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ABSTRACT: Herein we describe HYPERION, a new program for
computing relativistic picture-change-corrected magnetic reso-
nance parameters from scalar relativistic active space wave
functions, with or without spin−orbit coupling (SOC) included
a posteriori. HYPERION also includes a new orbital decomposition
method for assisting active space selection for calculations of
hyperfine coupling. For benchmarking purposes, we determine
hyperfine coupling constants of selected alkali metal, transition
metal, and lanthanide atoms, based on complete active space self-
consistent field spin−orbit calculations in OpenMolcas. Our results
are in excellent agreement with experimental data from atomic
spectroscopy as well as theoretical predictions from four-
component relativistic calculations.

1. INTRODUCTION
Magnetic resonance spectroscopy techniques, such as electron
paramagnetic resonance (EPR) and nuclear magnetic resonance
(NMR), are capable of providing very accurate information on
the interactions between electron spins, nuclear spins, and
external magnetic fields. The information available from EPR
and NMR spectra is often encoded via iterative fitting of the
experimental data to a model spin Hamiltonian in a set of
effective parameters, each related to a specific type of coupling
between magnetic entities. Quantities probing interactions
between electron and nuclear spins, namely, EPR hyperfine
coupling constants (HFCCs) and paramagnetic NMR shifts,
depend strongly on unpaired electron (spin) density1,2 and are
central to the study of various phenomena encountered in
molecular systems of interest. Examples include usingHFCCs as
proxies for covalency in actinide complexes,3 quantifying spin
decoherence in molecular qubits via theoretically determined
hyperfine coupling (HFC) tensors,4 and employing contact
NMR shifts�which have an intrinsic dependence on HFC
parameters5�to understand the solution structure and
magnetic properties of paramagnetic MRI contrast agents.6

The steady evolution of electronic structure algorithms has
made it computationally feasible to study heavy-element
complexes fully ab initio. As the atomic number increases,
relativistic effects become more important, to the extent where
they cannot be regarded as mere perturbations of the
Schrödinger picture; instead, a four-component Dirac formalism
becomes necessary. The onset of the relativistic regime is
especially important for magnetic interactions, which couple the
electronic and positronic degrees of freedom of a Dirac spinor,
therefore requiring an explicit description of the latter. Hence,

theoretical frameworks developed for magnetic properties such
as HFC must account for relativistic effects�both spin-
independent (scalar relativistic, SR) and spin-dependent (e.g.,
spin−orbit coupling, SOC)�to ensure a wide range of
applicability and to keep up with the latest experimental
advances.
HFC between an unpaired electron spin S and a nuclear spin

IN is most frequently modeled non-relativistically as the sum of
anisotropic dipolar coupling, known as the spin-dipole (SD)
mechanism, and isotropic Fermi coupling (FC)7
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where we use μ0, ge, μB, gN, μN, and IN to denote the vacuum
permeability, electron g-factor, Bohr magneton, nuclear g-factor,
nuclear magneton, and nuclear spin vector, respectively; rN = r −
RN is the position vector of the unpaired electron with respect to
the magnetic nucleus. The strength of FC is proportional to the
spin population at the magnetic nucleus, ρN

α−β, thus providing a
convenient probe for spin delocalization in amolecule. Although
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the single-configurational view of electronic structure suggests
that this term arises solely through s-type atomic orbital (AO)
contributions to the singly occupiedmolecular orbital (SOMO),
several factors complicate this interpretation.
Differences between the interaction of core spin-up and spin-

down electrons with the unpaired spin give rise to spin
polarization (SP),2 which gives additional contributions to the
isotropic HFC and cannot be described by a single electronic
configuration. Thus, the quantitative interpretation of HFCCs
requires quantum chemical techniques to model the electronic
structure accurately and capture SP effects. For this purpose,
there are two possible solutions: spin-unrestricted single-
configurational methods, such as unrestricted Hartree−Fock
(UHF) and unrestricted Kohn−Sham density functional theory
(UKS-DFT), which offer low computational cost at the expense
of broken spin symmetry, and more expensive spin-adapted
multiconfigurational methods, which preserve spin symmetry
and are designed to handle electron correlation.
Unrestricted DFT is currently the most widely used approach

for determining HFCCs, due to the lower computational cost
relative to wave-function-based (ab initio) algorithms. Hybrid
functionals give good predictions for HFCCs of organic radicals
and transition metal complexes;8,9 however, the accuracy of
these results is believed to be caused by fortuitous error
cancellation.10 Moreover, a recent study11 shows that the best
choice of functional for HFC is system-dependent. Aside from
HFC-related shortcomings, the single-configurational frame-
work underlying Kohn−Sham DFT is inappropriate for
describing static correlation, an important feature of f-element
complexes. Such systems require a multiconfigurational
approach, usually in the form of active space wave function
optimization techniques such as complete active space self-
consistent field (CASSCF), in order to obtain meaningful
predictions of energies and molecular properties.
Although far from black-box, active space algorithms are not

only cheaper than fully correlated alternatives such as full
configuration interaction or coupled cluster methods but also
more flexible, as the active space is user-defined. This framework
can be leveraged to obtain accurate theoretical HFCCs by
including, in addition to static correlation, a selection of
dynamical correlation effects (e.g., SP) that significantly
influence HFC. The challenge, then, is developing a strategy
for choosing computationally feasible active spaces that result in
accurate theoretical HFCCs. Previous studies employing
multireference configuration interaction (MR-CI) algorithms
have already analyzed the convergence of HFCCs with respect
to CI excitation level, orbital selection threshold, and basis set
completeness.2,12−19 However, most of the established trends
are only applicable to the non-relativistic regime; in particular,
the observations about AO contributions to HFCCs result
directly from the delta distribution form of the FC term (eq 1,
right), which is specific to the non-relativistic Schrödinger−
Pauli framework.20 Relativistic treatments of HFC hence require
new work to establish updated guidelines for theoretical
investigations.
Fully relativistic four-component approaches are unfeasible

for all but the simplest systems,21,22 unless combined with a low-
cost electronic structure algorithm such as Dirac−Hartree−
Fock (DHF)23 or DFT.24 As such, multiple strategies that
decouple the upper (electronic) and lower (positronic)
components of the Dirac Hamiltonian have been developed to
lower the cost of relativistic calculations for application to real
molecular systems. Use of a decoupling transformation is, in

effect, a change in the reference frame of the wave function, and
therefore, it must also be applied to the property operators;
ignoring this second step leads to the so-called picture-change
error (PCE).25 Due to the picture-change correction, relativistic
property operators are different from their non-relativistic
counterparts and, in the case of relativistic HFC, the isotropic
contribution is no longer proportional to the spin density at the
nucleus.
Approximate (quasi-relativistic) decoupling techniques, such

as the regular approximation (RA) and Douglas−Kroll−Hess
(DKH), are now fairly widespread and provide excellent
predictions for the energies of most relativistic systems.26,27

These two-component approaches can be simplified further by
disregarding spin-dependent effects, yielding a one-component
scalar relativistic formalism. For magnetic resonance applica-
tions, the zeroth-order regular approximation (ZORA) is widely
used in combination with DFT.28−31 Despite providing a good
description of valence properties,32,33 ZORA affords large errors
for core-dependent properties of heavy-element systems (e.g.,
core-hole X-ray excitations or absolute nuclear shielding
tensors);32,34 DKH is significantly more accurate in this respect.
Indeed, HFCCs obtained using SR-DKH2 operators are in good
agreement with experiment,35,36 although Nguyen Lan et al.37

show that a higher-order decoupling transformation (DKH3) is
needed for a converged relativistic HFC picture. Quasi-
relativistic HFCCs can also be derived via the infinite-order
regular approximation (IORA), and when combined with a
multiconfigurational wave function method, this approach
produces highly accurate atomic hyperfine structure constants
for alkali and coinage metals.38

Exact two-component decoupling schemes are also available,
together with one-component SR variants. For the purpose of
theoretical HFC, these offer twomain improvements over quasi-
relativistic theories: there is no uncertainty regarding the
appropriate order of decoupling, and picture-change corrections
are straightforward to implement via matrix multiplication. The
exact-2-component (X2C)39−41 and normalized elimination of
the small component (NESC)42 approaches are two popular,
fully numerical, choices for theoretical studies of relativistic
HFC. In such cases, it is worth keeping in mind that the form of
the relativistic HFC operator changes on a case-by-case basis,
since the picture-change transformation is only defined in matrix
form.
Our goal was to devise a general methodology for determining

relativistic, picture-change-corrected HFCCs for chemical
systems of arbitrary size and complexity. With this in mind, we
developed HYPERION, a Python-based program that computes
SR-X2C-decoupled magnetic resonance parameters from
complete active space (CAS) or restricted active space (RAS)
wave functions, with or without spin−orbit coupling (SOC)
added a posteriori (CASSCF-SO/RASSCF-SO); a method
based on the same theoretical formalism has been developed
in parallel by Autschbach and co-workers and implemented as
part of OpenMolcas.41 Although our code has to date been
tested only withOpenMolcas, HYPERION is a stand-alone package
that can be straightforwardly extended to allow inputs from
other quantum chemical software. Herein, we demonstrate the
use of HYPERION to obtain HFCCs of selected atoms and
benchmark our results against experimental data from atomic
spectroscopy and predictions from four-component calcula-
tions. As well as showing the performance of HYPERION, we
demonstrate various strategies for tackling specific combinations
of electron correlation, SR, and SOC effects, highlighting both
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merits and limitations of CASSCF-SO/RASSCF-SO methods.
The comparatively small number of electrons and high
symmetry of atoms mean that high levels of theory are
achievable with relatively little computational cost, but as our
goal is to extend our approach tomolecules in the near future, we
work with usual electronic structure approximations, such as
contracted basis sets and RAS subspaces of limited size, which
are the only feasible strategies for molecular calculations.

2. THEORY
2.1. SR-X2C Magnetic Properties. Here, operators are

denoted using the hat symbol (T̂) and vector quantities are
shown in bold (A). One-component and two-component
operators are represented using normal font (ĤSF‑X2C,UU

(1) ),
while bold-italic notation (HSF‑X2C,UU

(1) ) is used for their matrix
representations in a scalar AO basis. We denote four-component
operators as matrix operators (ĤmDE) to emphasize their 2 × 2
block structure. Finally, we employ double-struck notation (

mDE) for matrix representations of four-component operators.
The starting point for any relativistic treatment of magnetic

properties is the four-component Dirac equation under a scalar
potential V and a vector potential A
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where σ is the 3-vector of Pauli spin matrices, p̂ is the electron
linear momentum operator, me is the electron mass, and c is the
speed of light in a vacuum; SI units are used throughout this
work. We represent all four-component operators in block form,
with each matrix element denoting a two-component operator.
Note that, in two-component equations, σ = 2s, where s is the
electron spin vector.
The Dirac wave function, also known as a four-component

spinor, has an upper component ψU, sometimes referred to as
the large component, as well as a lower component (or small
component) ψL. In order for eq 2 to approach the correct non-
relativistic limit, the basis sets chosen for ψU and ψL must obey
the restricted kinetic balance (RKB) condition,43−46 namely,
that, for an upper component basis set {ϕμ}, the lower

component basis set is{ }·
m c

p
2 e

. Although using RKB alone is

formally justified only in the absence of magnetic fields, this
approach is reasonable, as the magnetic-field-dependent terms
are treated as a perturbation herein (vide inf ra). By substituting
the RKB condition into the four-component Hamiltonian, we
arrive at the modified Dirac equation47,48
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Notice that the lower component of eq 2 has been replaced by
the pseudo-upper component χU, which can be represented in
the same basis as that used for ψU. Additionally, the modified
Dirac Hamiltonian (eq 4) has been separated into A-
independent and A-dependent contributions; we henceforth
treat the A-dependent term as a first-order perturbation, Ĥ(1).
Using the Dirac relation, we rewrite Ŵ as

· · = · + · ×V V i Vp p p p p p( ) ( ) (7)

and discard the σ-dependent term to obtain a spin-free four-
component operator. By ignoring the spin-dependent contri-
bution, this relativistic formalism becomes compatible with the
one-component framework employed by most electronic
structure packages, including OpenMolcas. The resulting spin-
free (SF) modified Dirac operator is
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which shall serve as the zeroth-order (unperturbed) Hamil-
tonian within our theoretical framework.
Scalar relativistic exact-2-component (SR-X2C) theory49−52

can be employed to determine a unitary transformation matrix
(eq 9) that decouples the upper and pseudo-upper components
by block-diagonalizing the matrix representation of ĤSF‑mDE

(0) ,
herein denoted as SF mDE

(0) . The electronic problem can then be
solved by diagonalization of the upper−upper matrix,
HSF‑X2C,UU

(0) , without any reference to the other two-component
blocks.
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The SF-X2C-decoupled perturbation is obtained in an
analogous manner, by applying the same unitary transformation
to (1). For simplicity, we employ operator notation throughout
the remainder of this section; however, it should be noted that,
within the HYPERION implementation, the decoupling trans-
formation of Ĥ(1) and indeed all subsequent steps in the
calculation of expectation values are carried out in matrix form.
As this work pertains to electronic properties, only the upper−
upper block of the transformed operator
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is of interest, and we henceforth drop the UU subscript from
Hamiltonian operator notation.
The interaction between an unpaired electron and a nuclear

spin, i.e., HFC, can be derived from eq 10 by substituting in the
vector potential AN induced by a point-like magnetic dipole N
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Alternatively, the nuclear magnetic dipole can be modeled as a
Gaussian distribution (eqs 12 and 13)�this is also imple-
mented in HYPERION; however, results herein employ the point
nucleus expression for simplicity.
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The electronic HFC perturbation operator within the SF-X2C
framework is therefore
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where we distinguish between a spin-dependent contribution,
ĤN,SF‑X2C

FC+SD , and an imaginary, spin-independent contribution,
ĤN,SF‑X2C

PSO . The former reduces to the sum of the FC and SD
operators in the non-relativistic limit, while the latter represents
the interaction between the electronic orbital angular
momentum and the nuclear spin and is known as the
paramagnetic spin−orbit coupling (PSO) term.
It is worth highlighting that eq 15 does not include a delta-

function, that would imply only contributions at the nucleus and
characteristic of traditional interpretations of FC; as shown by
Kutzelnigg,20 this hallmark only arises in the non-relativistic
limit of a two-component framework. As a result, relativistic
spin-dependent HFC cannot be interpreted as a combination of
classical dipolar coupling (SD term) and an FC term sampling
the spin density at nucleus N.7

An important aspect that bears discussion is the spin−orbit
contribution to HFC. Herein, SOC effects are included in the
zeroth-order Hamiltonian, and as such, the spin−orbit HFC
contribution is a first-order property,34 computed as the
expectation of the PSO operator, eq 16. An alternative approach
involves modeling SOC as a perturbation andmapping the HFC
operator onto a true spin effective Hamiltonian,;53 in this case,
the spin−orbit HFC term only appears in the second-order
response, and the second-order HFC energy includes both the
PSO interaction and SOC effects on the wave function.54

Therefore, even though both approaches yield spin−orbit
contributions to the HFC energy, the two are not directly
comparable. The perturbative SOC formalism is the de facto
choice in non-relativistic HFC studies;9,31 meanwhile, rela-

tivistic four- and two-component methods already account for
SOC in the wave function; hence, the HFC energy includes a
first-order PSO term.55 Within a one-component formalism
such as that employed by OpenMolcas and HYPERION, SOC can
be modeled using either approach. Nevertheless, as we are
targeting a variety of chemical systems, including atoms and
molecules where strong SOC significantly alters the manifold of
electronic states, we do not implement the perturbative SOC
method within HYPERION. Instead, effects of SOC are included a
posteriori in the zeroth order wave function via the restricted
active space state interaction (RASSI) formalism56 before
calculation of the hyperfine coupling.
2.2. Spin Hamiltonian Parametrizations. The corner-

stone of EPR theory is the spin Hamiltonian, an effective
operator describing all of the relevant magnetic interactions as
couplings in a (2S + 1)-dimensional space, where S is the spin
quantum number of the system. The HFC spin Hamiltonian is

= · ·aI SHSpin N N (17)

where the HFC tensor aN quantifies the strength and anisotropy
of the interaction. Quantum mechanical determinations of EPR
parameters are based on mapping ab initio operators onto the
spin Hamiltonian and differentiating to obtain the tensor
components of aN:
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Note that in the case of spin-free electronic structure
approaches, such as spin-free CASSCF, the spin projection
expectation value ⟨Ŝz⟩ is exactly equal to S.
This spin-only parametrization is not appropriate, however,

for systems exhibiting non-negligible SOC, as S is no longer a
good quantum number. Instead, the size of the model space is
chosen as the number of low-lying electronic states in the SO-
coupled energy spectrum, resulting in an effective +2 1
multiplet, where is the pseudospin quantum number.
Replacing S with in eq 17 yields the pseudospin Hamiltonian,
from which the elements of symmetrized tensor aNaNT are
computed via the method of Chibotaru57
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where |I⟩ and |J⟩ denote eigenstates in the pseudospin manifold.
A similar approach is widely used to derive g-tensors for strongly
SO-coupled systems.58 The eigenvectors and eigenvalues of the
symmetrized tensors correspond to the principal axes and the
squared principal values of the original tensors; as a result, the
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pseudospin parametrization yields unsigned HFCCs. Although
the present work is focused on HFCC magnitude, we note in
passing that sign information becomes important if the
parameters determined theoretically are employed in further
computational work, such as simulations of EPR spectra.
Finally, HYPERION is also capable of determining SF-X2C g-

values, using a similar methodology to that described above for
HFCCs. The key expressions employed in g-value calculations
can be easily obtained by replacing eqs 11 and 17 with the vector
potential induced by an external magnetic field and with the
electron-Zeeman spin Hamiltonian, respectively. This addi-
tional capability will be assessed as part of a future study on
molecules.
2.3. HFC Orbital Decomposition. One aspect of

theoretical determination of HFCCs using multiconfigurational
methods is choosing the most appropriate active space. This is
largely a task of trial and error, for which it is hard to define
general rules. Hence, we have developed an orbital decom-
position method to assess the involvement of particular MOs in
the spin-dependent HFCC of a spin-free state ΨSS. To do so, we
use the second quantization formalism to represent the
expectation value of each vector operator component ĥN,k

FC+SD

as a sum over pairs of MOs {μν}

| | = | |
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where a†̂ and a ̂ denote spin−orbital creation and annihilation
operators, respectively, and Pμν

α−β is a spin densitymatrix element.
We have used ÔN,zk to denote the l = z components of a rank-2
tensor operator defined as
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Note that ÔN represents the spatial part of hN,SF‑X2C
FC+SD , as derived

via eqs 15 and 20.
We consider each term from the summation in eq 23

separately, combine the k = x, y, z components of ÔN,z via the
vector norm, and divide the result by the spin projection to
obtain a two-dimensional symmetric matrix with elements

=
| |

= | |
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P
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z z k
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2

(25)

The matrix contains the same information as the spin-
dependent HFCC, albeit in a modified form wherein MO
degrees of freedom are not integrated out. We note that the
factor of ⟨Ŝz⟩−1, which reduces to S−1 for spin-free states, mimics
the expression for HFC operators in the spin-only formalism.
Within this representation, the diagonal elements can be
interpreted as individual orbital contributions, while the
coupling between two different orbitals is quantified by

+ = 2 .
Inspired by density matrix renormalization group (DMRG)

entanglement diagrams,59 we designed a similar pictorial
representation of orbital involvement in HFC (Figure 1),
using the matrix elements of . Individual orbital contributions
are shown as markers on the circumference of a circle, while
pairwise contributions are shown as chords, color-coded by
order of magnitude.
It is worth emphasizing that this model is based on a CI-type

wave function that is not relaxed after applying the first-order
HFC perturbation and that our orbital decomposition diagrams
only show a static picture of HFC. To further understand this,
we adopt the direct/indirect terminology used by Engels14 to

Figure 1. HFC orbital decomposition diagrams obtained from relativistic determinations of HFCCs using HYPERION. (a) 133Cs atom, RASCI(45,52)
using CASSCF(11,15)-optimized orbitals; (b) 197Au atom, RASCI(45,54) using RASSCF(19,26)-optimized orbitals. Lines across the diagram
correspond to off-diagonal matrix elements of . Individual orbital contributions, as indicated by circular markers, correspond to diagonal matrix
elements .
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describe the influence of specific configurations in a CI wave
function. The HFC orbital decomposition matrix for a given
electronic state is computed via its spin density matrix, which is
completely determined by the CI expansion. The direct influence
of an (active) orbital or pair of orbitals, as indicated by , is
then proportional to the total CI contribution from all
configurations where the orbitals of interest are singly occupied.
However, the spin density associated with one orbital can vary
between different active space selections, due to the indirect
effect of all of the other correlated orbitals. Therefore, the active
space selection should not be based solely on the orbital
decomposition diagram. HFC calculations should be carried out

both with and without a specific orbital in the CAS/RAS to
determine the magnitude of its indirect effect.

3. COMPUTATIONAL DETAILS
All electronic structure calculations use a local version of
OpenMolcas60 v19.11 adapted to print the X2C decoupling
matrices, while the spatial HFC integrals are evaluated
analytically with Libcint.61 Full ANO-RCC basis sets62−66 are
used throughout to ensure sufficient flexibility and to maintain
consistency with previous relativistic HFC studies.39,41,67 The
electronic wave function is optimized using either the complete
active space self-consistent field (CASSCF) approach68 or a
restricted active space (RAS) approach69 with (RASSCF) or

Table 1. Unsigned Isotropic HFCCs in MHz Computed for the Ground State of Alkali Atomsa

atom wave function RAS1 RAS2 RAS3 |A|
7Li 4c-HF 288.2

CASSCF(1,1) 1 × s 282.3
CASSCF(3,10) 4 × s, 2 × p 367.9
CASSCF(3,15) 4 × s, 2 × p, 1 × d 367.9
CASSCF(3,14) 5 × s, 3 × p 395.7
RASSCF(3,29) 1 × s 1 × s 6 × s, 7 × p 392.8
Experimental 401.7

23Na 4c-HF 633.4
CASSCF(1,1) 1 × s 639.2
CASSCF(9,13) 2 × s, 2 × p, 1 × d 724.6
CASSCF(9,14) 3 × s, 2 × p, 1 × d 794.2
CASSCF(11,15) 4 × s, 2 × p, 1 × d 801.9
RASSCF(11,35) 2 × s, 1 × p 1 × s 6 × s, 6 × p, 1 × d 820.9
RASSCF(11,40) 2 × s, 1 × p 1 × s 6 × s, 6 × p, 2 × d 839.6
Experimental 885.8

39K 4c-HF 151.0
CASSCF(1,1) 1 × s 152.9
CASSCF(9,13) 2 × s, 2 × p, 1 × d 184.0
CASSCF(9,14) 3 × s, 2 × p, 1 × d 197.1
CASSCF(11,15) 4 × s, 2 × p, 1 × d 203.3
CASSCF(11,16) 5 × s, 2 × p, 1 × d 210.7
RASSCF(19,39) 3 × s, 2 × p 1 × s 6 × s, 6 × p, 1 × d 203.6
Experimental 230.8

85Rb 4c-HF 666.9
CASSCF(1,1) 1 × s 691.9
CASSCF(9,13) 2 × s, 2 × p, 1 × d 831.2
CASSCF(11,15) 4 × s, 2 × p, 1 × d 906.5
RASSCF(19,26) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d, 1 × f 859.1
RASCI(37,54) 4 × s, 3 × p, 1 × d 1 × s 5 × s, 6 × p, 1 × d, 1 × f 908.8
Experimental 1011.9

133Cs 4c-HF 1495.5
CASSCF(1,1) 1 × s 1539.1
CASSCF(9,13) 2 × s, 2 × p, 1 × d 1863.9
CASSCF(9,14) 3 × s, 2 × p, 1 × d 2024.6
CASSCF(11,15) 4 × s, 2 × p, 1 × d 2041.3
RASCI(35,40) 5 × s, 4 × p 1 × s 5 × s, 4 × p, 1 × d 2083.2
RASCI(35,47) 5 × s, 4 × p 1 × s 5 × s, 4 × p, 1 × d, 1 × f 2095.7
Experimental 2298.1

223Fr 4c-HF 5518.0
CASSCF(1,1) 1 × s 5240.1
CASSCF(9,13) 2 × s, 2 × p, 1 × d 6277.0
CASSCF(11,15) 4 × s, 2 × p, 1 × d 6685.7
RASCI(43,57) 6 × s, 5 × p 1 × s 5 × s, 6 × p, 1 × d, 1 × f 6940.0
Experimental 7654.0

aThe RAS1, RAS2, and RAS3 columns indicate the number of atomic shells�separated by angular momentum�included in each subspace.
Experimental HFCCs and four-component Hartree-Fock (4c-HF) HFCCs are reproduced from ref 22.
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without orbital optimization (RASCI). For RASSCF/RASCI
calculations, the maximum allowed number of RAS1 holes and
the maximum allowed number of RAS3 electrons are both set to
2. Spherical symmetry in the optimized MOs is enforced via the
ATOM keyword, which prevents rotations among orbitals
belonging to different representations of the full rotation group.
Where necessary, SOC is added a posteriori using the RASSI
approach,56 which employs a Pauli spin−orbit Hamiltonian,70

represented using atomic mean field integrals (AMFIs).71 To
keep RAS calculations tractable, the RAS2 subspace is restricted
to the partially occupied shells. As such, for 2S1/2 systems, only
the singly occupied s orbital is included in RAS2, while, for
transition metals or lanthanides with partially filled d or f shells,
respectively, RAS2 is made up of the valence nd or nf and (n +
1)s orbitals as required.

4. RESULTS AND DISCUSSION
4.1. Spin Polarization vs Electron Correlation.We take

this opportunity to discuss a conceptual aspect that is often
encountered in computational HFC literature: the overlap
between spin polarization and electron correlation. Both effects
have physical interpretations related to the interaction between
electrons in a many-electron system; however, a distinction
arises in electronic structure theory due to the use of single-
configurational (also known as mean-field) references with
respect to which perturbations such as SP, static correlation, and
dynamic correlation are described.
Unrestricted Hartree−Fock (UHF) theory is the simplest

wave-function-based electronic structure framework that
accounts for SP, albeit not accurately, due to spin contami-
nation. The UHF wave function can be expressed as a
perturbation expansion from a restricted open-shell Hartree−
Fock (ROHF) reference, with the first-order term comprising
only single excitations.72 It can be deduced that SP arises mainly
from singly excited configurations; a spin-adapted CI ansatz with
singles (S−CI) should therefore be able to provide a more
accurate, non-spin-contaminated description of SP.2

Electron correlation�the instantaneous interaction of
electrons, which is not captured by a mean-field ansatz�is
also routinely described by a CI wave function, which is most
accurate when all possible configurations obtained by
distributing all electrons among the available orbitals are
included (full CI, FCI). The correlation energy is defined as
the difference between the FCI and the reference Hartree−Fock
energies. For open-shell systems represented in a spin-adapted
framework (i.e., with a ROHF reference), it follows that electron
correlation includes an SP contribution,72 whose magnitude
directly relates to the overall weighting of single excitations in
theCI expansion. Note, however, that, if a UHF reference is used
instead, the boundary between SP and “other” correlation
becomes unclear. This is fortunately not a concern herein, as we
employ spin-adapted wave function methods exclusively.
In a comprehensive review of the spin-polarization model for

HFC, Chipman2 refers to second- and higher-order correlation
ef fects/true correlation, thus dividing spin-polarizing single
excitations from other excited configurations sampled by FCI.
While this split view helps balance computational efficiency with
accuracy in multiconfigurational calculations, it has also led to a
prevalence in the HFC literature of single-excitation-only
results, with no discussion of higher-order effects.41,67 This is
likely a safe approximation for systems such as simple organic
radicals;73 however, there is no reason to assume a priori that the
SP contribution to HFC is more important than contributions

from higher-order excitations. In fact, early work shows that
high-level CI approximations are required even for second
period atoms to achieve quantitative agreement with experi-
ment.16 For the atomic systems studied here, we attempt to
include most correlation afforded by a chosen active space using
either CASSCF or, where this is unfeasible, RASSCF/RASCI
with single and double excitations.
4.2. Alkali Metals.We first apply our methodology to study

the hyperfine structure of atoms in the alkali series. This is a
popular test set for theoretical HFC computations, requiring a
good description of electron correlation, as well as an
appropriate treatment of relativistic effects for the heavier
elements.22,74,75 Table 1 shows predicted (unsigned) HFCCs
for the 2S1/2 ground state of each alkali atom, determined via
active space electronic structure methods. We note that our
CASSCF(1,1) results are very close to the four-component
Hartree−Fock data reported by Talukdar,22 suggesting that, at
least for the direct contribution to HFC, relativistic effects are
correctly accounted for with the X2C decoupling in HYPERION.
In order to include correlation contributions to the spin density,
the active space must be expanded beyond the SOMO; the CAS
size is limited to a maximum of 18 orbitals, and we turn to RAS
methods to explore electron correlation effects in a larger orbital
space. Note that, due to the computational scaling of RAS
algorithms, we restrict the RAS2 subspace to the SOMO.
HFCCs converge the fastest when the CASSCF algorithm is
used, with CASSCF(11,15) results within approximately 10% of
experimental HFC data for alkali Na−Fr. This contrasts with
RASSCF and RASCI results, which display slower convergence
with active space size and only reach CASSCF accuracy when
the majority of MOs are correlated.
The balance of doubly occupied and virtual (unoccupied)

orbitals in the CAS/RAS has a crucial influence on HFCC
accuracy; it is not sufficient to augment a minimal active space
with core orbitals, as appropriate virtual orbitals are needed to
correlate them. A similar observation was made in a recent
coupled-cluster study22 that emphasizes the need for high-
energy unoccupied orbitals to correlate inner-core electrons.
From our results, we deduce that radial correlation, introduced
via virtual shells with the same angular momentum as the core−
shells,76 has the most significant effect on HFCCs. Compare, for
example, the HFCCs obtained from CASSCF(9,13) and
CASSCF(9,14); the virtual s shell included in the latter leads
to a 6−8% improvement in accuracy. For calculations that
include orbital optimization (i.e., CASSCF or RASSCF), a good
basic principle for active space selection is to include one radially
correlating virtual shell for each doubly occupied shell in the
active space. However, the exponential scaling of CASSCF
severely restricts this strategy, and as such, the largest CAS
selections reported herein include only one virtual shell of each
angular momentum.
It is also interesting to analyze the influence of polarization

basis functions. The inclusion of one virtual d shell in CASSCF
affects the HFCCs of all alkali by 4−5% (except Li), suggesting
an angular correlation76 effect related to the presence of core p
electrons. Extrapolating, we postulate that, for core−shells with
the highest angular momentum l, virtual shells with an angular
momentum of at least l + 1 are needed to capture angular
correlation. Note that, although previous theoretical work
highlights the slow convergence of correlation energy with
maximum angular momentum77�indicating that an accurate
description of correlation likely requires much higher angular
momenta�similar effects on HFCCs have only been explored
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for light atoms.13,16 Nevertheless, testing this hypothesis here is
unfeasible given the computational limitations of CASSCF and
RASSCF algorithms; we therefore limit our approach to include
one virtual d shell for atomsNa−Fr and additionally one virtual f
shell for Rb−Fr. Nonetheless, we come within 8−12% total
relative error for these atoms.
Spin-dependent HFCCs are known to be particularly sensitive

to correlation effects from inner-core electrons; to investigate
this, we performed RASSCF and RASCI calculations with RAS1
subspaces spanning most of the core region. All RASCI
calculations are performed with CASSCF(11,15)-optimized
orbitals for consistency. Orbital decomposition analysis of
RASCI results (Figure 1a) reveals a trend of decreasing HFC
contribution with increasing angular momentum. Most s and p
orbitals are strongly coupled by the HFC operator and make
significant (>10 MHz) direct contributions to the HFCC. The
influence of (virtual) polarization functions (4−5% increase in
HFCC accuracy) is not reflected by the relatively insignificant
contributions (<10−3 MHz) shown in the orbital decomposition
diagram. Therefore, such functions have a predominantly
indirect effect, displacing spin density from orbitals with
significant HFC contributions. Occupied d and f shells show
similarly small orbital decomposition contributions, and addi-
tionally, our calculations suggest their inclusion leads to
insignificant variations in the computed HFCC. As such, we
conclude that core d and f orbitals of alkali atoms can be safely
left out of the RAS1 subspace for the purpose of HFCC
determinations. We note that the error with respect to
experimental HFCCs plateaus around 10% for RASCI (Figure
2), which could be a consequence of the restricted excitation
level and/or the basis set size. These results are nevertheless very
encouraging, considering the highly correlated nature of atomic
systems, as well as the fact that our calculations explore a

relatively limited parameter space (contracted basis sets, RAS1/
RAS3 subspaces limited to no more than 35 orbitals).
Lastly, the issue of orbital optimization in RAS calculations

bears discussion. The super-CI algorithm employed by Open-
Molcas “folds” single excitations involving inactive and
secondary orbitals into the active MO coefficients,68 thus
capturing more correlation than a CI-only calculation with the
same parameters. Theoretically, orbital optimization should
allow for accurate HFCCs to be obtained with relatively little
computational expense, since the active space needs only be
large enough to capture the significant correlation contributions
to HFC; indeed, this proves true for CASSCF; however, for
RASSCF, the results are unpredictable. In the case of light alkali
(Li−K), it was possible to run RASSCF calculations involving
the entire core s and p manifold, together with polarization
functions, which produced HFCCs in excellent agreement with
experiment. On the other hand, this approach is prohibitive for
heavier atoms�even if memory is not a limitation, orbital
optimization is slow and prone to convergence issues. We
therefore only employ RASCI for large active space calculations
on Rb−Fr. RASSCF calculations involving fewer active orbitals
were also attempted; however, the resulting HFCCs were on
average less accurate than those from RASCI. It appears that the
excitation level restriction severely hinders the efficiency of
orbital optimization; stochastic CASSCF78 and DMRG-
CASSCF methods79 are likely to provide more accurate
HFCCs; however, due to additional uncertainty introduced by
approximate CI solvers, such algorithms are not explored herein.
4.3. Coinage Metals. The treatment of HFC in coinage

metals is very similar to that of the alkali metals, given they both
have single-reference 2S1/2 ground states. A notable point of
difference is the valence d shell which, unlike the core-like d
shells in alkali atoms, imparts a significant contribution to the

Figure 2. Evolution of HFCC absolute error with active space size for alkali atoms. Absolute errors are computed with respect to experimental data
from ref 22.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00257
J. Chem. Theory Comput. 2022, 18, 4719−4732

4726

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00257?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00257?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


HFCC. Correlating the entire valence region is therefore not
feasible with CASSCF, and in this case, RASSCF is the only
option. We find that the benefits of a larger active space
outweigh the limitations due to excitation level restrictions,
leading to a net improvement in HFCC accuracy from CASSCF
to RASSCF (Table 2). This contrasts with the behavior
observed for the alkali metals, indicating that it is perhaps the
nature of the correlated orbitals (valence vs core), rather than
the CI approximation, that makes the biggest difference to
theoretical HFCCs.
All RASCI calculations reported herein were performed using

a RASSCF(19,26)-optimized orbital space for all coinage
metals. Surprisingly, correlating most of the s and p manifold
changes the initial RASSCF HFCCs very little; the largest
variations are observed in calculations that correlate additional
polarization shells. We observe improvements of 2−6% upon
including one f shell in the orbital optimization step (cf. the
RASCI results in Tables 2 and S2). Despite the significant
challenges associated with these elements, HYPERION is still able
to achieve relative errors of less than 15%.
Some notable differences between the coinage metals and the

alkali are highlighted by the orbital decomposition analysis.
Figure 1 shows orbital decomposition diagrams obtained from
RASCI calculations on 133Cs and 197Au atoms; while both
systems have a 6s1 ground configuration, their core config-
urations set them apart, which is reflected by the observed HFC.
Compared to 133Cs, 197Au exhibits stronger coupling between d
orbitals, as well as more significant contributions from the f
polarization shell (however, the latter could be a consequence of
including this shell in the orbital optimization step). Never-
theless, in both cases, the largest contributions to HFC are
concentrated around orbitals 5s−7p, with additional non-
negligible couplings involving the most diffuse s and p functions.
4.4. Groups VI-B (Cr) and VIII-B (Fe). The hyperfine

structure of transition metal (TM) atoms with partially filled d
shells is by far the most challenging to model due to a number of

competing factors. The orbital angular momentum couples to
the nuclear spin through the PSO mechanism, and the resulting
HFCC contribution is similar in magnitude to the spin-
dependent FC+SD contribution (Figure S3). Both SOC and
spin density must therefore be modeled accurately. On the one
hand, the RASSI approach requires a sufficient number of spin-
adapted states in order to represent the SOC states accurately,
where the number of optimized roots corresponds to the lowest-
energy Russell−Saunders (LS) terms (Table 3). Additional LS
terms were included for 101Ru, 183W, and 189Os to obtain a
converged ordering of SO energies at the minimal CASSCF-SO
level.

On the other hand, the electronic states of TM atoms exhibit
significant mixing between ndN(n + 1)s2 and ndN+1(n + 1)s1
configurations; these have competing influences on the form of
the valence s orbital, as optimized singly occupied s functions are
usually more radially expanded than doubly occupied s
functions.76 The r( )N

3 dependence of the HFC operator
amplifies such differences, leading to computed HFCCs that are
very sensitive to variations in the CI expansion. This proves
particularly problematic when CASSCF/RASSCF orbitals are
averaged over states dominated by different configurations, such
as the low-lying 5D (3d64s2) and 5F (3d74s1) terms of 57Fe.82,83

Table 2. Unsigned Isotropic HFCCs in MHz Computed for the Ground States of Cu, Ag, and Aua

atom wave function RAS1 RAS2 RAS3 |A|
63Cu CASSCF(11,6) 1 × s, 1 × d 4137.3

CASSCF(19,14) 3 × s, 2 × p, 1 × d 4604.9
RASSCF(19,19) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d 4611.3
RASSCF(19,26) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d, 1 × f 4831.4
RASSCF(19,35) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d, 1 × f, 1 × g 4813.7
RASSCF(29,45) 3 × s, 2 × p, 1 × d 1 × s 3 × s, 2 × p, 1 × d, 1 × f, 1 × g 5004.8
RASCI(29,50) 3 × s, 2 × p, 1 × d 1 × s 5 × s, 6 × p, 1 × d, 1 × f 5036.5
Experimental 5866.9

107Ag CASSCF(11,6) 1 × s, 1 × d 1325.1
CASSCF(19,14) 3 × s, 2 × p, 1 × d 1455.1
RASSCF(19,19) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d 1481.1
RASSCF(19,26) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d, 1 × f 1594.6
RASCI(37,54) 4 × s, 3 × p, 1 × d 1 × s 5 × s, 6 × p, 1 × d, 1 × f 1620.6
RASCI(47,59) 4 × s, 3 × p, 2 × d 1 × s 5 × s, 6 × p, 1 × d, 1 × f 1619.4
Experimental 1712.5

197Au CASSCF(11,6) 1 × s, 1 × d 2362.1
CASSCF(19,14) 3 × s, 2 × p, 1 × d 2536.0
RASSCF(19,19) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d 2608.3
RASSCF(19,26) 1 × s, 1 × p, 1 × d 1 × s 1 × s, 1 × p, 1 × d, 1 × f 2733.6
RASCI(45,54) 5 × s, 4 × p, 1 × d 1 × s 4 × s, 5 × p, 1 × d, 1 × f 2704.6
Experimental 3049.7

aThe RAS1, RAS2, and RAS3 columns indicate the number of atomic shells�separated by angular momentum�included in each subspace.
Experimental HFCCs are reproduced from ref 75.

Table 3. Number of Spin-Adapted Roots Optimized for Each
Spin S and Corresponding LS Terms

atom number of roots LS terms
53Cr 1 (S = 3), 6 (S = 2) 7S, 5D, 5S
95 Mo 1 (S = 3), 6 (S = 2) 7S, 5D, 5S
183W 1 (S = 3), 5 (S = 2), 3 (S = 1) 7S, 5D, 3P
57Fe 12 (S = 2) 5D, 5F
101Ru 7 (S = 2), 7 (S = 1) 5F, 3F
189Os 12 (S = 2), 10 (S = 1) 5D, 5F, 3P, 3F
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Note that CASSCF(8,6)-SO HFCCs for 101Ru are in much
better agreement with experiment than 57Fe HFCCs (Figure 3);
this is because the 101Ru 5F term is sufficiently energetically
separated and can be modeled without requiring additional
quintet roots in the spin-adapted CASSCF step. Similar state-
averaging effects are observed in the quintet levels of 53Cr and
95Mo.

Although relatively small in magnitude, the spin-dependent
part of TMHFCCs depends on SP and higher-order correlation,
similar to the spin-only HFCCs of alkali and coinage metals.
Unlike the 2S1/2 systems, however, the expanded RAS2 subspace
precludes large RAS optimizations. Therefore, calculations that
correlate the entire core region were only feasible with RASCI
for 3d TMs; however, this still gave very good results (Figure 3).

Figure 3. Unsigned HFCCs computed by HYPERION for selected energy levels of Cr group and Fe group atoms. Experimental HFCCs are reproduced
from ref 80 (53Cr), 81 (95Mo, 183W), 82 and 83 (57Fe), 84 (101Ru), and 85 (189Os).
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RASCI-SO HFCCs computed for 57Fe are overall improved
compared to CASSCF(8,6)-SO; meanwhile, RASCI-SO
HFCCs for all 53Cr energy levels except 5S2 are slightly worse
than those obtained from CASSCF-SO. We note that the
RASCI-SO energies determined for 53Cr do not match the
ordering observed experimentally and that the wrong ground
state is predicted, indicating inaccuracies in the electronic wave
function that are reflected in the calculated HFCCs. RASSCF-
SO calculations correlating the valence shells were performed
for all six atoms, yielding HFCCs that are overall less accurate
compared to CASSCF-SO for the 3d and 5d TMs. The
improvement with RASSCF observed for 95Mo and 101Ru can be
justified by their well separated ground terms, which prevents
state contamination during the RASSCF optimization.
Overall, it appears that minimal CASSCF-SO provides the

most balanced model for the hyperfine structure of TMs, with
errors around 25%. Approaches that include more correlation
effects can theoretically improve the accuracy of the FC+SD
term; in practice, however, the state-averaging formalism
employed in CASSCF-SO, combined with the number of
optimized spin-free states�which are likely characterized by
different dynamical correlation effects�worsen the quality of
the SO-coupled wave functions,86,87 which propagates to the
computed HFCCs.
4.5. Lanthanides. The hyperfine structure of lanthanide

(Ln) atoms is dominated by the PSO term, with previous work
suggesting minor contributions from core polarization.88 As the
6s orbital and the 4f manifold are energetically well separated, CI
effects between the two are negligible and the HFC response is
expected to arise predominantly from the 4f shell. Hence, we
compute the HFCCs of multiple levels in 4fN6s2 Ln atoms using
a minimal CASSCF(N,7)-SO, with the number of optimized
roots (Table 4) selected using a similar approach to section 4.4.

Predicted HFCCs (Table 5) are in remarkable agreement
with experiment overall.89 The poorest agreement is observed
for 151Eu and 165Ho; the former has a spin-only septet ground
state, which only exhibits spin-dependent HFC (no PSO
contribution), and hence requires a more sophisticated
treatment of correlation. Inaccuracies in the latter could also
be due to missing CI effects, as indicated in previous work,89 but
increasing the active space with CASSCF or RASSCF methods
had no appreciable impact on the calculated HFCCs here.

5. CONCLUSIONS
We have presented a new computational package, HYPERION,
that enables the evaluation of relativistic picture-change-

corrected magnetic resonance parameters from CASSCF-SO
and RASSCF-SO wave functions, along with a new orbital
decomposition method to assist in choosing appropriate active
spaces for HFCC calculations. We used this code to study the
hyperfine structure of alkali metal, transition metal, and
lanthanide atoms in order to understand the range of
applicability afforded by this approach. Our best predicted
HFCCs are within 10% accuracy for alkali, 15% for coinage
metals, and 20% for lanthanides (although the vast majority of
Ln HFCCs deviate less than 10% from the experimental value).
The hyperfine structure of group VI-B (Cr) and group VIII-B
(Fe) transition metals proved to be the most challenging to
model; however, despite the larger percentage errors, we obtain
theoretical HFCCs that closely follow experimentally observed
trends. Based on these results, we devised a number of guidelines
for modeling HFC in systems exhibiting important correlation
effects, strong SOC, or a combination of both. In future work,

Table 4. CASSCF(N,7)-SO-Optimized LSTerms for Each Ln
Atom

atom LS terms
141Pr 4I
143Nd 5I
147Pm 6H
147Sm 7F, 5D
151Eu 8S
159Tb 6H, 4I
161Dy 5I
165Ho 4I
167Er 3H, 3F, 1G
169Tm 2F

Table 5. Unsigned Isotropic HFCCs in MHz Determined for
Ln Atomsa

atom level |AFC+SD| |APSO| |Atot| |Aexpt|
141Pr 4I9/2 28.6 933.9 962.5 926.2

4I11/2 13.9 759.4 773.4 730.4
4I13/2 0.4 654.8 655.1 613.2
4I15/2 13.3 587.0 573.8 541.6

143Nd 5I4 6.2 207.5 201.3 195.7
5I5 3.8 163.1 159.3 153.7
5I6 1.7 137.7 135.9 130.6
5I7 0.3 121.8 122.1 117.6
5I8 2.4 111.2 113.6 110.5

147Pm 6H7/2 42.0 472.3 430.4 447.1
147Sm 7F1 34.8 70.4 35.6 33.5

7F2 28.6 70.4 41.8 41.2
7F3 20.4 70.4 50.0 50.2
7F4 11.2 70.4 59.2 59.7
7F5 1.7 70.4 68.7 69.1
7F6 7.7 70.4 78.1 78.4

151Eu 8S7/2 1.8 0.0 1.8 20.1
159Tb 6H15/2 25.2 720.0 745.2 673.8

6H13/2 2.8 773.4 770.7 682.9
6H11/2 34.0 856.8 822.9 729.0

161Dy 5I8 2.7 124.9 127.6 116.2
5I7 0.3 136.8 137.1 126.8
5I6 1.9 154.6 152.7 139.6
5I5 4.3 183.2 178.9 162.0
5I4 6.9 233.2 226.2 205.2

165Ho 4I15/2 28.6 1253.7 1225.1 800.6
4I13/2 0.7 1398.4 1399.0 937.2
4I11/2 29.8 1621.9 1651.7 1035.1
4I9/2 61.5 1994.5 2056.0 1137.7

167Er 3H6 9.2 136.2 127.0 120.5
3F4 16.8 147.1 130.4 121.8
3H5 4.7 158.0 162.7 159.5
3H4 5.2 168.4 173.6 173.4
3F3 4.6 149.8 145.2 143.5
3F2 14.4 217.9 203.5 167.1

169Tm 2F7/2 48.4 433.0 384.7 374.1
2F5/2 115.8 577.4 693.2 704.6

aExperimental HFCCs are reproduced from ref 89.
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these guidelines will be refined by using HYPERION to study HFC
in molecular systems.
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