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Abstract

Background: The differentiation of hematopoietic stem cells into platelet-forming
megakaryocytes is of fundamental importance to hemostasis. Constitutive apoptosis is an integral,
yet poorly understood, facet of megakaryocytic (Mk) differentiation. Understanding Mk apoptosis
could lead to advances in the treatment of Mk and platelet disorders.

Results: We used a Gene-ontology-driven microarray-based transcriptional analysis coupled with
protein-level and activity assays to identify genes and pathways involved in Mk apoptosis. Peripheral
blood CD34* hematopoietic progenitor cells were induced to either Mk differentiation or, as a
negative control without observable apoptosis, granulocytic differentiation. Temporal gene-
expression data were analyzed by a combination of intra- and inter-culture comparisons in order
to identify Mk-associated genes. This novel approach was first applied to a curated set of general
Mk-related genes in order to assess their dynamic transcriptional regulation. When applied to all
apoptosis associated genes, it revealed a decrease in NF-kB signaling, which was explored using
phosphorylation assays for IkBa and p65 (RELA). Up-regulation was noted among several pro-
apoptotic genes not previously associated with Mk apoptosis such as components of the p53
regulon and TNF signaling. Protein-level analyses probed the involvement of the p53-regulated
GADDA45A, and the apoptosis signal-regulating kinase | (ASK ). Down-regulation of anti-apoptotic
genes, including several of the Bcl-2 family, was also detected.

Conclusion: Our comparative approach to analyzing dynamic large-scale transcriptional data,
which was validated using a known set of Mk genes, robustly identified candidate Mk apoptosis
genes. This led to novel insights into the molecular mechanisms regulating apoptosis in Mk cells.
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Background

One hundred years after the identification of megakaryo-
cytic (MKk) cells as the origin of platelets [1] consecutive
yet distinct developmental stages and the associated stage-
specific markers of megakaryopoiesis have now been well
established. However, the molecular and cellular mecha-
nisms through which these cells differentiate and mature
remain poorly understood. Mk cells derive from bi-potent
erythro-Mk progenitors [2,3]. Committed Mk progenitors
undergo endomitosis and become polyploid with multi-
lobated nuclei. At this stage, Mk cells undergo morpho-
logical changes including the development of a
demarcation membrane system and dramatic increase in
cell size [4]. Polyploidization and platelet release are
linked to a program of constitutive apoptosis. While some
reports have suggested that Mk apoptosis does not occur
until after full maturation [5,6], a growing number sug-
gest that apoptosis and maturation are intimately linked
[7-11]. The peak in apoptotic cells during culture coin-
cides with the peak in polyploidization [7,10]. The addi-
tion of caspase inhibitors delays proplatelet formation
and postpones the peak (but not the onset) of polyploidi-
zation [10,11]. Although the mechanism by which Mk
apoptosis is controlled is poorly understood, some evi-
dence exists that the classical modulators of apoptosis are
involved. Bcl-x;, an anti-apoptotic gene of the Bcl family,
is up-regulated as Mk cells mature and then partitions to
the shedding platelets [6]. Bcl-x; over-expression in vivo
impairs recovery from immune thrombocytopenia and
yields a small increase in Mk cell numbers [12]. Expres-
sion of Bcl-2, another anti-apoptotic gene, was decreased
in a megakaryoblastic cell line and was low and
unchanged during thrombopoietin (Tpo)-driven matura-
tion of cord-blood CD34+ cell derived Mk cells [6]. Bcl-2
over-expression throughout the murine hematopoietic
compartment led to a 50% reduction in platelet levels
with no change in Mk cell numbers [13]. Furthermore,
irregular patterns of Mk apoptosis have been associated
with Mk-cell-related diseases including immune throm-
bocytopenic purpura [14].

DNA-microarray-based genomic approaches have the
potential to identify novel genes related to Mk differenti-
ation and potentially link them to the existing knowledge
base. Prior microarray studies have primarily examined
Mk gene expression by comparing normal- and disease-
state Mk cells [15], and by comparing culture-derived Mk
cells to uncultured progenitor cells [16] or non-Mk cells
[17] at single time points. Two recent papers have
explored progressions of Mk differentiation using micro-
arrays including murine Mks sorted by light-scattering
properties and CD41 expression [18], and human Mks
sorted by ploidy class [19]. Furthermore, two recent stud-
ies from our lab have exploited the richness of informa-
tion from temporal analysis of Mk gene expression in
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both primary CD34+ cell [20] and megakaryoblastic cell
line cultures [21]. However, microarray data have not
been systematically used to examine the transcriptional
dynamics of important cellular programs related to meg-
akaryopoiesis such as apoptosis, cell cycle, or cytoskeletal
biology.

The goal of this study is to utilize global gene expression
profiling and functional Gene Ontology (GO) classifica-
tions to identify Mk genes involved in apoptosis - a pro-
gram of paramount importance to Mk differentiation. The
GO classification allows one to select a set of genes of gen-
eral or specialized cellular function or role that can be
examined for gene expression patterns [22]. Previously,
we utilized GO classifications to assess the underlying
functional make-up of clusters formed by analysis of the
raw data alone [21]. Here, we show that GO classifications
can be used to successfully identify the genes involved in
the Mk apoptosis program using the data from our high-
quality DNA-microarray analysis without introducing any
other selection biases.

Results

Ex vivo Mk differentiation of human CD34+ cells

CD34+ stem and progenitor cells from three healthy
donors were cultured for 21 days with Tpo, interleukin
(IL)-3 and Flt-3-ligand, a cytokine combination that pro-
motes moderate expansion and differentiation along the
Mk lineage [9]. The number of total nucleated cells con-
tinuously increased over time and reached 54(+ 9)-fold by
day 19 (mean + SEM, n = 3), whereas the total Mk produc-
tion (CD41a+ cells per input CD34+ cell) peaked at 7.5
between days 9 and 12 (data not shown). As early as day
2,21 + 8% of the cells in culture expressed CD41a (Figure
1A). The percentage of CD41a* cells increased until day 9
as the percentage of CD34+ cells decreased (Figure 1A).
The number of Mk progenitor cells, as measured by Mk
colony formation in semi-solid media cultures, was high-
est in the starting CD34+ cells and gradually decreased
(Figure 1A). Cells displayed Mk morphological features
including increased cell size and multilobated nuclei (Fig-
ure 1B) and some cells exhibited proplatelet formations
(data not shown) as previously reported [9]. High-ploidy
cells (=8N), as detected by flow cytometry, started appear-
ing on day 5 and reached a peak at day 12 with DNA con-
tent up to 16N (Figure 1C). A
CD41a+*AnnexinV+Propidium-iodide— apoptotic Mk cell
population was detected by flow cytometry as early as day
5 and a significant increase in apoptosis was observed
between days 9 and 12 (Figure 1D).

A proposed set of comparative analyses to reliably identify
Mk-related genes

The goal of this study is to combine ontological classifica-
tions with temporal DNA-microarray data in order to
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Phenotypic analysis of ex vivo Mk differentiation from
CD34* progenitor cells. Mobilized peripheral blood
CD34* cells were cultured in serum free media with an Mk-
inducing cytokine cocktail of IL-3, FIt3-L and Tpo. (A) Per-
centages of viable cells expressing CD34 (squares) and
CD4la (triangles) in Mk cultures, as assessed by flow cytom-
etry (n = 3). The decline in Mk progenitor cell frequency, as
measured by the CFU-Mk assay in a representative experi-
ment (circles), slightly preceded loss of CD34 expression. (B)
Wright-Giemsa stained cells from day 7 Mk culture displaying
Mk cell morphological features. Image acquired with 63%
objective shows representative field. Scale bar represents 20
pm. (C) The percentage of high ploidy (= 8N) among
CD4la* cells from one representative experiment (n = 3).
Inset shows example DNA histogram and gating from day 2.
(D) The percentage of apoptotic (Annexin V*/PI-) cells
among CD4la* cells from one representative experiment (n
= 3). Inset shows example scatter plot and gating from day
I.

identify Mk-related genes involved in apoptosis. DNA-
microarray-based transcriptional analysis was carried out
using the mixed-cell population in Mk cytokine cocktail
cultures from days 0 - 4 and, starting on day 5, using
CD41at cells enriched to above 97% by positive-selection
using immunomagnetic beads (Figure 2A). As a control,
transcriptional analysis was also performed on concur-
rent, isogenic granulocytic (G) cell cultures. These G cul-
tures showed extensive G commitment as assessed by flow
cytometry of G markers: on days 5 and 11, the G cell cul-
tures were, respectively, 40% and 87% CD15%; 26% and
70% CD11b*; and 10% and 65% CDG66b* (data not
shown). Moreover, G cell cultures displayed rapid expan-
sion, normal ploidy and, most importantly, no apoptosis
detectable by Annexin V binding (data not shown). Cru-
cial to the success of the gene identification and selection
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process is the combined use of three comparative, tempo-
ral gene expression analyses. (1) For the Mk cultures, the
gene expression level at each time point is compared
against that of CD34+ cells from day 0 (n = 3). This com-
parison should identify genes regulated by the Mk-
cytokine cocktail, including genes that are regulated as the
CD34+ cells shift from quiescence to cycling in response to
initial cytokine stimulation. (2) We also compared the
gene expression level in selected CD41a+ cells (days 5-12;
n = 3) against the average gene expression level in cells at
days 1-4. This comparison should identify differentially
expressed genes in committed Mk cells compared to the
mixed population of days 1-4, which are more actively
cycling and also express genes of other hematopoietic and
tissue lineages. (3) We compared the average gene expres-
sion of selected CD41a+ cells (days 5-12) against equiva-
lent-day cells from concurrent, isogenic G cell cultures (n
= 2). Due to the lack of apoptosis in the G cell cultures,
this comparison is especially suitable for identification of
Mk-related apoptosis genes. (4) Finally, we compared the
gene expression levels in later days (starting on day 5) of
G-culture cells compared to the average expression in days
1-4 (n = 2). This comparison should identify genes with
differential expression patterns in differentiating G cells
and, as we show below, adds further discrimination capa-
bility.

Of the approximately 18,000 genes probed by the arrays,
3918 were found to be differentially expressed in at least
one of the aforementioned comparisons (see complete list
in Additional File 1). The three biological replicate cul-
tures showed highly reproducible gene expression pat-
terns (see Additional File 2). This biological
reproducibility is consistent with previous studies from
our laboratory [21]. Thus, for simplicity and ease of pres-
entation, we have averaged the gene expression data
across cultures for presentation in the figures. Real-time
quantitative reverse-transcription polymerase chain reac-
tion (Q-RT-PCR) analysis was used to validate the micro-
array results of three differentially expressed genes,
including two apoptosis-related genes discussed later
(BBC3, MAP3K5; Figure 2B). As we have previously
reported [20,21,23], the data from the Agilent microarrays
strongly correlated with the Q-RT-PCR results, although
Q-RT-PCR data generally show larger fold-changes com-
pared to microarray analysis.

Method assessment and the transcriptional program of
core Mk genes

In order to assess the validity of the proposed strategy, we
first aimed to apply it to a better defined and more general
set of megakaryocytic genes. Because of the limited
number of genes annotated under the ontological term
"Megakaryocyte differentiation”, we curated a list of 57
Mk genes based on existing literature [4,24-31] that are
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Figure 2

Q-RT-PCR verification of selected microarray results and transcriptional analysis of Mk genes. (A) For transcrip-
tional analysis beginning on day 5, Mk culture samples were enriched for CD4la* cells by positive immunomagnetic selection.
Flow cytometric analysis after selection revealed high purity. Data is shown for one representative sample point from one cul-
ture. Open line: isotype control; Filled line: cells after selection. (B) Q-RT-PCR validation of microarray results across multiple
Mk culture samples. Microarray log expression ratios from Mk culture samples are compared to values obtained using Q-RT-
PCR for each of 3 genes — BBC3 (squares), MAP3K5 (diamonds), and SIRT7 (triangles). (C) Expression profiles for 33 Mk genes
that were differentially expressed with time in Mk cultures and/or between Mk and G cultures. Color denotes degree of differ-
ential expression (saturated red = 4-fold up-regulation, saturated green = 4-fold down-regulation, blank = unchanged, gray =
no data available). The first block shows average expression ratios across the biological replicates (n = 3) for the designated
samples as compared to day 0 CD34* cells; the second block shows expression ratios, averaged across the biological replicates
(n = 3), as compared to the average expression from days | — 4; the third block shows average expression profiles as com-
pared to equivalent-day G cells (day 12 Mk vs. day || for G cells) (n = 2); and the last block shows expression profiles of G
cells with respect to average expression of G cells on days 14 (n = 2). The median ratio, along with the maximum (for up-reg-
ulated genes) or minimum (for down-regulated genes) ratio of Mk cells on days 5 — 12 (with respect to average expression of
days |—4) is provided (a negative value represents down-regulation).
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represented on the Agilent Human 1A(v2) array by a total
of 64 probes (see Additional File 3). This set of genes and/
or the proteins encoded by these genes have been estab-
lished as associated with megakaryopoiesis through a
variety of studies employing primary and immortalized,
human and murine cells. However, their temporal tran-
scriptional programs in primary human cells remain
largely unknown. In addition to testing our proposed GO-
driven method for identifying Mk-associated genes, our
study aimed to also establish the temporal programs of
these core Mk genes in primary human Mk cell cultures.
We expected that several, but not all, of these genes would
be transcriptionally regulated, but, for most of them, we
had no means to anticipate which are transcriptionally
regulated or what the strength of their transcriptional reg-
ulation might be based on their role or importance.
Among these 57 curated genes, 33 genes (represented by
34 probes) were differentially expressed (Figure 2C). The
four comparative analyses demonstrate a large repertoire
of temporal expression patterns that cannot be uniquely
captured by any single analysis or without temporal anal-
ysis of gene expression. For example the critical Mk tran-
scription factor gene GATAT is dramatically up-regulated
by the early time-points of Mk culture, remains
unchanged after day 5, and is down-regulated after day 7
in the G cultures. This is consistent with GATA1's role in
both early and intermediate stages of Mk differentiation
[32,33]. Like GATA-1, some Mk-related genes (ITGA2B
(CD41b), CD36, MAFG) are expressed higher in both
mixed and CD41a*-cell-enriched Mk-culture cells com-
pared to day 0 CD34+ cells, while many others (e.g. PF4,
ITGB3 (CD61), vWF, and SELP (CD62p)) are expressed
higher only in the selected CD41a+ cells. Significantly, to
the best of our knowledge, these temporal expression pat-
terns, although they have not all been previously detailed
in primary human cells, are consistent with prior litera-
ture and validate this approach to gene selection. As
expected, many Mk- and platelet-specific transcripts were
highly expressed in selected CD41a+ cells. This included
genes encoding a variety of integrins and receptors
(ITGA2B, ITGB3, GP5, GP6, GP9, CD36, and CD?9), cell
cycle regulators (CCND3, CDKN1A (p21)), platelet gran-
ule proteins (PPBP, SELP, and CXCL5), and transcription
factors (GATA1, TAL1, MAFG, FLI1). Finally, it is interest-
ing to note that a few Mk-related genes (PPBP, PF4, CD36,
FLI1), although expressed significantly higher in Mk cells
compared to G cells, are transiently up-regulated in inter-
mediate granulopoiesis (Figure 2C), as well.

In summary, the combination of four comparative gene
expression approaches led to the identification of 58%
(33/57) of the literature-based Mk-related genes - a signif-
icant enrichment over the 21% differential expression
among all genes, despite the fact that not all of these 57
genes would be expected to be transcriptionally regulated.
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More importantly, this analysis identified most of the
known transcriptionally-regulated Mk genes with the
exception of some genes regulated by the late-Mk tran-
scription factor NF-E2, such as myosin heavy polypeptide
9 (MYH9) and 3-B-hydroxy-steroid-dehydrogenase. In the
Discussion, we also show that our method identifies most
of the findings from a recent non-temporal transcriptional
analysis of Mk colonies derived from cord-blood CD34+
cells [34]. We next applied this strategy for the identifica-
tion of apoptosis-related genes associated with Mk differ-
entiation.

The apoptosis transcriptome

Apoptosis is an integral part of terminal Mk differentia-
tion and is required for proplatelet formation and platelet
release [11,35,36]. Although many established molecular
events in apoptosis are post-transcriptional and most cells
constitutively express both pro- and anti-apoptotic com-
ponents of the cell death machinery, it is nevertheless
known that some of the apoptotic machinery is transcrip-
tionally regulated [37]. Thus, we examined whether GO
classification [22], combined with our microarray-based
transcriptional data, can be used to identify Mk-related
apoptotic genes. Using GO classification, we generated a
list of 220 genes related to general and hematopoietic
apoptosis that are represented on the Agilent
Human1A(v2) array. We then employed the same com-
parative analyses used in Figure 2C. However, we show
only the last three analyses (Figure 3A-D) because the
comparison to day 0 CD34+ cells is uninformative for
apoptosis-related genes since initial cytokine treatment is
likely to cause expression changes in apoptosis-related
genes that are unrelated to Mk differentiation (false-posi-
tives) and terminal Mk apoptosis is not detected until day
5 (Figure 1D). As discussed above, the isogenic G cultures
displayed no detectable apoptosis and cell viability
remained above 93% (data not shown). Using these com-
parisons, we identified a list of 79 differentially-expressed
apoptosis-related genes. Hierarchical clustering revealed
distinct expression patterns for these 79 genes and
allowed us to divide them into four clusters: (A) down-
regulated after day 5 in both Mk and G cells compared to
early days, but expressed lower in Mk than in G cells (Fig-
ure 3A); (B) up-regulated in Mk cells compared to both
unselected early cells and G cells (Figure 3B); (C) down-
regulated in Mk, but up-regulated in G cells after day 5
compared to early days (Figure 3C); and (D) up-regulated
in both Mk and G cells after day 5 compared to early days,
but expressed lower in Mk than in G cells (Figure 3D).

Anti-apoptotic genes related to NF-xB signaling are down-
regulated in both Mk and G cultures

Cluster A includes 14 genes that were down-regulated in
both Mk and G cells but were more extensively down-reg-
ulated in Mk cells (Figure 3A), including 8 genes that

Page 5 of 15

(page number not for citation purposes)



BMC Genomics 2007, 8:384

£

§ H

B k]

= =
30 38 TNFRSF8
28  -38 BCL2
A6 21
-2.1 -26 PRDX2
A6 17 PLAGL1
1.5 -21 BRCA1
16 21 AATF

1.4 -1.8  MYBL2
48 23 CARDY
-2.0 -22 PDCD11
20 25 IKBKAP
30  -36 PRKCZ
24 31 PDCD5
-2.7 -3.7 TRAF3
38 43 PIM2

30 41 BBC3

24 31 AHR

34 38 TGFBI
28 30 BTK

28 30 MAP3KS
45 62 NCKAP1
77 97 CDKN1A
85 144 CASP14
36 45 NFKBIA
39 48 GADD4SA
51 57  HIPK2
42 67 HIPK2
34 46 SNCA
42 18 LB

17 40 BIRC3
10 13 DFFB

11 12 CASP3
41 15  SMNDCi
13 14 DOCKi
17 1.7 RIPK2
16 22 FOX03A
19 22 BAG3

14 16 EGLN3
13 15 BIRC2
16 19 TNF

14 16 TRAFG
16 1.7 PPP1R15A
16 17 BCAP29
14 15 PMAPI
17 18 MCL1

17 19 TNFRSF5
18 19 HTATIP2
14 16 EBAGY
14 16 BECN1
15 20  MAPK1
16 1.8 PNUTL2
19 34 FOXOIA
24 26 R4

19 26 BCL2L2
19 20 TNFRSF14
25 35 P2RXi
24 31 DAP

-1.1 -1.2 IER3

1.3 -1.4 TNFRSF1B
-1.9 -23 PYCARD
46 20 CIAST
-1.5 -1.6 BIRC1
-1.1 -1.1  TRADD
40  -11  CARDI0
A4 12 NFKB1
1.0 12 SSTR3
10 11 SERPINB2
40 11 STKI7B
11 12 PGLYRP1
14 1.3 BCL2A1
1.0 11 CARD12
1.4 -1.7  GPR65
-1.5 -20 NRG2
2.2 -28 MTL5S
-1.7 -23 CAsP1
14 20 DUSPs
13 13 PRKAA1
12 15 CTNNAL1
11 1.2 BCAP31
13 20 APP

Figure 3

http://www.biomedcentral.com/1471-2164/8/384

Gene Name Description

Tumor necrosis factor receptor superfamily, member 8
B-cell CLL/lymphoma 2

TNFRSF12A Tumor necrosis factor receptor superfamily, member 12A

Peroxiredoxin 2

Pleiomorphic adenoma gene-like 1

Breast cancer 1, early onset

Apoptosis antagonizing transcription factor

V-myb viral homolog )-like 2
Caspase recruitment domain family, member 9
Programmed cell death 11

Inhibitor of k light polypep gene enhancer in B-cells, kinase cplx-assoc prot
Protein kinase C, zeta

Programmed cell death 5

TNF receptor-associated factor 3

Pim-2 oncogene

BCL2 binding component 3

Aryl hydrocarbon receptor

Transforming growth factor, beta 1

Bruton agammaglobulinemia tyrosine kinase
Mitogen-activated protein kinase kinase kinase 5
NCK-associated protein 1

Cyclin-dependent kinase inhibitor 1A (p21, Cip1)
Caspase 14, apoptosis-related cysteine protease
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
Growth arrest and DNA-damage-inducible, alpha
Homeodomain interacting protein kinase 2
Homeodomain interacting protein kinase 2

Synuclein, alpha

Interleukin 1, beta

Baculoviral IAP repeat-containing 3

DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase)
Caspase 3, apoptosis-related cysteine protease
Survival motor neuron domain containing 1
Dedicator of cytokinesis protein 1
Receptor-interacting serine-threonine kinase 2
Forkhead box 03A

BCL2-associated athanogene 3

Egl nine homolog 3

Baculoviral IAP repeat-containing 2

Tumor necrosis factor

TNF receptor-associated factor 6

Protein phosphatase 1, regulatory (inhibitor) subunit 15A
B-cell receptor-associated protein 29
Phorbol-12-myristate-13-acetate-induced protein 1
Myeloid cell leukemia sequence 1

Tumor necrosis factor receptor superfamily, member 5
HIV-1 Tat interactive protein 2

Estrogen receptor binding site associated, antigen, 9
Beclin 1

Mitogen-activated protein kinase 1

Peanut-like 2

Forkhead box O1A

Reticulon 4

BCL2-like 2

Tumor necrosis factor receptor superfamily, member 14
Purinergic receptor P2X, ligand-gated ion channel, 1
Death-associated protein

Immediate early response 3

Tumor necrosis factor receptor superfamily, member 18
\poptosit i k-like protein ining a CARD
Cold autoinflammatory syndrome 1
Baculoviral IAP repeat-containing 1

TNFRSF1A-associated via death domain

Caspase recruitment domain family, member 10

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
Somatostatin receptor 3

Serine (or cysteine) proteinase inhibitor, clade B

Serine/threonine kinase 17b

Peptidoglycan recognition protein 1

BCL2-related protein A1

Caspase recruitment domain family, member 12

G protein-coupled receptor 65

Neuregulin 2

Metallothionein-like 5, testis-specific

Caspase 1, apoptosis-related cysteine protease

Dual specificity phosphatase 6

Protein kinase, AMP-activated, alpha 1 catalytic subunit
Catenin (cadherin-associated protein), alpha-like 1
B-cell receptor-associated protein 31

Amyloid beta (A4) precursor protein

Differentially expressed apoptosis-related genes in Mk cells. Expression profiles of genes related to apoptosis (per
Gene Ontology) that were differentially expressed temporally in Mk cultures and/or between Mk and G cultures. (A — D)
Genes were divided into four groups according to their distinct expression patterns based on hierarchical clustering using the
Euclidian distance metric. Color denotes degree of differential expression (saturated red = 4-fold up-regulation, saturated
green = 4-fold down-regulation, blank = unchanged, gray = no data available). The first block shows expression ratios, averaged
across the biological replicates (n = 3), with respect to the average expression from days | — 4.; the second block shows aver-
age expression profiles as compared to equivalent-day G cells (day 12 Mk vs. day || for G cells) (n = 2); and the last block
shows expression profiles of G cells as compared to average expression of G cells on days 1—4 (n = 2). The median ratio, along
with the maximum (for up-regulated genes) or minimum (for down-regulated genes) ratio of Mk cells on days 5 — 12 (with
respect to average expression of days 1—4) is provided (a negative value represents down-regulation). Pro-apoptotic genes
names and descriptions are highlighted in red, anti-apoptotic genes are highlighted green and genes with both pro- and anti-
apoptosis roles are highlighted blue. Genes with unknown functions in apoptosis are in black.
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encode anti-apoptotic proteins and 3 that encode pro-
apoptotic proteins. The fact that this group has more anti-
apoptotic genes (labelled with green text in Figure 3A)
and that all showed faster or greater down-regulation in
Mk cells correlates with the observation that apoptosis is
only observed in the Mk cultures. BCL2 is a major anti-
apoptotic regulator and over-expression of BCL2 results in
decreased apoptosis and a significant reduction in platelet
numbers [11,13]. Several genes in this cluster are associ-
ated with NF-«B signaling. These include PDCD11, which
is a positive regulator for NF-xB signaling [38], and IKB-
KAP, which can bind NF-kB-inducing kinase (NIK) and
IKKs and assemble them into an active kinase complex
[39]. TNFRSF12A promotes survival via NF-kB activation
and Bcl-x;/Bcl-w expression [40]. This provides prelimi-
nary evidence that NF-kB signaling is reduced during ter-
minal Mk differentiation - an issue that is pursued further
below.

The kinetics of NF-xB activity and total versus
phosphorylated NFkBIA levels suggest an important role
for the NF-xB program in megakaryocytic apoptosis and
differentiation

Our microarray data show that the genes encoding various
units of NF-kB complex were either down-regulated (REL,
RELB) or not differentially expressed (NFKB1, NFKB2,
RELA) in Mk cell cultures. In contrast, NFKBIA mRNA,
which encodes the a-subunit of NF-«B inhibitor IkB, was
highly up-regulated in Mk cells (Figure 3B). Because of the
aforementioned expression changes among NF-«B path-
way members, we hypothesized that NF-«xB signaling
decreased during terminal Mk differentiation and apopto-
sis and sought to provide a first assessment of this hypoth-
esis. The NF-«B transcription factor complex, which is an
important regulator of cell proliferation and survival [41],
is sequestered in the cytoplasm bound by members of the
kB family of inhibitors (predominantly IxBa; Figure 4A).
NF-kB activation, which allows the translocation of NF-xB
to the nucleus, requires dissociation of the inhibitor IxB
(Figure 4A). This is accomplished, upon a suitable stimu-
lus, by phosphorylation and subsequent ubiquitination
and degradation of IkB (Figure 4A). Thus, IxB phosphor-
ylation is a good indicator of NF-«xB activity [42,43]. To
assess this, we examined the IkBa phosphorylation in Mk
cells by flow cytometry. Phosphorylated IxBoa was
detected in the majority of CD41a+* cells during early dif-
ferentiation but decreased after day 9 (Figure 4B). To fur-
ther strengthen these initial investigations on the
hypothesized role of NF-xB, we also examined phosphor-
ylation of p65 (the RELA gene product) - an established
indicator of optimal NF-«B activity [44] - in Mk cells by
flow cytometry. The amount of phosphorylated p65 in
Mk cells increased during the early days, reached a peak at
day 5, and then steadily decreased (Figure 4C). We also
examined the mRNA expression pattern of IkBa by Q-RT-
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Figure 4

NF-xB signaling increased during early Mk differenti-
ation and decreased during terminal differentiation.
(A) Cartoon depicting simplified NF-kB signaling pathway. 'P'
denotes phosphorylated form of protein. (B) lkBa phosphor-
ylation in Mk cytokine-cocktail-stimulated cultures was
examined by flow cytometry. Cells were stained with anti-
CD41a-FITC and rabbit anti-phospho-lkBa (Ser32) primary
antibody followed by APC-conjugated goat anti-rabbit sec-
ondary antibody. Results are from one representative exper-
iment (n = 2). (C) Kinetics of NF-kB p65 phosphorylation
(Ser529) in CD4la* cells from Mk cytokine-cocktail-stimu-
lated cultures was measured by flow cytometry. Data shown
is geometric mean fluorescence intensity of anti-phospho-
p65-antibody stained samples relative to cells stained with
isotype-matched control antibodies. Results are from one
representative experiment (n = 2). (D) Q-RT-PCR analysis of
IkBo mRNA expression in primary human CD34* cells stim-
ulated with 100 ng/mL Tpo.

PCR and found that IkBa expression correlated with Mk
differention state (Figure 4D). In both experiments, IkBa
expression was high (ca. 3-3.5 higher than the day 10
mRNA level; data not shown) on day 0 (uncultured
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CD34+ cells), decreased to low levels during the early
stages of megakaryopoiesis (day 3) and then gradually
increased as the cells became more mature Mk cells (day
10), thus confirming our microarray data. The experi-
ments shown (Figure 4D) used primary human CD34+
cells from two different donors with somewhat different
rates of Mk commitment; experiment 2 showed reduced
Mk commitment based on CD41 expression levels (data
not shown), and had lower levels of IkBa expression com-
pared to experiment 1 which displayed a stronger Mk
commitment.

To further test for changes in NF-kB activity during termi-
nal Mk differentiation, we examined the sub-cellular
localization of two activated components of the NF-xB
complex by staining with antibodies raised to the nuclear
localization sequence (NLS) of p50 or serine-phosphor-
ylated-p65 (Ser536). The expression of p50 was dim and
cytoplasmic in CD34+ hematopoietic stem cells (data not
shown), but early Mk differentiation (days 3 and 5)
brought about a pronounced cytoplasmic accumulation
of p50 (Figure 5). The effect was significantly weaker in
CD41-, non-Mk-committed cells found in culture (pink
arrows). Upon further Mk differentiation, p50 remained
cytoplasmic, but also translocated to the nucleus and
reached the peak of its expression on day 7. The level of
p50 decreased during late Mk differentiation (days 9 and
11) and p50 expression was low in the nucleus and the
cytoplasm. Together, these data indicate a dynamic tem-
poral expression pattern for p50 during Mk differentia-
tion, suggesting that NF-xB signaling is active in early
Mks, but decreases as the cells mature. In parallel experi-
ments, the expression of Ser536-phosphorylated p65 was
very low in CD34+ hematopoietic stem cells (data not

Day 3 Day 5 Day 7 Day 9

Day 11

DAPI

CD41-TR
+
DAPI

Figure 5

Immunofluorescence microscopy analysis of p50-
NLS. Human mobilized peripheral blood CD34* cells were
cultured in Tpo and harvested on the indicated day of culture
to analyze the expression and localization of the p50 nuclear
localization sequence (NLS) via immunofluorescence micros-
copy. Cells were co-stained with DAPI (blue) and antibod-
ies against p50-NLS (green) and CD4la (red). All images
were captured using a 63X oil immersion objective.
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shown), but intensified soon after Tpo-induced differenti-
ation (Figure 6, day 3), which is consistent with the flow
cytometry data previously presented (Fig. 4C). While
phosphorylated p65 was cytoplasmic in megakaryoblasts
(purple arrow), it was found in both the nucleus and cyto-
plasm in more mature Mks, as identified by characteristic
Mk morphology (yellow arrow). Concurrent with this
sub-cellular shift in p65 localization, Ser536-phosphor-
ylated p65 levels increased as Mk cells matured and
reached a peak on day 5. Phosphorylated p65 (Ser536)
levels then declined during further Mk differentiation
(days 7,9, and 11). We show a representative image from
day 9, but similar images were commonly found for days
7 and 11. Taken together, these data support our hypoth-
esis that NF-kB signaling decreases during late Mk matu-
ration and apoptosis, but as discussed below, further
investigations will be necessary to delineate its role and
impact on megakaryopoiesis.

The up-regulated apoptosis-related genes are enriched in
pro-apoptotic components including GADDA45A,
MAP3KS, various p53 targets, and components of the TNF
signaling pathway

The difference in progression of apoptosis between the
Mk and G cultures suggests there should be an enrichment
of pro-apoptotic genes in cluster B. These 42 genes (Figure
3B) are highly enriched, as predicted, in pro-apoptotic
genes. Namely, they include 27 genes that encode for pro-
apoptotic proteins (shown in red text), only 6 genes that
encode for anti-apoptotic proteins (green text), and the
balance play amphi-apoptotic or unknown roles (blue
text). Overall, this cluster identifies a unique set of genes
that were up-regulated during, and may be responsible
for, the progression of Mk apoptosis. We note that this

Day 3 Day 5 Day 9
+
DAPI

CD41-TR -
+
DAPI

Figure 6

Immunofluorescence microscopy analysis of phos-
pho-Ser536-p65. Human mobilized peripheral blood
CD34* cells were cultured in Tpo and harvested on the indi-
cated day of culture to analyze the expression and localiza-
tion of phosphorylated p65 (Ser536) via immuno-
fluorescence microscopy. Cells were co-stained with DAPI
(blue) and antibodies against phosphor-Ser536-p65 (green)
and CD4la (red). All images were captured using a 63X oil
immersion objective.
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cluster contains one of the few known players in Mk apop-
tosis, namely the effector caspase-3, which is activated
upon cleavage by caspase-9 during Mk apoptosis [11]. The
caspase-3 transcript level was only slightly up-regulated
among Mk cells, thus suggesting that our analysis can cap-
ture even subtle, yet significant, transcriptional effects. To
assess the protein activity of caspase-3, flow-cytometric
analysis was carried out and revealed that, after day 7, the
active-form caspase-3 significantly increased and corre-
lated well with progression of apoptosis in the Mk culture
(Figure 7A).

Most of the other genes present in this cluster have not
been previously associated with Mk apoptosis and pro-
vide new insights into the transcriptional control of Mk
apoptosis. Among members of the extrinsic pathway,
components of the TNF-signaling cascade (BIRC3
(cIAP2), BIRC2 (cIAP1), TNFRSF5, and TRAFG), but not
the Fas-signaling pathway, were found to be up-regulated.
There was significantly more activity among the compo-
nents of the intrinsic apoptosis pathway. Several members
of the Bcl-2 family were found in this cluster, including
both pro-apoptotic and anti-apoptotic regulators. BBC3
(PUMA) and PMAIP1 (NOXA) are pro-apoptotic mem-
bers of the Bcl-2 family under p53 control in response to
DNA damage [45,46]. Three other p53-regulated apop-
totic genes — GADD45A, PPP1R15A, and CDKN1A (p21) -
were included in this cluster. The involvement of p53 in
terminal Mk differentiation is further supported by our
unpublished observations that RNA-interference-medi-
ated knock-down of p53 in the megakaryoblastic CHRF
cell line leads to an increase in viability and enhanced
endomitosis upon phorbol-ester-induced terminal differ-
entiation (manuscript in preparation). We used immun-
ofluorescence microscopy to examine if GADD45A was
expressed at the protein level in Mk-cocktail cultures (Fig-
ure 7B). GADD45A expression in CD41a+ cells was low at
day 4, increased from day 7 to day 15, and was higher in
CD41a+ cells than in CD41a- cells. It was expressed in
both the nucleus and cytoplasm with increasing nuclear
localization, particularly among CD41a+ cells on days 12
and 15. Similar expression patterns were seen in Tpo-only
Mk cultures (data not shown).

Also in this cluster was MAP3K5, also known as Apoptosis
Signal-Regulating Kinase 1, which encodes a kinase that
participates in the ERK and JNK signaling pathways [47]
and contributes to apoptosis in various cell types [48-51].
We evaluated MAP3K5 protein expression by intracellular
flow cytometry and found that, among CD41a+* Mk cells
from cytokine cocktail cultures, it was markedly higher
from day 7 to day 15 than on earlier days (Figure 7C).
MAP3KS5 was also detected in Mk cells cultured with Tpo
alone, with a similar increasing trend (data not shown).
The correlation of protein and mRNA expression in paral-
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Figure 7

Analysis of apoptotic protein expression in Mk cul-
tures. (A) Kinetics of active (cleaved) caspase-3 (triangles)
correlates strongly with apoptosis as measured by AnnexinV/
Pl method (diamond) in cytokine-cocktail-stimulated Mk cul-
ture as assayed by flow cytometry. Data is from one repre-
sentative experiment (n = 3). (B) Cells from cytokine-
cocktail-stimulated Mk cultures were co-stained with DAPI
(blue), and antibodies against CD4la (red) and GADD45A
(green) from day 0 to day 15. Images shown are representa-
tive fields (n > 3 per slide). Results are from one representa-
tive experiment (n = 3). Image acquired with 20x objective.
(C) MAP3K5 (ASK1) protein expression (diamonds) in
cytokine-cocktail-stimulated Mk cultures as represented by
geometric mean fluorescence intensity of anti-MAP3K5-anti-
body stained samples relative to cells stained with isotype-
matched control antibodies (representative data from n =2
experiments). Protein expression correlates with average
MAP3K5 (ASK1) mRNA expression (squares) in CD4la*
cells as measured by microarray compared to average
expression in cytokine-cocktail-stimulated Mk cultures from
day | —4 (n = 3). MAP3K5 and GADD45A exhibited similar
protein expression patterns in cultures stimulated with Tpo
alone (data not shown; n = 2).

lel with the onset of apoptosis, suggests that pro-apoptotic
signaling through MAP3KS5 is involved in promoting Mk
apoptosis.

The last two clusters (up-regulated in G but lower in Mk
cultures) contain genes related to either apoptosis or
hematopoietic differentiation

Cluster C includes 18 apoptosis-related genes that were
up-regulated in G cells and either down-regulated or
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unchanged in Mk cells (Figure 3C). Of these, 8 encode
pro-apoptotic proteins and 7 encode anti-apoptotic pro-
teins. This group may contain genes necessary for G differ-
entiation, but not necessary for Mk differentiation, but
may also contain anti-apoptotic genes affecting Mk apop-
tosis or preventing G apoptosis. For example, the Bcl-2
family member BCL2A1 can reduce the release of pro-
apoptotic cytochrome C from mitochondria and block
caspase activation, and is a direct transcriptional target of
NF-kB in response to inflammatory mediators. This group
may also contain genes which, though generally classified
as pro-apoptotic, are not necessarily associated with apop-
tosis during hematopoietic differentiation. Specifically,
the caspase-1 (CASP1) and CARD12 gene products facili-
tate the proteolytic activation of the IL-1f precursor pro-
tein, which is necessary for myeloid differentiation
[52,53]. Down-regulation of IL-1B activators CASP1 and
CARD12 in Mk cells and their up-regulation in G cells
would suggest a lineage-specific fine-tuning of IL-1pB-
dependent autocrine regulation.

Finally, the small cluster D includes five genes that were
up-regulated in both Mk and G cells after day 5 compared
to early days, but were expressed higher in G cells (Figure
3D). These are genes that might play a role in Mk cells and
also are likely to be involved in differentiation, rather than
apoptosis, in G cells. DUSP6 encodes for a cytoplasmic
dual-specificity protein phosphatase that inactivates
ERK1/2 and has been shown to induce apoptosis in
endothelial cells and pancreatic cancer cells [54-56]. The
BCAP31 gene product can be cleaved by caspase-8 and
subsequently promotes cytochrome C release [57,58]. It
may also play a role in regulating intracellular trafficking
of CD11b/CD18 in neutrophils [59], and thus is impor-
tant in G differentiation. Amyloid beta (A4) precursor
protein (APP) has been found in both a-granules of plate-
lets and phagocytic granules of neutrophils [60,61].
PRKAA1 is expressed in neutrophils and its activation
inhibits the respiratory burst [62].

Expression pattern of apoptosis-related genes is
independent of Mk cytokine mixture

In independent experiments, we examined the global
gene expression profile of mobilized peripheral blood
CD34+ cell cultures stimulated with Tpo alone, as
opposed to the three cytokine cocktail used in the present
study [20]. Culture with Tpo alone yields higher CD41a+*
cell purity, lower total expansion, and, most importantly,
enhances terminal maturation including polyploidization
and proplatelet formation compared to the cytokine cock-
tail. Comparison of the gene expression patterns for the
Mk-related and apoptosis-related genes discussed in this
manuscript showed nearly perfect agreement between
Tpo-only and Mk cytokine cocktail cultures (data not
shown). Furthermore, the protein-level microscopy and
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flow cytometry studies were repeated on Tpo-only cul-
tures yielding concurring results (data not shown). This
suggests that the observations and conclusions from this
study hold more broadly and are not dependent on a spe-
cific culture system.

Discussion

The goals of this study were to demonstrate the impor-
tance of high-quality temporal transcriptional data and of
targeted comparative analyses of such data for identifying
genes underlying, at the transcriptional level, an impor-
tant phenotype such as Mk apoptosis. It is clear that pur-
suing the functional role of each and every gene identified
by such an approach is a tall and time-consuming objec-
tive. It was therefore important to develop various means
for validating our approach with the goal of providing a
high degree of confidence in our findings. Nevertheless,
we sought to validate some selected candidate genes at the
protein and activity level as a first assessment of their
functional role.

NF-kB signaling is involved in Tpo and SDF-1 signaling in
proliferating Mk cells [63,64]. Furthermore, NF-«xB is
spontaneously activated in Mk cells from idiopathic mye-
lofibrosis (IMF) patients and plays a role in regulating
TGF-p1 expression, but not cytokine-withdrawal-induced
apoptosis, in IMF-patient-derived Mk cells [64]. However,
its role in late Mk differentiation is not clear. We have, for
the first time, shown evidence in primary human Mk cells
that NF-xB signaling decreases during late Mk differentia-
tion. This suggests that decreased NF-«xB signaling may be
required for Mk cells to undergo apoptosis. Zhang [65]
came to the same conclusion based on their study of a
Tpo-responsive murine Mk cell line. In agreement with
this, Leger and colleagues [66] have recently shown that
NF-kB signaling is inhibited in the human HEL cell line
when induced to undergo Mk differentiation. In order to
firmly establish the role of NF-«B in terminal megakary-
opoiesis, future studies will be needed to investigate the
effect of forced NF-kB signaling perturbations on Mk cul-
ture outcomes, as well as on elucidating signaling
upstream and downstream of NF-kB.

In our examination of Mk-related apoptosis genes, we
detected mRNA and protein-level up-regulation of
GADDA45A. GADDA45A can induce apoptosis by mediat-
ing the translocation of Bim to the mitochondria [51]. In
addition to apoptosis, GADD45A mediates G2/M arrest in
a p53-dependent manner involving the depletion of
nuclear cyclin B [67]. This cell cycle arrest has been asso-
ciated with increased translocation of GADD45A to the
nucleus, as was observed late in Mk cultures (Figure 5B).
The importance of this observation is underscored by the
numerous investigations into the cell cycle-dependent
decrease in cyclin B/Cdc2 activity associated with Mk
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endomitosis (reviewed by Ravid [28]) and by our recent
report of increased p53-DNA binding activity during Mk
differentiation of the megakaryoblastic CHRF-288-11 cell
line [21]. While our data strongly suggest that GADD45A
plays a role in either Mk apoptosis or endomitosis or
both, further study will be necessary to clearly establish its
functional relevance.

To date, most microarray studies of Mk differentiation
have used a single time point or disease state compari-
sons, rather than temporal gene expression analysis. Two
recent reports have explored progressions of Mk differen-
tiation using gene expression microarrays. One report dis-
cussed the transcriptional profiling of culture-derived
murine Mk cells that had been sorted into discrete devel-
opmental stages by light-scattering properties and CD41
expression using flow cytometry [68]. Separately, Raslova
et al separated culture-derived human Mk cells by ploidy
class and subjected them to transcriptional analysis using
the Agilent microarray platform [69]. In the present study,
we compared the time-course expression profile of differ-
entiating Mk and G cells to identify genes with potential
roles in terminal Mk apoptosis. Key to this approach was
the use of a reference design in our microarray analysis
that allowed us to simultaneously compare between time-
points from different cultures. The validity of the pro-
posed approach is based largely on the ability to identify
correctly some previously known property of the genes.
One example is confirmation of the expectation, based on
our method, that the genes of Figure 3A are indeed mostly
anti-apoptotic genes. A second example is that our
method identifies correctly most of what has been previ-
ously known about the transcriptional regulation of core
Mk genes (Figure 2C). As an additional test, we pursued
the later issue further as follows. Balduini [34] established
a set of "Mk-core" genes by contrasting cord-blood-
derived Mk colonies with isogenic erythroid colonies and
uncultured progenitor cells. We examined the expression
of these "Mk-core" genes in our cultures and found that of
the 55 Mk-core genes represented on our arrays by 58
probes, 41 genes (42 probes) were differentially expressed
(see Additional File 4). More significantly, all differen-
tially expressed genes were up-regulated in the Mk-cul-
tures. While some Mk-core genes were also expressed in
the G cultures, only one (Annexin A3) was expressed
higher in the G cells than the Mk cells. These assessments,
together with the preliminary protein-level and activity
assessments of a few select genes (Figures 4 and 5) suggest
that the large number of new genes identified by our anal-
ysis as potentially associated with Mk apoptosis indeed
has great biological significance.

Significantly, our data (Figure 2C) provide a comprehen-
sive temporal transcriptional analysis of core Mk genes
from which we have identified Mk genes that are strongly
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or weakly up-regulated and genes which are not appar-
ently transcriptionally regulated. Furthermore, these data
on the temporal expression of the core Mk genes can be
co-clustered and correlated with the identified Mk-related
apoptosis genes (Figure 3A) in an effort to identify possi-
ble regulatory relationships, an effort much beyond the
scope of this article.

Conclusion

In this study, we have both demonstrated the utility of a
large-scale, dynamic, comparative genomics approach to
improving our understanding of apoptosis within the
context of Mk differentiation. We have identified and pre-
liminarily verified the transient activation of the NF-xB
pathway during Mk differentiation. Additional candidate
Mk apoptosis genes were identified including BBC3,
MAP3K5 (ASK1), and GADD45A. In addition, these data
provide new information about the temporal regulation
of known Mk genes. The numerous leads from this work
will be the seeds for future work pursuing in-depth func-
tional studies of individual candidate genes.

Methods

Hematopoietic cultures

Mk and G cell cultures were initiated with fresh or frozen
G-CSF-mobilized human peripheral blood CD34+ cells
from normal donors (AllCells; Berkeley, CA) and cultured
as described [10,20,70]. For Mk cultures, cells were cul-
tured in X-VIVO 20 serum-free medium (BioWhittaker;
Walkersville, MD) supplemented with either a cocktail of
Mk-inducing cytokines (50 ng/mL Tpo (Genentech; South
San Francisco, CA or Peprotech; Rocky Hills, NJ), 50 ng/
mL Flt-3 ligand (PeproTech), and 5 ng/mL IL-3 (R&D Sys-
tems; Minneapolis, MN)) or Tpo alone (100 ng/mL). Tpo
was added to the cultures every 5 days. Mk cultures were
seeded at 70,000 cells/mL and cultured for up to 21 days
at 37°C in a fully-humidified, 5% CO, environment. G
cultures were performed in serum-containing human
long-term medium supplemented with (R&D Systems),
10 ng/mL IL-6 (Peprotech), 10 ng/mL G-CSF (Amgen;
Thousand Oaks, CA), 50 ng/mL stem cell factor, and 10
ng/mLIL-3 (both R&D Systems) at 37°C in a fully-humid-
ified environment containing 5% CO, and 5% O,.

Mk colony-forming assay

Mk colony-forming assays were performed as previously
described [10] using MegaCult™-C media (Stem Cell
Technologies; Vancouver, BC, Canada). All colonies con-
taining more than three CD41a* cells were scored as Mk
colony-forming units (CFU-MK).

Flow cytometry

Surface marker expression was assessed as described [10]
using phycoerythrin (PE)-labeled anti-CD41a and fluo-
rescein isothiocyanate (FITC)-labelled anti-CD34 mono-
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clonal antibodies (Coulter; Fullerton, CA; and Becton
Dickinson, respectively). Propidium iodide (PI) was used
to exclude dead cells. Apoptosis was assessed using
Annexin V-FITC/PI in combination with PE-labeled-
CD41a as described [10]. Ploidy was assayed as described
using anti-CD41a-FITC/PI staining [10]. Polyploid Mk
cells were defined as CD41a+ cells with 8N or higher DNA
content. For intracellular detection of active-caspase-3,
MAP3K5 (ASK1) and phosphorylated IkBa, cells were first
stained with anti-CD41a-FITC and then fixed, permeabi-
lized, and stained as previously described [71]. Rabbit-
anti-human phosphorylated IkBa antibody was from Cell
Signaling Technology (Danvers, MA), and other primary
antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA). Secondary antibodies were from Jackson
ImmunoReseach (West Grove, PA). The NF-xB activity
was measured with anti-NF-kB p65 phospho-Ser529-spe-
cific antibody with PERM III buffer following the manu-
facturer's instructions (Becton Dickinson). Flow
cytometry data were acquired on a FACScan or LSRII flow
cytometer (Becton Dickinson).

Microarray experiments and data analysis

Cell samples were flash frozen in liquid nitrogen at day 0
for CD34+cells; days 1, 2, 3, 4, 5, 7, 9, and 12 for Mk cell
cultures; and days 1, 2, 3,4, 5,7, 9, and 11 for G cell cul-
tures. Starting from day 5, Mk cell culture samples were
enriched by CD41a+ selection using MiniMACS MS col-
umns (Miltenyi Biotec; Auburn, CA) prior to freezing.
Briefly, cells from the Mk culture were washed with phos-
phate-buffered-saline (PBS) containing 2 mM EDTA and
0.5% bovine serum albumin, labelled with anti-CD41a-
PE antibody (Coulter) and separated with anti-PE
microbeads (Miltenyi Biotec). After day 12, RNA yields
and integrity in the Mk cultures were too low to continue
with array analysis (data not shown), likely as a result of
significant apoptosis and low cell viability. Total RNA was
isolated using the RNA Isolation Mini-kit (Agilent Tech-
nologies; Wilmington, DE). Sample RNA and Universal
Reference RNA (Stratagene; La Jolla, CA) were linearly
amplified and labelled using the Low RNA Input Fluores-
cent Linear Amplification Kit following the manufac-
turer's instructions and hybridized as described [20].
Microarray slides were scanned with the Agilent Microar-
ray Scanner (G2565BA). Approximately one third of the
individual microarrays were replicated and the correlation
coefficient between these technical replicates was 0.83 -
0.97.

Feature intensity statistics were extracted using Agilent's
Feature Extraction software (G2567AA, version 7.2). For
further analysis, spots with signal intensity near or below
background were discarded as previously described [72],
then duplicate spots were averaged, data were normalized,
and the normalized ratios for technical replicates were
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averaged [73]. For Mk vs. G comparison, the Mk/G value
was first calculated for each experiment and then aver-
aged. Raw and normalized data were deposited in the
Gene Expression Omnibus [77] (Mk cells: GSE3839; G
cells: GSE5917). All subsequent data analysis was per-
formed using the MultiExperiment Viewer 3.0 (MeV; Insti-
tute for Genomic Research, Rockville, MD) [74].
Differentially expressed genes were identified using the
statistical analysis of microarrays (SAM; for Mk temporal
comparisons) or analysis of variance (ANOVA; for com-
parison of Mk to G cultures) as implemented in MeV with
a false discovery rate <5% and p < 0.05, respectively. Gene
Ontology annotations, as curated by European Bioinfor-
matics Institute, were retrieved from the Gene Ontology
Consortium website [78]. Hierarchical clustering was per-
formed with the Euclidian distance metric.

Quantitative (Q)-RT-PCR

cDNA was obtained from total RNA samples using the
High-Capacity cDNA Archive Kit and Q-RT-PCR was per-
formed with Assays-on-Demand kits (Applied Biosys-
tems; Foster City, CA) as described [20]. The amount of
mRNA for each sample was normalized using the average
of two housekeeping genes (Glucuronidase-§ and 18S).
The use of GUSB and 18S genes as housekeeping genes
has been previously tested in our lab [20,21,75]. The
primer codes were as follows: GUSB (Hs99999908_m1),
18S rRNA (Hs99999901_s1), BBC3 (Hs00248075_m1),
MAP3K5 (Hs01039896_m1), SIRT7 (Hs00213029_m1),
NFKBIA (Hs00153283_m1; normalized only to RPLPO:
Hs99999902_m1).

Microscopy

Cells from Mk cultures were deposited onto microscope
slides by cytocentrifugation (Shandon; Pittsburgh, PA).
For Wright-Giemsa staining, cells were fixed in methanol,
stained with Camco QuickStain II (Camco, Fort Lauderd-
ale, FL) and washed with PBS and distilled water. Immun-
ofluorescence microscopy for p50 and GADD45A was
performed as previously described [76]. Briefly, cells were
fixed in 4% paraformaldehyde (Electron Microscopy Sci-
ences, Ft. Washington, PA) in PBS, permeabilized in 0.3%
Triton X-100 in PBS, blocked with 10% normal goat
serum in PBS/2% bovine serum albumin, then stained
with rabbit anti-human p50 or rabbit anti-human
GADDA45A (Santa Cruz Biotechnology, Santa Cruz, CA)
and mouse anti-human CD41a (Beckman-Coulter, Fuller-
ton, CA) primary antibodies or rabbit anti-human IgG
and mouse anti-human IgG (both from Santa Cruz Bio-
technology) primary antibodies followed by FITC-conju-
gated goat anti-rabbit IgG and Texas-Red-conjugated goat
anti-mouse IgG secondary antibodies (Jackson Immu-
noresearch). Finally, samples were mounted with Prolong
Gold anti-fade reagent with DAPI (Molecular Probes,
Eugene, OR). The cells that were stained with the antibody
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against phosphorylated p65 and their isotype controls
were fixed with 2.5% paraformaldehyde in PBS, permea-
bilized in 0.3% Triton-X in PBS containing 5% normal
goat serum then stained with rabbit anti-human phos-
phorylated p65 (Cell Signaling, Danvers, MA) and mouse
anti-human CD41 (Beckman-Coulter) or rabbit anti-
human IgG and mouse anti-human IgG (both from Santa
Cruz Biotechnology) as recommended by Cell Signaling.
Finally these samples were stained with secondary anti-
bodies and DAPI as described above. All microscopy was
performed with 63x (N.A. = 1.32 in oil) or 20x (N.A. =
0.40 CS) objectives on a Leica Model DMIRE2 inverted
microscope (Wetzlar, Germany) outfitted with a QImag-
ing Retiga EXi CCD camera (Burnaby, BC, Canada) and
captured into OpenLab imaging software (Improvision;
Lexington, MA).

List of abbreviations
Mk: megakaryocytic

G: Granulocytic

GO: Gene Ontology

IMF: idiopathic myelofibrosis
PI: propidium iodide
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Q-RT-PCR: quantitative reverse-transcription polymerase
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Additional material

Additional file 1

Complete differentially expressed gene list. Listing of all genes that were
differentially expressed either over the time-course of Mk cytokine-cock-
tail-stimulated mobilized peripheral blood CD34+* cell cultures or between
equivalent time points of G and Mk cultures.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-384-S1.xls]

http://www.biomedcentral.com/1471-2164/8/384

Additional file 2

Reproducibility of expression profiles in biological replicate Mk cultures.
Data shown for all genes that were at least 2-fold up- or down-regulated
versus day 0 in at least two samples across all 25 total sampling points.
Color denotes degree of differential expression (saturated red = 4-fold up-
regulation, saturated green = 4-fold down-regulation).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-384-S2 xls]

Additional file 3

Listing of Mk-related genes based on literature review. The complete Mk-
associated gene list is presented with common gene name, description, and
appropriate references from the review literature.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-384-S3 xls]

Additional file 4

Expression profiles of the differentially expressed members of the Mk-core
gene set (as reported by Balduini). These genes were differentially
expressed in our cultures as described in the text. Color denotes degree of
differential expression (saturated red = 4-fold up-regulation, saturated
green = 4-fold down-regulation). The first block shows average expression
ratios across the biological replicates (n = 3) for the designated samples
with respect to day 0 CD34+ cells; the second block shows expression
ratios, averaged across the biological replicates (n = 3), with respect to the
average expression from days 1 — 4.; the third block shows average expres-
sion profiles with respect to equivalent-day G cells (day 12 Mk vs. day 11
for G cells) (n = 2); and the last block shows expression profiles of G cells
with respect to average expression of G cells on days 1-4 (n = 2).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-384-S4 xls]
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