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The precision of visual working memory (VWM)
representations decreases as time passes. It is often
assumed that VWM decay is random and caused by
internal noise accumulation. However, forgetting in
VWM could occur systematically, such that some
features deteriorate more rapidly than others. There
exist only a few studies testing these two models of
forgetting, with conflicting results. Here, decay of
features in VWMwas thoroughly tested using signal
detection theory methods: psychophysical classification
images, internal noise estimation, and receiver operant
characteristic (ROC). A modified same–different memory
task was employed with two retention times (500 and
4000 ms). Experiment 1 investigated VWM decay using a
compound grating memory task, and Experiment 2
tested shape memory using radial frequency patterns.
Memory performance dropped some 15% with
increasing retention time in both experiments.
Interestingly, classification images showed virtually
indistinguishable weighting of stimulus features at both
retention times, suggesting that VWM decay is not
feature specific. Instead, we found a 77% increase in
stimulus-independent internal noise at the longer
retention time. Finally, the slope of the ROC curve
plotted as z-scores was shallower at the longer retention
time, indicating that the amount of
stimulus-independent internal noise increased. Together
these findings provide strong support for the idea that
VWM decay does not result from a systematic loss of
some stimulus features but instead is caused by
uniformly increasing random internal noise.

Introduction

Visual working memory (VWM) is a fundamental
human capacity that enables the encoding, storing,
and retrieval of information in various cognitive

tasks—such as reading, writing, language learning, and
measures of fluid intelligence (Engle, 2002; Engle, 2018;
Jaeggi, Buschkuehl, Jonides, & Perring, 2008; Luck
& Vogel, 2013). Although the very limited capacity
of VWM has been thoroughly studied (Cowan, 2001;
Luck & Vogel, 1997), there is less research on forgetting
in VWM (see, however, Cohen-Dallal, Fradkin, &
Pertzov, 2018; Honig, Ma, & Fougnie, 2020; Mercer
& Barker, 2020; Pertzov, Manohar, & Husain, 2017;
Ricker, Sandry, Vergauwe, & Cowan, 2020; Schneegans
& Bays, 2018; Zhang & Luck, 2009). Although most
studies on forgetting have demonstrated temporal decay
in VWM, some have not (Blake, Cepeda, & Hiris,
1997; Magnussen, Greenlee, Asplund, & Dyrnes, 1990;
Magnussen, Greenlee, & Thomas, 1996). Forgetting in
VWMmight happen only in certain circumstances—for
example, when task difficulty is sufficiently high
(Skottun, 2004) or when there is interference between
memory items (Oberauer & Lin, 2017). To this day,
there is no agreement on the mechanisms underlying
the decay in VWM; this question has been formally
studied in just a few instances (Gao & Bentin, 2011;
Gold, Murray, Sekuler, Bennett, & Sekuler, 2005;
Harvey, 1986).

In the present study, we used classification images
(CIs) and signal detection theory (SDT) to test
the models of VWM decay. The basic idea in SDT
is to compare human performance in an external
noise-limited task with a Bayesian ideal observer that
possesses ideal encoding and storage capacity and no
internal noise. This allows us to separate two types of
inefficiencies in information processing: suboptimal
encoding (and/or storage) of information and internal
random noise. The first can be thought as systematic,
or deterministic, inefficiency, and the latter as random.

In terms of SDT, forgetting due to random decay
would manifest as an increase in internal noise as time
passes. According to this view, stimulus-independent
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neural noise, ubiquitous in neural systems, would
corrupt memory representations in a random fashion.
This means there would be no systematic change in
memory representations due to time passing (i.e.,
no change in which features are sampled). Internal
noise would lower the signal-to-noise ratio of memory
readout, but not alter the contents of the representation.
Several recent studies have implicitly suggested that such
a randomly operating mechanism underlies memory
decay (Bays, 2014; Bays, 2015; Bays, Catalao, & Husain,
2009; Bays & Husain, 2008; Schurgin, Wixted, & Brady,
2020). Another possibility is that forgetting occurs
due to systematic changes in memory representations
(Gold et al., 2005); for example, some visual features
might decay more rapidly than others and they would
be systematically lost. Systematic forgetting could
effectively decrease the encoding (sampling) efficiency
when the memory representation is recalled and would
predict loss in memory performance, even without an
increase in internal signal-to-noise ratio.

To our knowledge, only one study (Gold et al., 2005)
has explicitly compared these two models of VWM
decay using SDT methodology. These authors used
bandpass filtered textures, equivalent noise masking,
and double-pass methods to directly study whether
internal noise level increases or sampling efficiency
decreases in the course of forgetting. Their results
supported the notion of systematic/deterministic
memory decay, as the estimated amount of internal
noise did not increase with longer retention times
but sampling efficiency decreased. To explain the
mechanism of how decreasing sampling efficiency
could cause forgetting in VWM, Gold et al. proposed
that systematic decay could happen as gradual loss
of fine stimulus details. For example, for a stimulus
composed of multiple spatial frequencies, forgetting
would occur in the highest frequency features
first. However, this idea was not directly tested by
comparing how forgetting affects each frequency band
separately.

Memory decay tested using classification image
method

Here, we used a novel variant of the CI method
(Ahumada, 2002; Ahumada & Lovell, 1971; Murray,
2011; Pritchett & Murray, 2015) to investigate memory
decay in VWM. The aim of the method is to estimate
a CI (i.e., a map of the internal weights) that describes
how various stimulus features contribute to the
observer’s memory-based decisions. This enables
testing directly whether or not stored stimulus features
systematically change during the memory decay. The CI
method has been previously used in perception studies,
but here we developed a variant that can be used to

probe memory representations in our version of the
same–different change detection task that is commonly
employed to study VWM.

We collected data from two experiments that targeted
different stages of visual processing. In Experiment 1,
we used compound gratings that are generally thought
to probe the mechanisms of low-level spatial vision. In
Experiment 2, we employed radial frequency patterns,
which are commonly thought to index mid-level visual
mechanisms (see, for example, Loffler, 2015). Both sets
of stimuli are difficult to verbalize, promoting purely
visual memory strategies. As our stimuli were composed
of multiple frequencies components, we could directly
test whether forgetting in VWM is a systematic process
(i.e., so that the highest frequencies are lost first).
Note, however, that this is just one way of describing
systematic decay in VWM. Forgetting in VWM could
operate by other systematic changes, such as a loss of
detail in the periphery of the visual field, which are not
explored in this study.

Memory stimuli were composed of 10 Fourier
components of spatial frequencies (SFs; Experiment 1)
or radial frequencies (RFs; Experiment 2) that had
constant amplitudes but varying phases. In other words,
the observer’s task was to memorize the spatial structure
of a compound grating (Experiment 1) or the complex
contour shape of an RF pattern (Experiment 2). In
order to prevent the observer from learning a single
and constant set of memory stimuli, the phase between
components was randomized for each trial, thus
producing a new grating structure or contour shape to
be memorized.

A test stimulus was created from a memory stimulus
by adding Gaussian distributed random values (external
phase noise) independently to each component’s
phase in the memory stimulus. On the similar trials,
noise was generated from a distribution with a small
standard deviation, resulting in little difference between
the memory and test stimuli in spatial structure
(Experiment 1) or contour shape (Experiment 2). For
the different trials, the phase noise emerged from a
distribution with a large standard deviation so that
the component phase difference (and thus appearance)
between the memory and test stimuli varied, on
average, considerably. We chose to add external noise
also to similar trials, whereas many previous studies
have used identical stimuli for change detection tasks.
Adding a small amount of external noise is required
for the classification image method, because for CI
estimation the difference of the component phases must
be calculated; if the difference is zero, then the CI is
undefined (for details, see Equation 2). Further, noise
in similar trials makes the task a genuine signal-in-noise
signal detection task; that is, there is a non-zero
probability that any stimuli can come from either
similar or different distributions. This allows us to
define an ideal encoding/retrieval strategy.
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Figure 1. The procedure in Experiment 1. We used a modified same–different memory task with a retention time that was randomly
either short (500 ms) or long (4000 ms). The test stimulus was constructed by adding phase noise in the memory stimulus (randomly
varying the phase of the grating). In a similar trial, the phase noise added to the test stimulus was low, so that the difference between
the memory and test stimuli was small. In a different trial, the noise in test stimulus was larger, thus making the memory and test
stimuli appear different.

On each trial, the observer was presented with
two stimuli (memory and test stimulus, with a brief
retention time between them); an example from
Experiment 1 is shown in Figure 1. The observer’s task
was to respond, using a four-step rating scale, whether
the memory and test stimuli appeared similar or
different in spatial structure (Experiment 1) or contour
shape (Experiment 2). See details of the response
options in the Procedure section of Experiment 1.

A CI was then estimated using a regression model
that predicted the observer’s similar/different responses
from the stimulus values that were presented in the
experiment on a trial-to-trial basis. The basic idea is that
the correlation between phase noise values at certain
features and the observer’s response indicates howmuch
information from this feature is retained in VWM. To
illustrate, consider that the observer retains feature A
but not feature B in VWM. The observer should then
be more likely to respond “different” to high (absolute)

phase noise values of A (as it resembles a different
stimulus) and “similar” to low absolute noise values.
On the other hand, no value of feature noise B would
predict the observer’s responses if the representation of
feature B is decayed and thus not available in VWM.
It is possible to estimate how the observer has used
various features for memory-based decisions using a
regression model where the observer’s responses have
been predicted from squared values of phase noise. A
specific drop in weighting of some features at longer
retention times would then suggest that those features
are prone to greater memory decay, thus supporting the
notion of systematic/deterministic decay in VWM.

The CI weights thus describe how the retained
stimulus features (the frequency components)
contribute to decisions. Without memory delay, the
weights would index the frequency tuning function
of perceptual encoding. Potential change in relative
weights describes the frequency tuning function
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for forgetting. Spatial (Campbell & Robson, 1968;
Graham, 1989) and radial (Bell, Badcock, Wilson, &
Wilkinson, 2007; Loffler, 2015; Wilkinson, Wilson, &
Habak, 1998) frequency components are known to have
important role in perceptual encoding, and different
components may also carry out different types of
physical information: Low SFs convey information from
surfaces and gross illumination changes, and high SFs
convey contours and texture details (De Valois & De
Valois, 1980); low RFs convey gross shape information,
and high RFs convey fine details (Wilkinson et al.,
1998). Note, however, that the method does not
assume that frequency components are stored in WM
as independent entities or “items.” Although VWM
representation itself may have more abstract rather than
feature-based representation, it is still decodable back
to stimulus features when the observer compares the
memory and test stimulus. Even in this case, there can be
a systematic loss of some of the frequency components
(i.e., high-frequency, small-detail components) during
the perception–memory transformation.

Classification image weights and internal noise
estimates allow separation between the various schemes
regarding how VWM decay could work. In a pure
random decay model, we would expect to see an
increase in internal noise and a uniform drop in
weighting of all features. On the other hand, systematic
frequency-based decay should cause a selective decrease
in some weights and no increase in internal noise. On
the other hand, it is also possible that there could be a
more complex form of systematic decay that would not
be frequency selective (e.g., change in how symmetries
are used). These should change neither the tuning of
classification image weights nor internal noise.

Memory decay tested by using double-pass and
ROC methods

The double-pass method (Ahumada, 2002; Burgess
& Colborne, 1988) was used in our study to directly test
the model of random memory decay (i.e., investigate
to what extent forgetting in VWM is due to stimulus-
independent internal noise). In the double-pass method,
the consistency of the observer’s responses in trial pairs
where stimuli were identical was measured. Trial pairs
were presented in a randomized order within each
experimental block. The more consistent the responses
between two passes to the identical stimuli (regardless
of whether the responses were correct or incorrect), the
less they were driven by stimulus-independent internal
noise.

The third method in testing VWM decay was receiver
operating characteristic (ROC) curves. We found that
our somewhat unique design where external noise
differs between similar and different trials makes a

specific assumption regarding the slopes of the ROC
curves if memory decay is driven by internal noise.
The ROC curve shows the false alarm and hit rates
over all possible decision criteria. The shape of the
ROC curve is dependent on the distribution of the
so-called decision variable that underlies the observer’s
decisions in the task. If this distribution is Gaussian,
these curves are linear when plotted in standard normal
deviate (z-score) coordinates. The slope of the ROC
curve is determined by the ratio of noise variances
between different and similar trials (Green & Swets,
1966; Macmillan & Creelman, 2004).

The random decay model makes a prediction on how
the variance of the decision variable should change:
The variance of the decision variable is a sum of the
stimulus and internal noise variances. Using a standard
assumption that internal noise has the same variance
in similar and different trials and that the variance of
external noise does not change, the ratio of decision
variable variances should be above 1 in short retention
time but approach 1 with increasing retention time.
This is because, in short retention times, the difference
in external noise (which is much higher in different
trials) should yield a slope that is above 1. Again, if
internal noise (which does not differ in similar and
different trials) increases with retention time, it becomes
more dominant in the variance of a decision variable,
and so the ratio of variances approaches unity. On
the other hand, if there is no change in internal noise,
then the ratio should be independent of retention time.
An ROC analysis thus provides a straightforward and
complementary way to estimate the effect of internal
noise.

Experiment 1: Forgetting in a
grating memory task

Experiment 1 measured VWM for compound
gratings where each of 10 grating components was of
a randomized phase. Earlier studies employing single
gratings in same–different memory tasks have indicated
that the memory for SF, for example, is extremely good,
with discrimination thresholds being in the hyperacuity
range (Magnussen, 2000; Magnussen, 2009; Magnussen
& Greenlee, 1999; Magnussen, Greenlee, Asplund, &
Dyrnes, 1990; Magnussen et al., 1996). Thresholds are
typically not affected by retention time (Magnussen et
al., 1990; Magnussen et al., 1996). However, it has been
argued that measuring discrimination thresholds for
single gratings is not a very sensitive test for VWM, as
noise in memory representations due to forgetting must
be quite high to affect thresholds markedly (Skottun,
2004). Because our memory stimuli were complex
shapes consisting of 10 SF components, the memory
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task was more demanding and likely to create a high
amount of “memory noise.”

Equipment

The experiments were conducted in a dimly lit
laboratory. Stimuli were generated using a Cambridge
Research Systems (Rochester, UK) ViSaGe Mark II
graphics card with 15-bit luminance resolution, and
the stimuli were presented on a Mitsubishi (Tokyo,
Japan) Diamond Pro CRT Monitor with a refresh
rate of 100 Hz. The resolution of the screen was
800 × 600 pixels with a screen size of 36 × 29 cm.
The screen had a maximum luminance of 96 cd/m2

and mean luminance of 48 cd/m2. The viewing
distance (110 cm) was controlled using a chin rest.
Experiments were run on MATLAB (MathWorks,
Natick, MA) Psychophysics Toolbox extension version
3.0.11 (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007) and custom-built scripts. Results were analyzed
using custom MATLAB scripts. JASP 0.13.1.0 was
used for the Bayesian ANOVA analyses and R 4.1.1
(R Foundation for Statistical Computing, Vienna,
Austria) for the linear mixed modeling. For the linear
mixed model analysis, we used the lme4 and lmerTest
packages (Bates, Mächler, Bolker, & Walker, 2015;
Kuznetsova, Brockhoff, & Christensen, 2017), which
use Satterthwaite’s method for P value estimation
(Satterthwaite, 1946).

Participants

Nine observers (eight women and one man
21–32 years old; mean age, 24.9) with normal or
corrected-to-normal vision participated in the study.
All observers gave their written consent to participate.
Observers were naïve about the purpose of the study;
they were only informed that the study concerned
VWM. Our procedures were in accordance with the
tenets of the Declaration of Helsinki and were accepted
by the Research Ethics Committee in the Humanities
and Social and Behavioural Sciences of the University
of Helsinki.

Stimuli

The stimuli (Figure 1) were composed of Gabor
gratings with 10 SF components (1–10 cycles per degree
[cpd]). Each Gabor component had a constant Weber
contrast of 12%. The grating phase in each memory
stimulus was randomized using a uniform distribution
that spanned all phase angles from –180° to 180°. The
size of the stimuli was 5° in visual angle (width at half
of the maximum Gaussian amplitude).

Procedure

We used a modified same–different change detection
task (Figure 1). Each trial started with a 250-ms fixation
screen followed by a 200-ms memory stimulus. After a
randomly determined retention time of either 500 ms
or 4000 ms (each retention time duration was used in
50% of the trials), the observer was presented with a
test stimulus for 500 ms. The observer’s task was to
indicate, using a button press and rating scale with four
options, whether the memory and test stimuli were
definitely similar, probably similar, probably different, or
definitely different. Our task differed from a standard
same–different task in that the memory and test stimuli
were never completely identical; in similar trials a low
level of Gaussian distributed phase noise (σ = 5.7°) was
added to the test stimulus, whereas in different trials the
noise level was high (σ = 57°). Phase noise values of
over ±90° were clipped, preventing angular circularity.
Observers started with a short practice session (about
50 trials) to familiarize them with the stimuli and task.
Then, 1120 trials per retention time (2240 in total)
were measured in blocks of 80 trials in four sessions
on separate days (seven blocks per session). For the
double-pass response consistency procedure, each trial
was presented twice (in randomized order) within a
block.

Data analysis

Memory performance
Performance in the memory task was measured

using the area under the ROC curve (AUC, Az), which
can be considered a response criterion-free version
of probability of correct responses, where 0.5 equals
chance level and 1 is perfect performance. We chose
to use Az because it is unambiguous and intuitive and
does not require assumption of equal variance for the
decision variable, which must be taken into account as
the variance of the response variable in different trials
was higher than in similar trials. The ROC curves were
formed using standard methods by first computing the
cumulative hit and false-alarm rates (hit meaning a
“similar” response in a similar trial and false alarm a
“similar” response in a different trial) for each criterion
the observer used for rating scale responses. This was
done by computing the cumulative probabilities of
responding less than or equal to o for each rating scale
option o, separately for similar and different trials. The
ROC curves were then transformed to z-scores. On
visual inspection, the ROC curves were approximately
straight lines, consistent with the assumption that the
distribution of the decision variable is Gaussian (Green
& Swets, 1966; Macmillan & Creelman, 2004). We then
fitted ROC lines to determine slopes k and intercepts b.
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It can be shown (Swets & Pickett, 1982) that the area
under the ROC curve is given by

Az = �

(
b√

1 + k2

)
(1)

where � is the standard cumulative normal distribution
function. See the Appendix for linear fits to the ROC
curves.

Classification images
Let us assume that observers make the “similar”

or “different” decisions by comparing the difference
between the memory and test stimulus in a set of
features. We assume that, due to encoding and memory
limitations, these features are internally represented
with (possibly) uneven memory strength, represented
by internal weights. These weights are described by
a template vector w whose estimate is the CI. We
assume that on a given trial k that observers make
their decisions using the decision variable rs,k, which
calculates the weighted sum between the template and
squared value (as the sign of the phase angle difference
is not relevant) of a phase noise vector n that was added
to the test stimulus:

rs,k = wTn2k + ri,k (2)

where ri is random internal noise that is assumed to be
independent and Gaussian.

Thus, the larger the phase difference in features that
are heavily weighted, the more likely the observer gives
a “different” response. We assume further that the
observer gives a confidence rating by comparing the
real-valued decision variable rs,k with a set of internal
criteria so that the observer gives a rating of j when
the decision variable falls between criteria cj and cj+1.
Assuming that internal noise is normally distributed,
the probability for the observer to give a “different”
response with confidence l is

E (rt > cl ) = �
(
wTn2k − cl

)
(3)

where � is the standard cumulative normal distribution
function.

We used a generalized linear ordinal probit model
(GzLM) to estimate the decision weights ŵ (i.e.,
the CI; see Knoblauch & Maloney, 2008). The
GzLM is a generalization of the linear regression
model where the dependent variable belongs to the
exponential family; it uses a nonlinear link function
to relate the linear model to the dependent variable
and allows the use of a nominal dependent variable
with multiple criteria. The model had 10 regressors
for the decision weights, three regressors for three

internal criteria parameters corresponding to the
response categories, and one regressor for the true
stimulus category (similar–different). Fitting was done
using MATLAB’s mnrfit function. Finally, as the
weights of a CIs are dependent on internal weights,
divided by a scalar that is dependent on internal
noise (Ahumada, 2002; Knoblauch & Maloney, 2008),
we normalized the regressors by dividing the raw
weights by their vector length. This allowed us to
investigate memory weights independently of internal
noise.

Note that the external noise distribution here
cannot be assumed to be strictly Gaussian but rather
chi-squared, as we assume that the observer compares
a sum of squared Gaussian distributed feature values
in Equation 2. However, we use the standard approach
with Gaussian assumption here, as the chi-squared
distribution is approximately Gaussian when the
number of features is large. Note also that we could
have replaced the square with the absolute value of the
phase noise vector, but then we would have been unable
to use the Gaussian approximation.

Internal noise estimation
We used a generalized version (Kurki & Eckstein,

2014) of the double-pass procedure (Burgess &
Colborne, 1988; Green, 1964) that allows the use of
rating-scale responses to estimate the ratio of internal
to external noise. In this procedure, each trial was
presented twice (in randomized order). Assuming that
internal responses to both external (feature noise)
and internal noise are approximately Gaussian, it is
possible to estimate their relative amounts, given the
agreement between two passes and response criteria.
More specifically, the internal response to a stimulus
is dependent on the response to external noise (re)
and on internal noise (ri) so that rs = re + ri. For
simplicity, we can assume that the standard deviation
of the model’s response to external noise is 1 and
internal noise standard deviation is σ i. We let c = [–∞,
c1, c2, c3] be the response criteria for four confidence
levels and then estimated the ratio of internal to
external noise standard deviations, which is the same
as σ i. For two passes of the same stimuli, re1 = re2
= re. The probability of response pair a1 = l and
a2 = k is

p(a1 = l, a2 = k|rs) = p(cl−1 < re + ri,1 < cl )
p(ck−1 < re + ri,2 < ck) (4)

=
(

�

(
ck − re

σi

)
− �

(
ck−1 − re

σi

))

(
�

(
cl − re

σi

)
− �

(
cl−1 − re

σi

))
(5)



Journal of Vision (2022) 22(8):8, 1–17 Kuuramo, Saarinen, & Kurki 7

where �(x) is the standard cumulative normal
distribution. The expectation for the consistency can
then be solved by integrating over all external noise
values (for details, see Kurki & Eckstein, 2014). As
noted previously, strictly speaking the probability
density function for re is approximately chi-squared
with degrees of freedom k, depending on how many
features are weighted. However, as classification
images show that humans use multiple features,
and they do not show a difference in the number
of features in short and long duration, we simply
approximate the distribution of re by a Gaussian
distribution.

Only different trials were analyzed, as we found that
we could not reliably estimate internal noise in similar
trials. It is probable that performance in similar trials is
overwhelmingly limited by internal noise, as external
noise was only 1/10 of the amount of noise in different
trials, making the internal-to-external noise ratio an
unstable measure.

ROC analysis
We analyzed the slopes of ROC curves for the short

and long retention times using combined data from
both experiments, using the same methods as for the
performance analysis. As this study was originally
designed for CI and double-pass analyses, we wanted to
increase the statistical power of ROC curve estimation
by combining the data from both experiments.
Furthermore, we expected that memory for spatial and
radial frequencies would behave similarly, so there was
no theoretical reason why data could not be combined.
However, we wanted to take the possible differences in
the experiments into account in our analysis. Thus, we
used linear mixed modeling with experiment, retention
time, and their interaction as fixed effects and observer
as the random effect in our statistical analysis of ROC
slopes.

The slope of the ROC curve k is determined by k =
σ d/σ s, the ratio of decision variable standard deviation
in different and similar trials (Green & Swets, 1966;
Macmillan & Creelman, 2004). Note that similar trials
are the “signal” distribution of the SDT model, and
different trials that had 10 times more phase noise are
the “noise” distribution. Thus, we assume that the
variance of the decision variable for the different trials
will be greater than in the same trials and k to be >1.
When inspecting the slopes, note that in many ROC
studies the “signal” trials have had more variance than
the “noise” trials; thus, k < 1. Also, in recognition
memory studies, the signal is typically defined as old
trials, where there is more variance resulting in k values
less than 1.

Assuming that external and internal noise are
independent, the slope can be written as a square of

the sum of stimulus-dependent external noise and
stimulus-independent internal noise standard deviation:

k = σd

σs
=

√
σ 2
ed + σ 2

it/

√
σ 2
es + σ 2

it (6)

where σ 2
ed and σ 2

es are external noise variance in the
different and similar trials, and σ 2

it is the internal noise
variance at retention time t, assumed to be the same in
similar and different trials.

In the random decay model, memory decay is driven
by internal noise and σ 2

it grows with retention time,
but σ 2

ed and σ 2
es remain the same, and k approaches 1.

On the other hand, if internal noise does not change
with retention time, there should be no change in k over
short durations. We estimated k for each retention time
using the standard method with least-squares linear
regression.

Because we have a double-pass estimate for the
internal noise levels σ 2

it, it would, in principle, also be
possible to directly test the random decay model by
predicting the ROC slopes using Equation 5, as all terms
could be estimated from double-pass data. However,
as noted before, the external noise-to-internal noise
ratio could not be reliably estimated in similar trials,
and the external noise standard deviation was 10 times
higher in different trials. We therefore approximated
the prediction of the model by using an approximation
where external noise has negligible (zero) contribution
to responses in similar trials by setting the parameter
σ 2

es to 0. That is, performance would be completely
limited by internal noise. This enabled us to predict the
ROC curve slopes and compare them with observed
values.

Results

Memory performance
Observers showed substantial forgetting when they

tried to memorize the spatial structure of compound
gratings (Figure 2A): memory performance (Az)
decreased about 15% when compared between retention
times of 500 ms and 4000 ms (M500 = 0.82, SD500 =
0.05; M4000 = 0.70, SD4000 = 0.08), with t(8) = 7.18, p
< 0.001, and d = 1.78. Measured as d′

e (Green & Swets,
1966; Macmillan & Creelman, 2004), a version of d′
adapted to situations where response variables in the
signal and distractor have different variances as was the
case here, performance dropped approximately 42%
with the longer retention time (d′

e500 = 1.50; d′
e4000 =

0.89), and the difference between retention times was
statistically significant in a repeated measures t-test,
where t(8) = 11.08, p < 0.001, and d = 2.10. Because all
trials were presented twice for the double-pass method,
we also compared performance in the first and second



Journal of Vision (2022) 22(8):8, 1–17 Kuuramo, Saarinen, & Kurki 8

Figure 2. (A) Mean memory performance (Az) indicating how
well observers could discriminate between similar and different
trials in Experiment 1. (B) The mean internal noise level
measured by the double-pass response consistency method
and expressed as the ratio of internal-to-external noise in
Experiment 1. Error bars in both figures represent the standard
error of mean (SEM).

passes of the trials. There was no difference in Az in the
first pass (M1 = 0.77, SD1 = 0.06) or second pass (M2
= 0.77, SD2 = 0.05), with t(8) = 0.09, p = 0.927, and
d = 0.03.

Classification images
The average CIs showed rather uniform weights

across all SFs, with higher frequencies having marginally
less weighting (Figure 3A). We tested whether average
normalized CI weights for each SF and retention time
were non-zero using a family of one-sample t-tests
where the p values were false discovery rate (FDR)
corrected for multiple comparisons (Benjamini &
Hochberg, 1995). Seven out of 10 SF components at the
500-ms and five out of 10 components at the 4000-ms
retention time had p values smaller than 0.05 (indicated
by asterisks in Figure 3A). This result implies that the
VWM for compound gratings can maintain a broad
range of SF components. Retention time did not change
weighting in any apparent fashion; both retention times
showed similar weights. Figure 3B shows CI weights
for four representative observers. Although there was
greater variation compared to the average results,
slightly larger weights were concentrated in lower
frequencies.

The differences between the normalized CI weights
at two retention times and different SF components was
tested using a two-way repeated-measures ANOVA. No
effects of retention time, SF, or their interaction were
found: For retention time, F(1,8) = 0.14, p = 0.714, and
ηp

2 = 0.018; for SF, F(1,8) = 1.02, p = 0.431, and ηp
2 =

0.113; and for interaction, F(1,8) = 0.68, p = 0.721, and
ηp

2 = 0.079. The lack of main effect for SF shows that

Figure 3. CIs in Experiment 1. (A) Average normalized CI decision weights (arbitrary units) for short (500 ms) and long (4000 ms)
retention times. High decision weights indicate that phase noise in those SFs affected observers’ memory-based responses more; a
weight of zero indicates no effect. Although almost all SF components had weights larger than zero, the weights in low SFs were
slightly higher. The weights that are larger than zero at a 5% significance level are marked with asterisks (*). There were no statistically
significant differences in memory tuning between the two retention times. (B) CI weights for four representative observers. Shaded
areas represent the SEM.
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there was no evidence of differences in the weighting
of various SF components; that is, no evidence that
forgetting in VWM resulted from a change in memory
tuning. The lack of a main effect for retention time
indicates that there is no evidence of overall magnitude
of weights changing with time, which was expected,
because of normalization. The lack of interaction
suggests that there is no evidence of weighting changing
with retention time.

We also conducted a Bayesian two-way repeated-
measures ANOVA for the average normalized CI
weights in the two retention times and SFs. The
inclusion Bayes factor, which indicates the level of
evidence for including a factor, was 0.115 for retention
time, 0.031 for SF, and 0.003 for their interaction. These
results support the observation that neither retention
time nor SF had an effect on normalized CI weights.

Internal noise
Figure 2B shows the average internal-to-external

noise ratios for the two retention times, as measured
by the double-pass method. The level of internal noise

increased about 70% between memory times of 500
ms and 4000 ms (M500 = 1.30, SD500 = 0.15; M4000 =
2.21, SD4000 = 1.10), where t(8) = 2.36, p = 0.046, and
d = 1.16. In a one-way paired-samples Bayesian t-test,
where the alternative hypothesis was that internal noise
level increased at the 4000-ms retention time, the Bayes
factor was 8.144 in favor of the alternative hypothesis.
This result provides evidence for the idea that internal
noise increases over time and causes forgetting.

Experiment 2: Forgetting in a shape
memory task

Experiment 2 tested VWM for complex shapes of
RF patterns (Bell & Badcock, 2008; Bell & Badcock,
2009; Loffler, 2015; Wilkinson et al., 1998). RF patterns
are formed by modulating the radius of a circle with
sinusoidal functions of a polar angle (Figure 4).
RF patterns can represent many real-world shapes
while providing a good control for low-level stimulus
visibility (Loffler, 2008; Loffler, 2015). Therefore, they

Figure 4. Procedure in Experiment 2. The procedure was identical to Experiment 1 except for the stimuli, which were circular RF
shapes.
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have been widely used to investigate mid-level visual
mechanisms underlying contour and shape integration
and also VWM (Salmela, Mäkelä, & Saarinen, 2010).
Even though RF patterns have many qualities similar
to the shapes of real objects, they cannot be easily
verbalized, thus providing a link between low- and
high-level vision. In Experiment 2, we measured
the VWM for RF patterns composed of 10 RF
components.

Equipment

The equipment was identical to that in Experiment 1.

Participants

Nine new observers (seven women and two men,
21–37 years old; mean age, 26.22) participated
in Experiment 2. All observers had normal or
corrected-to-normal vision and gave their written
consent to participate in the study. Observers were
informed that they were participating in a study on
VWM but were naïve about the exact purpose of the
experiment.

Stimuli

The stimuli were circular contours (mean radius 1.8°
in visual angle) that were modulated by 10 sinusoidal
RF components (1–10 cpd) with a constant amplitude,
randomized phase, and SF of 3.8 cpd (Figure 4). All 10
components had a Weber contrast of 5%.

Procedure

The procedure was identical to Experiment 1, except
that the stimuli were circular shapes with varying RF
phase. After a short practice session (about 50 trials),
observers performed 1120 trials per retention time
(2240 in total) in blocks of 80 trials, in four sessions
held on separate days (seven blocks per session). As
in Experiment 1, each trial was repeated two times
in a random order inside a block for double-pass
analysis.

Data analysis

The procedures used to analyze data were identical
to those in Experiment 1.

Figure 5. (A) Average memory performance (Az) in Experiment 2
with RF patterns. (B) Average ratio of internal to external noise
as measured by the double-pass response consistency method
in Experiment 2. Error bars in both figures represent the SEM.

Results

Memory performance
Performance (Az) in the memory task dropped

approximately 14% between the 500-ms (M = 0.95, SD
= 0.02) and 4000-ms (M = 0.82, SD = 0.07) retention
times, where t(8) = 6.18, p < 0.001, and d = 2.70
(Figure 5A). For d′

e, the difference in performance
between retention times was about 45% (d′

e500 = 2.58;
d′

e4000 = 1.41), and it was statistically significant in a
repeated-measures t-test: t(8) = 8.67, p < 0.001, and d =
3.17. There was no difference in performance in the first
(M1 = 0.90, SD1 = 0.03) and second (M2 = 0.90, SD2
= 0.03) passes of the trials: t(8) = 1.70, p = 0.128, and
d = 0.57.

Classification images

The average CIs in Experiment 2 (Figure 6A)
show that several RF components were weighted
for memory-based decisions. However, unlike in
Experiment 1 on compound gratings, there were
now clear signs of memory tuning, as high RFs were
weighted more than low frequencies. The individual
CIs of four representative observers show a similar
pattern of tuning (Figure 6B). We confirmed whether
normalized CI weights differed from zero in each
RF and at the two retention times using multiple
one-sample t-tests with FDR correction for multiple
comparisons. Five out of 10 RF components at
the 500-ms and six out of 10 RF components at
the 4000-ms retention times had memory weights
significantly different from zero (p < 0.05) (Figure 6A).
As in Experiment 1, the CIs appeared to have similar
shapes at short and long retention times.
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Figure 6. CIs in Experiment 2. (A) Average CI weights for short (500 ms) and long (4000 ms) retention times. High memory decision
weights mean that those RF components affected the observer’s memory-based responses more; a zero weight means that the RF
component had no effect on observers’ responses. CIs had more weighting in high RFs, implying that VWM for shape is supported by
high RFs. The weights larger than zero at a 5% significance level (corrected for multiple comparisons using FDR) are marked with
asterisks (*). Importantly, there were no differences in the memory tuning between short and long retention times. (B) Individual CIs
for four representative observers. Shaded areas represent the SEM.

A two-way repeated-measures ANOVA on
normalized CI weights showed no significant main
effect for retention time, with F(1,8) = 0.44, p =
0.525, and ηp

2 = 0.052; however, the main effect for
the RF component was statistically significant, with
F(1,8) = 4.44, p < 0.001, and ηp

2 = 0.357. Thus, there
was a memory tuning in RF component weights.
Critically, the interaction between retention time and
RF components was not significant, with F(1,8) = 1.47,
p = 0.177, and ηp

2 = 0.155), implying that there is no
evidence of RF components decaying selectively at the
4000-ms retention time. We confirmed this observation
with a two-way Bayesian repeated-measures ANOVA;
the inclusion Bayes factor was 1076.210 for radial
frequency, indicating that there was a strong effect for
RF. The inclusion Bayes factors for retention time
and interaction of retention time and RF were 0.204
and 0.202, respectively. Based on this analysis, there
was no effect of retention time or the interaction of
retention time and RF on CI weighting, indicating that
forgetting is not dependent on the RF of the shape
components.

Internal noise
The ratio of internal to external noise increased

about 83% from the 500-ms (M = 0.94, SD = 0.57)
to the 4000-ms (M = 1.72, SD = 0.93) retention time

(Figure 5B). The increase was statistically significant,
with paired samples t-test t(8) = 2.47, p = 0.038,
and d = 1.00. According to a one-tailed Bayesian
paired-sample t-test, the Bayes factor was 4.328,
suggesting that the alternative hypothesis was more
likely to hold than the null hypothesis. This favors the
idea that internal noise level was affected by retention
time.

ROC-analysis

The average points of ROC curves over all observers
in both experiments and for both retention times are
depicted in Figure 7A, which shows the hit and false
alarm probabilities for various criteria as z-scores (see
the individual ROCs in the Appendix). The mean slope
for the observers’ ROC curves for the 500-ms retention
time (across experiments) was 1.32 (SD = 0.26), which
differed significantly from 1, with t(17) = 5.17, p <
0.001, and d = 1.23. The slope for the ROC curve for
the 4000-ms retention time was shallower: M = 1.15
(SD = 0.19). The average intercepts of the model were
2.26 (SD = 0.93) for the 500-ms retention time and
1.17 (SD = 0.60) for the 4000-ms retention time. We
ran a linear mixed model analysis with experiment,
retention time, and their interaction as fixed effects and
observer as a random effect to compare ROC slopes in
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Figure 7. ROC analysis. (A) The z-score–transformed ROC curves representing hit (similar responses when stimuli were similar) and
false alarm (similar response when stimuli were different) probabilities of confidence ratings. Each point is an average over nine
observers, and error bars represent the SEM. Lines show mean ROC curves over all observers for both retention times and
experiments. The diagonal is plotted with a dashed line. (B) Comparison of the observed ROC curve slopes (observed k) to the
prediction of random decay model (predicted k) using Equation 5 where the level of internal noise is estimated from the double-pass
prediction.

different conditions. We found an effect in ROC slopes
for both fixed effects: For retention time, β = –0.26,
t(17) = –3.68, and p = 0.002; for experiment, β = –0.30,
t(26.95) = –3.19, and p = 0.004. There was no effect
on the interaction of retention time and experiment,
with β = 0.19, t(16) = 1.84, and p = 0.085, indicating
that there was no evidence of ROC slopes behaving
differently in Experiments 1 and 2. The effect on the
intercept was statistically significant, with β = 1.47,
t(26.95) = 21.94, and p < 0.001, reflecting the fact
that performance declined with the longer retention
time.

Figure 7B shows the prediction of the ROC slopes
for the random decay model from the double-pass
internal noise estimates, with the additional assumption
that external noise in the similar condition (σ es) is 0.
Predicted slopes were 1.48 for the 500-ms retention time
and 1.20 for the 4000-ms retention time. We found that
the prediction was reasonably good, with relatively high
correlation between observers’ predicted and observed
slopes (ρ = 0.557; p < 0.001). In Figure 7B, there seems
to be five outliers with an observed slope greater than
1.5; to check, we calculated correlation without these
outliers. We found that correlation between observed
and predicted slopes remained high (ρ = 0.531; p =
0.003). We also checked that the correlation could not
be explained merely by performance (Az) in the memory
task. We found that the partial correlation controlling

for Az was lower, but it remained statistically significant
(ρ = 0.386; p = 0.039).

Discussion

We investigated the decay of visual features in
VWM using CIs, internal noise estimation, and ROC
analysis. Two models of memory decay were tested:
(1) systematic changes in memory representations in
the course of forgetting, and (2) random corruption
of representations due to internal noise when all
features decayed uniformly. In terms of systematic
decay, we tested a model where some frequency
components would systematically decay first. Both
compound gratings and RF patterns were used in our
same-different memory task to probe VWM at different
stages of visual processing.

Memory for spatial frequency

CIs showed that several SF components were
weighted systematically (i.e., had significantly positive
weights) for memory-based decisions, indicating that
VWM representations contain several SF components.
Interestingly, even though the observers showed
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significant forgetting in the memory task, there were no
signs of systematic changes in memory weighting of
SF components at the long retention time as predicted
by Gold et al. (2005). This strongly suggests that decay
in VWM is not specific to certain SF components, but
instead all SF components seem to deteriorate equally.

Studies that have measured sensitivity for SF using
detection thresholds have typically found bandpass
tuning that peaks at around 2 to 4 cpd (Campbell
& Robson, 1968; De Valois & De Valois, 1980). We
did not observe any systematic SF tuning in VWM,
but all SF components were weighted with rather
uniform weights. This result was not unexpected, as
we used suprathreshold compound gratings, which
have relatively uniform sensitivity/contrast across SFs
(Georgeson & Sullivan, 1975).

Unlike the results from studies on single gratings
(Magnussen et al., 1990; Magnussen et al., 1996), we
found a clear effect for retention time on memory
performance. Our result suggests that memory for SF
may not be as perfect as earlier thought. Skottun (2004)
argued that internal noise (“memory noise”) has only
a moderate effect on the discrimination thresholds
of simple gratings, and the increase in internal noise
must be considerable to reveal any forgetting effects. By
using compound gratings with complex structures, the
internal memory noise increased at longer retention
times, which might have enabled our task to be sensitive
enough to show the effects of retention time on memory
performance. Notably, we were able to measure SF
tuning for VWM using CIs, as CIs have previously been
used only in perceptual tasks.

Memory for shape radial frequency

The CIs for shape memory in Experiment 2
revealed that several RF components were weighted
for memory-based decisions. In line with the results
of Experiment 1, the weighting of RF components
did not, however, show any systematic changes with
retention time, even when observers’ performance in our
modified same–different task was significantly poorer
at the long retention time. This result thus suggests that
VWM decay was not specific to certain shape features,
but forgetting affected all features equally. Unlike in
Experiment 1 on compound gratings, there was a
clear “tuning” of RF components, so that higher RF
components had relatively larger weights than lower
ones. This implies that higher RF components are more
efficiently used in the similar–different task. The tuning
is in line with the sensitivity measurements obtained
in shape perception experiments (see, for example,
Wilkinson et al., 1998). Better memory for higher RF
components might thus be explained by more efficient
perceptual encoding.

Internal noise and memory decay

We found that internal noise, as estimated using
double-pass response consistency, increased with
retention time. The noise increase was substantial
in both Experiments 1 and 2, on average 77%. The
increase implies that forgetting in VWM could be due
to internal noise accumulation. Moreover, ROC curves
were approximately linear when plotted in z-scores.
The slope of the ROC curves, which reflects the ratio
of combined external and internal noise in different
versus similar trials, decreased with retention time. As
external noise exhibited much greater variance in the
different trials, we expected this ratio to be well above
1, as was found for short retention time. A decrease
of the slope closer to 1 gives further evidence to the
idea that performance is limited by an increase in
stimulus-independent noise. As we consistently found
that the ROC slopes in long and short retention times
differed, our analysis supports a model where forgetting
is caused by an increase in internal noise. Moreover,
we found reasonably good agreement in slopes when
estimated from the double-pass and ROC data. This
further suggests that a straightforward increase in
internal noise with retention time could explain the
findings without any extra assumptions. On the other
hand, it is not easy to explain these findings through
systematic forgetting with no change in internal
noise.

It must be noted that comparing ROC curves makes
some assumptions that are currently debated in VWM
literature. Here, we assume that ROC slope can be
described as the ratio of decision variable standard
deviation in different and similar trials (see Equation 5),
which is an assumption embedded in signal detection
theory (Green & Swets, 1966; Macmillan & Creelman,
2004). However, some models of VWM reject this idea,
such as the high-threshold (HT) models of VWM (for
a review, see Yonelinas & Parks, 2007). Yonelinas and
Parks (2007) stated that HT models predict nonlinear
z-transformed ROC curves (see evidence for the HT
model in Rouder, Morey, Cowan, Zwilling, Morey, &
Pratte, 2008), a finding that contradicts our observation
of linear z-transformed ROC curves. Thus, our results
do support a model where there is at least a signal
detection component in VWM, but we cannot rule out
the possibility that our assumptions do not hold. Then
again, we did find increasing internal noise based on the
double-pass analysis, which does not make assumptions
about the nature of VWM.

Previous studies on VWM decay

Harvey (1986) studied VWM for compound gratings
using a same–different memory task and regression-like
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technique to estimate the retention of each SF
component. His results showed that memory tuning did
not change as a function of retention time, although
observers’ memory performance clearly decreased at
longer retention times, in accordance with our results.
Gao and Bentin (2011) tested how various SFs decay
in VWM using face stimuli composed of either low
or high broadband SFs. The observers had to first
memorize a set of faces and then make subsequent
old/new decisions between two test faces. Gao and
Bentin (2011) found that memory representations of
faces in both frequency bands decayed at a similar
rate, suggesting there are no systematic differences in
memory decay between different SFs. It must be noted,
however, that Gao and Bentin did not directly probe
whether or not internal noise affected forgetting in
VWM.

Although our results were in line with those of
studies by Harvey (1986) and Gao and Bentin (2011),
Gold et al. (2005) reported conflicting results. In
their experiments on VWM, internal noise level as
measured by the double-pass method did not change
with retention time; instead, sampling efficiency was
found to decrease. Even though not directly tested,
the effect on sampling efficiency implies that some
spatial frequencies could undergo more decay than
others. Because the task of Gold et al. (2005) was
similar to ours, it is not clear why we did not find any
systematic decay of certain frequencies and instead
observed an increase in internal noise levels. Although
more experimentation will be needed to clarify the
reason for the discrepancy between the results of
Gold et al. (2005) and ours, one explanation might
be the very different stimuli used in these two studies.
Gold et al. (2005) employed textures with bandpass
random noise, whereas our memory stimuli were
compound gratings and RF patterns. Textures could
perhaps be particularly difficult to encode in visually
retrievable form and could promote verbal encoding
strategies (e.g., “large blob in the upper left texture
corner”).

In VWM literature there has been different accounts
on whether VWM representations are encoded
as complete objects or a collection of features.
Zhang and Luck (2009) found that objects suddenly
dropped from memory, supporting the object-based
view. Fougnie and Alvarez (2011), however, found
that memory errors occurred independently from
different features of an object, and they suggested
that features are encoded as separate units in VWM.
On the other hand, we observed uniform decay
in all frequencies, finding no evidence for memory
for frequencies failing independently. Although
this study cannot conclusively answer whether
VWM representations are object or feature based,
CIs could be used in future research to study this
question.

Conclusions

A novel variant of the CI method and other
SDT-based methods was used to investigate the
mechanisms of VWM decay. CIs provide a powerful
tool that can reveal what features are retained in VWM
for various retention times. Our results strongly support
the idea that memory decay in VWM does not result
from the systematic forgetting of visual features but
rather from a uniform increase in random internal noise
as time passes.

Keywords: visual working memory, classification
images, signal detection theory
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Appendix

Individual z-transformed ROC curves

Figures 8A and 8B show z-transformed ROC curves
for all observers in Experiments 1 and 2, respectively.
By visual inspection, no apparent nonlinearity can be
seen in the z-transformed ROC curves. Further, we
found that the linear model provided very good fits
for all observers, as R2 values in Experiment 1 were
on average 0.986 (range, 0.968–0.998; SD = 0.011)
and 0.994 (range, 0.970–1.000; SD = 0.009) for the
500-ms and 4000-ms retention times, respectively. The
corresponding values in Experiment 2 were 0.981
(range, 0.937–0.999; SD = 0.025) and 0.993 (range,
0.978–0.999; SD = 0.007).

Figure 8. The z-transformed ROC curves plotted separately for each observer representing hit and false alarm probabilities of
confidence ratings. Lines show the best fitting least-squares ROC curves for each observer for both retention times. (A) The
z-transformed ROCs for observers (Obs) in Experiment 1, where the stimuli were compound gratings. (B) The z-transformed ROCs for
observers in Experiment 2, where the stimuli were radial frequency patterns.
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