon (Figures 1D, E). Biological
processes of DEGs were mainly associated with the chemical
synaptic transmission that affects the neuronal activity and
neurotransmitters to participate in the onset and progression
of GBM (18, 19). Some synapse-related genes, such as RIM-BP2
and CACNG3, have been less studied in tumors.

The results of the GSVA database analysis showed that
differential expression of PTPRN and RIM-BP2 was involved in
DNA repair and the APICAL_JUNCTION and APICAL_SURFACE
ESTROGEN_RESPONSE_EARLY pathways (Figures 2A, B).
Metascape was used to construct protein-protein interaction (PPI)
networks (Figure 2C). The coexpression network of the DEGs is
shown in Figure 2D.

Next, we identified 14 DEGs as GBM survival-related genes to
be included in the classifier using the LASSO analysis
(Figures 3A, B). Boruta algorithm analysis identified 17 DEGs
as survival-related genes (Figure 3C). Then, we obtained five
DEGs, including SLC8A2, PTPRN, F2R, RIM-BP2, and IFI44, by
overlapping the two analyses (Figure 3D); of these, PTPRN and
RIM-BP2 were highly expressed in GBM (p<0.05) (Figures 3E, F).
Kaplan-Meier survival curves from the TCGA database were used
to explore the potential roles of individual DEGs in GBM OS.
Among the five genes, high expression of PTPRN (p=7.632e-06)
or RIM-BP2 (p=1.669e-03) significantly predicted poor overall
survival (Figures 3G, H). Combined analysis of PTPRN and
RIM-BP2 showed no significant advantage for the prediction of
GBM prognosis compared with either gene individual analysis.
In addition, PTPRN was found to play the dominant role in
prognosis prediction in the combined analysis of the two
genes (Figure 4).

Expression of PTPRN and RIM-BP2 in
Response to Radiation Treatment (RT)
and Drug Therapy in GBM
To explore the relationship between expression of PTPRN and
RIM-BP2 and the sensitivity to RT or TMZ, we first wanted to
know whether the PTPRN and RIM-BP2 genes were
differentially expressed in RT-resistant and RT+TMZ-resistant
patients than RT-sensitive and RT+TMZ- sensitive patients. Six
sensitive groups (three patients, two clones per patient), three
RT-resistant groups, and three RT+TMZ-resistant groups were
used for the analysis. The results showed that expression of
PTPRN was significantly higher in the RT-resistant patient
group and RT+TMZ-resistant group than in the sensitive
December 2021 | Volume 11 | Article 667884
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groups (p<0.05). There were no differences in the expression of
PTPRN between the RT-resistant group and the RT+TMZ-
resistant group (Figure 5A). Moreover, the difference in the
expression of RIM-BP2 was also not significant among the three
groups (Figure 5B). These results suggested that the patients
with higher PTPRN expression were more resistant to RT. TMZ
treatment did not change the resistance to RT, suggesting that
PTPRN expression was not associated with sensitivity to TMZ.

Chemotherapy is a common treatment for GBM. We further
analyzed the sensitivity of PTPRN and RIM-BP2 to
chemotherapy drugs, including AKT inhibitor VIII, cisplatin,
erlotinib, gefitinib, and gemcitabine. The prediction model on
the GDSC was used. 10-fold cross-validation for TCGA GBM
cohort resulted in satisfactory prediction. The results showed
that there were significant differences in PTPRN and RIM-BP2
expression in response to several drugs, suggesting that both
PTPRN and RIM-BP2 were sensitive to common chemotherapy
drugs (p < 0.05). According to the predictive model of
chemotherapy drugs in TCGA dataset, the order of sensitivity
responses PTPRN to chemotherapy drugs was AKT inhibitor
VIII > cisplatin > erlotinib > gefitinib > gemcitabine. In contrast,
the order of sensitivity responses of RIM-BP2 to chemotherapy
drugs was AKT inhibitor VIII > cisplatin > dasatinib > erlotinib >
gefitinib > gemcitabine (Figures 5C, D).
Frontiers in Oncology | www.frontiersin.org 4
Expression of PTPRN and RIM-BP2 in
Response to Anticancer Drugs in LGG
With IDH Mutation
LGG accounts for approximately 20% of primary malignant
tumors of the CNS and occurs most commonly in young
adults. According to the RTOG 9802 standard, LGG is
clinically divided into a low-risk group and a high-risk group
according to patient age, the occurrence of subtotal resection,
and histology findings (20). RT is necessary to treat high-risk
LGG, and the treatment appears to be effective in patients with
IDH mutations. For patients with high-risk LGG, National
Comprehensive Cancer Network (NCCN) guidelines
recommend postoperative RT + procarbazine, lomustine, and
vincristine (PCV) chemotherapy or RT + adjuvant TMZ
chemotherapy or RT + synchronous adjuvant TMZ
chemotherapy (20, 21). The appropriate postoperative
treatment for patients with high-risk LGG remains under debate.

Therefore, we evaluated the relationship between PTPRN and
RIM-BP2 expression and chemotherapy in LGG, and the order
of sensitivity in cases with high PTPRN and RIM-BP2 was as
follows: AKT inhibitor VIII > cisplatin > dasatinib > erlotinib >
gefitinib > gemcitabine (p < 0.05) (Figures 6A, B).

IDH mutations are common in LGG; thus, we analyzed the
sensitivity of LGG tumors with IDHmutations to chemotherapy drugs.
A B

D E

C

FIGURE 1 | Identification of DEGs among GBM datasets from TCGA and GEO. (A, B) The SVA algorithm was used to normalize the datasets, and the PCA plot
shows the batch effect. (C) Volcano plots of DEGs created by using the limma package. (D, E) GO and KEGG pathway enrichment analysis performed by the
Metascape database.
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We found that tumors with IDH mutations were more sensitive
to cisplatin, dasatinib, and erlotinib than those without IDH
mutations (IDH-wt, Figure 6C).

Moreover, we found that LGG was most sensitive to cisplatin
and erlotinib when high expression of PTPRN or RIM-BP2 was
combined with the IDH mutation. Therefore, cisplatin and
erlotinib are preferred chemotherapies in LGG with IDH
mutations and high PTPRN and RIM-BP2 expression.
Tumor Mutational Burden of
PTPRN and RIM-BP2
After demonstrating the effect of PTPRN and RIM-BP2
expression on the response to RT and chemotherapy, we
identified the PTPRN and RIM-BP2 mutations in tumors. All
GBM data sets were derived from the TCGA-Pancancer
database, and TMB of PTPRN and RIM-BP2 was estimated
using CIBERSORT (https://cibersort.stanford.edu/). The results
Frontiers in Oncology | www.frontiersin.org 5
showed that PTPRN and RIM-BP2 coding mutations existed in a
total of 15 patients with GBM (10%). The mutation frequencies
were 8% and 6% for PTPRN and RIM-BP2, respectively, in 15
patients (Figure 7A). Subsequently, we analyzed the relationship
between PTPRN or RIM-BP2 expression and TMB score. The
results showed that the TMB score in patients with GBM and low
PTPRN expression was significantly higher than that of patients with
high PTPRN expression (Figure 7B). The difference in the RIM-BP2
expression group was not statistically significant (Figure 7C).
Correlation Between Immune Cell
Subtypes and of the Expression of
PTPRN and RIM-BP2
The immune microenvironment has been shown to play a
critical role in tumor biology. Recently, numerous promising
preclinical and clinical immunotherapeutic treatments and gene
therapy have been achieved for GBM. However, the role of
A

B

D

C

FIGURE 2 | The pathway and coexpression networks of different levels of PTPRN and RIM-BP2 expression. (A, B) The GSVA database shows the pathways
associated with different expression levels of PTPRN and RIM-BP2. (C) The coexpression network of the two-gene signature. (D) Visualization of the coexpression
network of the DEGs was generated using Cytoscape. Based on weights, not all genes corresponding to each module were represented.
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immunotherapy in gliomas needs to be further clarified (22, 23).
Hence, the molecular profiles within the tumor microenvironment
may be valuable predictive biomarkers.

The CIBERSORT algorithm acquired the relative proportions
of 22 immune cell subsets in GBM. The correlations between the
proportions of the 22 immune cell subtypes and PTPRN and
Frontiers in Oncology | www.frontiersin.org 6
RIM-BP2 expression are shown in Figure 8A. There was a large
degree of tumor immune cell infiltration, including M0
macrophages, M2 macrophages, activated mast cells,
neutrophils, and resting memory CD4 T cells, in patients with
GBM and high PTPRN expression. At the same time, there was
also massive tumor immune cell infiltration, such as M2
A B

D

E

G

F

H

C

FIGURE 3 | Identification of optimal survival biomarker genes (A, B). Determination of the number of factors by LASSO analysis. (C) Determination of the number of
elements by the Boruta algorithm. (D) The Venn diagram of DEGs among the LASSO analysis and Boruta algorithm defined 5 hub genes. Among them, 2 genes
(PTPRN and RIM-BP2) were associated with survival. (E, F) Expression of PTPRN and RIM-BP2 in normal and GBM tissues. (G, H) Kaplan–Meier analysis using the
median risk score cutoff to divide patients into low gene expression and high gene expression groups.
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macrophages, M0 macrophages, resting memory CD4 T cells,
and gamma delta T cells, in patients with GBM and high
expression of RIM-BP2 (Figure 8B). Combining the prognosis
analysis, RT and chemotherapy sensitivity analysis, and tumor
infiltrated immune cell subsets analysis, we concluded that
patients with higher expression of PTPRN and RIM-BP2 were
resistant to RT and chemotherapy, potentially due to poor tumor
microenvironment; therefore, their prognosis was very poor.
DISCUSSION

By normalizing and analyzing the GSE12657, GSE90886, and
GSE90598 datasets, we identified 141 significantly overlapping
DEGs in GBM. By overlapping biomarkers derived from the
LASSO algorithm and the Boruta algorithm, we obtained five
GBM biomarkers. According to Kaplan-Meier survival curve
analysis, high PTPRN or RIM-BP2 expression was shown to
predict poor OS.

RIM-binding protein 2 (RIM-BP2), a multidomain
cytomatrix protein, is present at the inner hair cell active zones
(24). RIM-BP2 has diversified functions in neurotransmitter
release at different central murine synapses and thus
contributes to synaptic diversity (25). However, little work has
been done to elucidate the expression and role of RIM-BP2 in
cancer. Our study found for the first time that RIM-BP2 was
significantly downregulated in GBM and that high RIM-BP2
expression was strongly associated with poor prognosis in
patients with GBM. These results suggested that in the
molecular pathogenesis, progression, and prognosis of GBM,
RIM-BP2 may play an important role. PTPRN is a gene that
encodes the protein tyrosine phosphatase receptor type N, a
105.8-kDa protein from the tyrosine phosphatase (PTP) family
Frontiers in Oncology | www.frontiersin.org 7
responsible for signaling related to cancer initiation and
progression (26, 27). PTPRN is abnormally expressed in many
tumors, including small cell lung cancer (SCLC), breast cancer,
and liver cancer, and affects tumor progression. We found that
high PTPRN expression is strongly associated with a poor
prognosis in patients with GBM, which was consistent with
previous findings (28–30).

Studies to identify and validate protein targets to improve the
therapeutic options are underway. We further analyzed whether
the current treatment options for GBM, including RT and
chemotherapy, are beneficial even when the PTPRN or RIM-
BP2 expression in glioma is abnormal.

The RT regimen of 60 Gy for six weeks has long been the
standard adjuvant approach for GBM. It remains the primary
treatment modality for unresectable GBM and prolongs survival
(31, 32). The results showed that the expression of PTPRN was
related to the sensitivity of RT. The GSVA database showed that the
differential expression of PTPRN is involved in the DNA repair
pathway. Moreover, our results also showed that the activation of
DNA repair pathways is correlated with low PTPRN expression
(p=1.989e-04). An enhanced cellular DNA repair system is
recognized as a major cause of RT failure and, accordingly. GBM
is often resistant to RT due to enhanced DNA repair activity (33).
Our results implied that low PTPRN expression in GBM is
associated with the activation of DNA repair systems as defense
mechanisms underlying radioadaptive protection.

TMZ is part of the standard chemotherapeutic regimen for
GBM (34). As an alternative, targeted therapies can limit harmful
toxicity and more effectively block tumor proliferation. The use
of existing clinical data to model the tumor dynamic response to
antitumor treatments is a promising approach toward improving
treatment efficacy and accelerating the development of antitumor
drugs. To identify targets for GBM treatment, Andrea Shergalis,
FIGURE 4 | PTPRN and RIM-BP2 predict the prognosis of GBM. Kaplan-Meier curves of overall survival for GBM patients with different PTPRN and RIM-BP2
(combined) expression levels.
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A B

D

C

FIGURE 5 | Expression of PTPRN and RIM-BP2 in response to radiation treatment (RT) and anticancer drugs in GBM. (A, B) Expression of PTPRN and RIM-BP2
insensitive, RT-resistant and RT+TMZ-resistant groups. (C, D) GBM sensitivity to standard chemotherapy drugs with respect to PTPRN and RIM-BP2 expression.
*p < 0.05; ns, no significant.
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A

B

C

FIGURE 6 | The gene expression and IDH mutation response to anticancer drugs in LGG. (A, B) Sensitivity to standard chemotherapy drugs relative to PTPRN and
RIM-BP2 in LGG. (C) Sensitivity to traditional chemotherapy drugs comparable to IDH mutation in LGG.
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using data from TCGA, discovered 20 genes, including PTPRN,
that correlated with poor survival outcomes, which was
consistent with our findings (35). However, the author did not
further discuss the possible chemotherapy drugs that might
target these genes. In our study, the prediction model of the
GDSC was used to evaluate chemotherapy drugs according to the
IC50 value. There were significant differences for several drugs
according to the PTPRN and RIM-BP2 expression. PTPRN in
GBM is more susceptible to AKT inhibitor VIII, cisplatin,
erlotinib, gefitinib, and gemcitabine. RIM-BP2 may be more
sensitive to AKT inhibitor VIII, cisplatin, dasatinib, erlotinib,
gefitinib, and gemcitabine. To explore the chemotherapy drugs
targeting IDH mutation in LGG, we identified drugs with
different estimated IC50 values for the IDH mutation
compared to IDH-wt. Our results showed that the estimated
IC50 values of chemotherapeutic drugs (cisplatin, dasatinib, and
erlotinib) are different between the IDH-wt and IDH-mutation
groups. The chemotherapy drugs cisplatin and erlotinib had
significant impact in GBM, LGG, and tumor with IDH
mutations. There is no standard approach for the successful
treatment of recurrent brain tumors. Cisplatin and erlotinib may
provide a new line of chemotherapy for gliomas.

Cisplatin has been approved for use as an antitumor drug for
approximately forty years, and the antitumor efficacy of cisplatin is
unquestionable (36). The proposed treatment protocol based on a
combination of carboplatin and vincristine, first reported in 1993,
has achieved high objective response rates of 52% and 62%,
respectively, in relapsed and newly diagnosed LGG patients (37).
Although cisplatin is used for adjuvant chemotherapy against
glioma, intrinsic and acquired resistance restricts cisplatin
application (38). Erlotinib, a tyrosine kinase inhibitor, has shown
promising response rates in malignant gliomas. Among glioma
patients, those with glioblastoma multiforme tumors who have
Frontiers in Oncology | www.frontiersin.org 10
high EGFR expression levels and low levels of phosphorylated
PKB/Akt had a better response to erlotinib treatment (39).
However, although this targeted compound performed well in
preclinical studies, it has failed phase II clinical trials in humans
(40, 41). Ultimately, several factors are responsible for drug
treatment failure, including toxicity and the failure of the
compounds to reach effective concentrations in the brain (40).

TMB is a promising marker of response to immune therapy
(IT) that is emerging as a new predictive biomarker to select
patients who may benefit from immune checkpoint inhibitor
therapy (ICI) (42). High TMB can increase the number of
neoantigens that recruit the adaptive immune system and thus
provide a potential biomarker for response to IT. In recent years,
an association between clinical benefit and high TMB was
observed in some human cancers (43, 44). The TMB cutoff
points associated with improved survival vary markedly between
cancer types, and there may not be one universal definition of
high TMB (45). Interestingly, our results showed that the TMB
score of the low PTPRN expression group was significantly
higher than that of the high expression group (p=0.013). M0
macrophages, M2 macrophages, activated mast cells,
neutrophils, and resting memory CD4 T cells comprise a large
proportion of PTPRN-related immune cell infiltrates. The
difference in the RIM-BP2 expression group was not
statistically significant. Whether PTPRN expression, identified
in our study as a novel biomarker,is a potential predictor of GBM
prognosis related to TMB needs further investigation. PTPRN-
related immune cell infiltration is more likely to be a response to
immunotherapy, providing us with new insights and
opportunities to further investigate its association with disease
course and response to therapy.

There are some limitations to our work. First, the sample size
included in our analysis was small, which might lead to the
A

B C

FIGURE 7 | Relationship between the expression of PTPRN and RIM-BP2 and TMB score. (A) PTPRN and RIM-BP2 mutations in tumors. (B, C) The TMB score of
the high PTPRN expression group was significantly higher than that of the low expression group (p=0.013). TMB score was not significantly related to the expression
of RIM-BP2.
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A
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FIGURE 8 | Profiling Tumor-Infiltrating Immune Cells with CIBERSORT. (A, B) Summarizing immune cell subset proportions in GBM against the expression of
PTPRN and RIM-BP2 status and CIBERSORT p-value.
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omission of some potential messenger RNAs (mRNAs).
Moreover, the expression of PTPRN and RIM-BP2 was only
detected using bioinformatics analysis and require further
experimental verification in more patients with GBM. Third,
we did not validate the prognostic value of PTPRN and RIM-
BP2. Furthermore, we provided some potential treatment
options relating to PTPRN, including radiotherapy and
chemotherapy. The molecular mechanisms of how the gene
signatures and treatment selection affect the prognosis of GBM
should be further elucidated.

In conclusion, we identified two novel biomarkers (PTPRN
and RIM-BP2) that can potentially be used for prognosis
prediction in GBM. These genes have potential clinical
implications for radiotherapy and chemotherapy GBM
treatment. However, the molecular mechanism and function of
these genes need to be confirmed in further experiments.
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