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A B S T R A C T

Quantitative photoacoustic tomography (qPAT) holds great potential in estimating chromophore concentra-
tions, whereas the involved optical inverse problem, aiming to recover absorption coefficient distributions
from photoacoustic images, remains challenging. To address this problem, we propose an extractor-attention-
predictor network architecture (EAPNet), which employs a contracting–expanding structure to capture con-
textual information alongside a multilayer perceptron to enhance nonlinear modeling capability. A spatial
attention module is introduced to facilitate the utilization of important information. We also use a balanced loss
function to prevent network parameter updates from being biased towards specific regions. Our method obtains
satisfactory quantitative metrics in simulated and real-world validations. Moreover, it demonstrates superior
robustness to target properties and yields reliable results for targets with small size, deep location, or relatively
low absorption intensity, indicating its broader applicability. The EAPNet, compared to the conventional UNet,
exhibits improved efficiency, which significantly enhances performance while maintaining similar network size
and computational complexity.
. Introduction

Photoacoustic tomography (PAT) is a rapidly advancing imaging
odality with rich optical contrast and high acoustic resolution, even

t depths reaching several centimeters [1–3]. The photoacoustic (PA)
ffect states that biological media irradiated by pulsed laser light
an absorb photon energy and subsequently generate local acoustic
ressure increases through thermoelastic expansion [4]. This effect
s universally observed in both endogenous chromophores, such as
xygenated and deoxygenated hemoglobin, and exogenous contrast
gents like nanoparticles [5–7]. From the PA signals detected by ul-
rasonic transducers placed around the object’s surface, PA images
an be reconstructed by solving a well-established acoustic inverse
roblem [8–10]. Quantitative photoacoustic tomography (qPAT) aims
o estimate chromophore concentrations from multispectral PA images,
nd the key challenge is to solve the optical inverse problem referring
o recovering absorption coefficients 𝜇𝑎 from raw PA images 𝑝0 [11,12].
pecifically, 𝑝0 is proportional to the product of 𝜇𝑎 and the local fluence
, while only the former is directly related to the concentration of

hromophores in spectroscopic analysis [13–15].
In an earlier study, Cox et al. introduced a fixed-point iteration

lgorithm to recover the 𝜇𝑎 distribution by iteratively solving a system
f equations [16]. On this basis, Zhang et al. [17] recently devel-
ped a pixel-wise reconstruction method based on a two-step iterative

∗ Corresponding author.
E-mail addresses: wangzeqi7@sjtu.edu.cn (Z. Wang), taowei@sjtu.edu.cn (W. Tao), huizhao@sjtu.edu.cn (H. Zhao).

algorithm (TSIA), yielding noteworthy results in both simulated and ex-
perimental data. A more rigorous strategy is to employ an optimization
framework, in which desired optical properties are iteratively updated,
typically absorption and scattering coefficients, until the difference
between the result obtained from forward modeling and measured
data is minimized [18–21]. Although with high theoretical accuracy,
methods within this category are computationally intensive and time-
consuming, rendering real-time measurements nearly unfeasible. Some
researchers attempted to directly measure fluence distributions through
other techniques, such as diffuse optical tomography [22] and acousto-
optic theory [23], while these methods require additional devices in a
standard PA imaging system.

In the last decade, deep neural networks, especially convolutional
neural networks (CNN), have made significant strides, emerging as
promising tools in biomedical imaging [24–33]. In the context of
qPAT, models adopt an end-to-end supervised learning manner and
automatically learn the abstract feature representations from input
data [34,35]. Cai et al. [29] initially extended a residual UNet to this
field and gained promising results. Luke et al. [30] introduced an O-
Net architecture consisting of two parallel UNets networks dedicated
to the tasks of blood oxygen saturation (sO2) estimation and vascular
segmentation, respectively. Bench et al. [31] extended the O-Net frame-
work to accommodate the 3-dimensional(3-D) nature of the PA process
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by using 3-D neural units. Li et al. [32] proposed a dual-path network
comprising two UNets to estimate the absorption coefficient and flu-
ence, respectively. Real images of fluence, absorption coefficient, and
initial pressure were all used for supervised training, resulting in a
joint loss function that more effectively guides parameter optimization.
Zou et al. [33] integrated the anatomical features extracted from the
ultrasound image by a pre-trained ResNet-18 in a standard UNet to
enhance the network performance on estimating 𝜇𝑎.

However, these models are founded on a UNet architecture [36].
he vanilla UNet comprises a contracting–expanding structure and a

inear projection layer. Although UNet has shown impressive perfor-
ance in previous studies, its nonlinear modeling capacity exclusively
epends on the contracting–expanding structure. This may potentially
inder its efficiency in addressing highly nonlinear regression tasks.
hile increasing the width and depth of the contracting–expanding

tructure can compensate for this drawback, it also leads to a prolif-
ration in network complexity. Additionally, convolutional attention
echanisms [37–39] have been widely proven to improve model per-

ormance in various imaging modalities (e.g. PAT [26,27] and com-
uted tomography [28]). However, there is a lack of related research
n the qPAT domain.

On the other hand, inspired by the pixel imbalance issue in dense
bject detection [40,41], we find that the mean squared error (MSE)
oss [29,33], a plain per-pixel loss function commonly used in pre-
ious qPAT research, may result in the network delivering adequate
erformance only in specific imaging regions. Specifically, regions of
igh absorption or large sizes contribute the majority of the MSE loss
alue, exerting a dominant influence on the adjustment of network pa-
ameters. Consequently, predicted values associated with other regions
re not adequately optimized during training. This optimization imbal-
nce can cause severe spatial variations in accuracy across the output
mages, rendering corresponding networks unsuitable for applications
nvolving targets of low absorption or small size. Furthermore, training
ith a biased focus on specific regions can result in an incomplete

earning of input data, hindering the network from capturing funda-
ental features, and consequently deteriorating both its performance

nd generalization capability.
To address the above limitations, we propose a deep learning-based

ethod utilizing an extractor-attention-predictor network architecture
EAPNet) and a balanced loss function (Bloss) for the optical inverse
roblem. Within the EAPNet, a contracting–expanding structure func-
ions as an extractor for learning contextual representations containing
lobal dependency information. Meanwhile, a pixel-wise multilayer
erceptron (MLP) serves as a predictor, establishing the mapping re-
ationship between latent features and the desired output, which can
fficiently reinforce the network’s nonlinear modeling capacity on a
er-pixel basis. Within the E-P structure, a spatial attention module
s employed to improve the capturing and utilization of important
nformation in input images. Moreover, the Bloss function normalizes
he impact of absorption intensity and size of each region on the loss
alue by utilizing a joint weighting factor to enhance the consistency of
ccuracy across the entire predicted image. Simulated and real-world
alidations demonstrate that our method achieves the best image-wise
uantitative scores in almost all experimental scenarios and broader
pplicability to targets with diverse properties. Additionally, it signifi-
antly outperforms other competing methods in qualitative assessment,
roviding clean edges and superior agreement with ground truth im-
ges. The EAPNet proves to be more suitable and efficient compared to
Net, enhancing the accuracy of predicted 𝜇𝑎 images while maintaining

similar network parameters and computational complexity.

2. Method

2.1. Physical fundamentals

PA images represent initial acoustic pressure distributions 𝑝0
(

𝑟
)

2

generated inside media. The pressure 𝑝0, at a given point 𝑟0, can be
formulated as:

𝑝0
(

𝑟0
)

= 𝛤𝜇𝑎
(

𝑟0
)

𝛷
[

𝑟0, 𝜇𝑎
(

𝑟
)

, 𝜇𝑠
(

𝑟
)

, 𝑔
(

𝑟
)]

, (1)

where 𝜇𝑎
(

𝑟0
)

, 𝜇𝑠
(

𝑟0
)

, 𝑔
(

𝑟0
)

and 𝛷
(

𝑟0
)

are the local absorption co-
efficient, scattering coefficient, anisotropy, and fluence, respectively.
𝛤 denotes the Grüneisen coefficient, which is typically assumed to be
a constant of 1. Then, 𝑝0 is directly equal to the product of 𝛷 and
𝜇𝑎. The fluence map 𝛷

(

𝑟0
)

can be described by a light propagation
model such as the well-established radiative transfer equation [4,42]
or its approximate forms (e.g., the 𝛿-Eddington model [43] and diffu-
sion equation [44]). For simplicity, 𝜇𝑠 and 𝑔 are typically treated as
homogeneous constants since their spatial variations, compared to 𝜇𝑎,
within biological tissues are relatively small [17]. Then, Eq. (1) can be
expressed in a simplified form:

𝑝0
(

𝑟0
)

= 𝜇𝑎
(

𝑟0
)

𝛷
(

𝜇𝑎
(

𝑟
))

= 𝐹
(

𝜇𝑎
(

𝑟
))

, (2)

where 𝐹 (⋅) represents the mapping function from 𝜇𝑎 to 𝑝0, describing
the forward process of the PA effect. Mathematically, the optical inverse
problem in qPAT aims to find an inverse operator 𝐹−1 that satisfies
𝜇𝑟𝑒𝑐𝑜𝑛
𝑎

(

𝑟0
)

= 𝐹−1 (𝑝0
(

𝑟
))

.
The operator 𝐹−1 is featured with high nonlinearity, due to 𝛷

depends on 𝜇𝑎 in an intricate manner [12,45]. Moreover, 𝑝0
(

𝑟0
)

has
a global dependency on the 𝜇𝑎 image, stemming from the 𝛷 term
(Eq. (2)). It suggests that 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎
(

𝑟0
)

, in turn, has a global dependency on
the 𝑝0 image. The coupling of high nonlinearity and global dependency
presents a challenge in solving 𝐹−1.

2.2. EAPNet architecture

The proposed extractor-attention-predictor network (EAPNet) is
shown in Fig. 1 and can be formulated as:

𝜇𝑟𝑒𝑐𝑜𝑛
𝑎

(

𝑟0
)

= 𝑃
(

𝑣𝑠𝑎
(

𝑟0
))

= 𝑃
(

𝐴
(

𝑣
(

𝑟0
)))

, (3)

𝑣
(

𝑟0
)

= 𝐸
(

𝑝0
(

𝑟
))

, (4)

where 𝐸 (⋅), 𝐴 (⋅), and 𝑃 (⋅) denote the operators of extraction, at-
tention module and prediction, respectively. The extractor adopts a
contracting–expanding structure, in which the contracting path learns
multiscale spatial dependencies by gradually expanding the receptive
field through downsampling feature maps. After aggregating the infor-
mation received from skip connections, the expanding path outputs a
feature map 𝑣

(

𝑟
)

containing contextual representation vectors of all
pixels. The feature map is then proceeded by a convolutional block
spatial attention module (sAM) [37,38,46], to generate an attention-
augmented feature map 𝑣𝑠𝑎

(

𝑟
)

. Finally, a multilayer perceptron (MLP)
is utilized to establish the mapping function between the 𝑣𝑠𝑎

(

𝑟
)

and
𝜇𝑎 on a per-pixel basis, which is mathematically a vector-to-pixel
regression task.

Within the sAM, two maps (𝑀𝑚𝑝 and 𝑀𝑎𝑝) that aggregate channel
information [37] are first extracted by conducting the max-pooling and
average-pooling operations on 𝑣

(

𝑟
)

along the channel dimension. Then,
the spatial attention map 𝑀𝑠𝑎 is derived by sequentially using a 5 ×
5 convolution layer 𝑓 5×5 and a softmax activation function 𝜎 to the
concatenated 𝑀𝑚𝑝 and 𝑀𝑎𝑝, which is expressed as:

𝑀𝑠𝑎 = 𝛽 × 𝜎
(

𝑓 5×5 [𝑀𝑚𝑝;𝑀𝑎𝑝
])

, (5)

where 𝛽 is a hyper-parameter. We empirically designate 𝛽 as 0.5 in this
study, which appears to be an optimal value as presented in the section
‘‘Parameters selection’’ of the supplementary materials. The attention-
augmented feature map 𝑣𝑠𝑎

(

𝑟
)

is eventually derived by dot-multiplying
the raw 𝑣

(

𝑟
)

with the attention map 𝑀𝑠𝑎. Compared with the seminal
work in Ref. [37], there are several modifications in our attention
module. Firstly, we do not employ channel attention due to the absence
of discernible improvements in the associated experiment. Moreover,

since our sAM operates on the feature map from the extractor, which
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Fig. 1. Overview of the proposed EAPNet architecture, which can be divided into three successive phases: extractor, spatial attention module, and predictor. The output feature
map in the first row is fed into the second row as the input. 𝐻 and 𝑊 denote the height and width of feature maps. The numbers annotated alongside the network indicate their
corresponding number of channels. The MLP consists of two hidden layers, each having 16 channels. It maps 𝑣𝑠𝑎

(

𝑟
)

to 𝜇𝑟𝑒𝑐𝑜𝑛
𝑎

(

𝑟
)

as a vector-to-pixel regression task.
already integrates contextual information, the convolutional layer in
our sAM utilizes a reduced kernel size of 5 × 5. Particularly, we
employ a softmax function to activate our sAM because it computes
spatial attention weights by considering the entire image, unlike the
commonly used sigmoid function [28,37,38], which computes attention
weights independently on a per-pixel basis. Specifically, the Softmax
produces the output of each pixel based on its relative intensity in
the input data. Since the attention map 𝑀𝑠𝑎 sums to a constant value
of 1, we argue that utilizing the softmax can introduce a competitive
attention mechanism. This mechanism benefits spatial information in-
teraction, enhancing the network’s capacity to distinguish and leverage
informative pixels.

2.3. Loss function

To address the unbalanced optimization issue during training, as
discussed in Section 1, we adopt a balanced loss function (Bloss), which,
mathematically, is a form of weighted MSE loss and is expressed as:

𝐵𝑙𝑜𝑠𝑠 =
1
𝑛

𝑛
∑

𝑖=1
𝛼𝑚

(

𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 − 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎

𝜇𝑡𝑟𝑢𝑡ℎ
𝑎

)2

, (6)

where 𝑛 and 𝑚 denote the number of pixels and the tissue index,
respectively. 𝛼𝑚 is a factor corresponding to the 𝑚th tissue. Within
the Bloss, the absolute error is divided by the 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎 to normalize the
absorption intensity. Additionally, the 𝛼𝑚 set by the reciprocal of tissue-
wise volume fractions is employed to balance the contributions of
tissues with varying pixel occupancies.

2.4. Network training

All models shared the same training scheme and were implemented
using PyTorch on an NVIDIA GTX 3090Ti graphics card. The ADAM
3

Table 1
A brief summary of all simulation datasets.

Datasets Major characteristics

RS Graded absorption ranges; a deep located and small tissue.
Va Complex vessel structures.
ST Sparsely distributed targets.
AR Low image quality; acoustic noise and artifacts.

optimizer was employed with an initial learning rate of 10−4. All
models were trained for 100 epochs with a batch size of 32. The source
code is available at https://github.com/WZQ7/EAPNet.

3. Experiment

3.1. Simulation data generation

We generated four simulation datasets, as outlined in Table 1,
to consider multiple application scenarios. Fluence distributions are
simulated using MCXLAB [47]. Each simulation process lasts for one
nanosecond to sufficiently capture contributions from scattered pho-
tons, and a total of 108 photons are emitted. Photons leaving the
domain are terminated. The simulation domain of the vasculature (Va)
and sparse target (ST) datasets is 128 × 64 pixels with a single line
source placed along the surface. The random shape (RS) and acoustic
reconstruction (AR) datasets are simulated within a 256 × 256 pixels
field, and line sources are placed along all four sides to ensure wide-
field illumination. For all datasets, the pixel length is 0.1 mm, and the
Grüneisen parameter is assumed constant at 1, leading to 𝑝0 being equal
to the product of 𝜇𝑎 and 𝛷. Each dataset comprises 4000 annotated
image pairs, divided into training, validation, and testing sets in an
8:1:1 ratio. Networks are trained and evaluated on their respective

https://github.com/WZQ7/EAPNet
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Fig. 2. Example images of the RS dataset. Tag numbers indicate the example index. (a) Raw PA images. (b) Ground truth, 𝜇𝑡𝑟𝑢𝑡ℎ
𝑎 . (c–f) 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎 obtained from different methods. (g)
Profiles along the horizontal white dotted line in (b). (h) Profiles along the vertical white dotted line in (b). In (g) and (h), the contained insets show the enlarged parts within
the black boxes that are labeled by corresponding line styles. ‘‘bk’’ is the abbreviation of ‘‘background’’. Quantitative metrics of example images are detailed in Table S4.
datasets. The validation set is utilized for selecting hyperparameters.
Before being fed into a network, all input images were normalized to
their maximum values.

(i) Random shape dataset. The dataset consists of circular phan-
toms with a physical radius of 25.6 mm. Each phantom comprises
four random shapes mimicking biological tissues and a small circle.
Typical geometries are illustrated in Fig. 2. Tissue positions are de-
termined based on prescribed locations with random perturbations, to
enrich the data distribution. Different absorption ranges are assigned to
these tissues, as detailed in Table S3 of the supplementary materials.
Throughout the entire phantom, a reduced scattering coefficient of 1
mm−1 and an anisotropy parameter of 0.9 are consistently utilized.

(ii) Vasculature dataset. The purpose of this dataset is to assess
our method’s performance in retrieving intricate structures and subtle
textures. Each phantom is constructed based on a two-layer skin model
measuring 128 × 64 pixels. The top three rows of pixels represent the
epidermis layer, while the remainder constitutes the dermis layer. The
vessels utilized are sourced from the publicly available FIVES dataset
comprising 800 fundus photographs [48]. Each raw image is down-
sampled and then evenly divided into nine patches of 128 × 64 pixels,
with a 25% overlap between adjacent patches for data augmentation.
After a manual review to remove those with insufficient or unclear
vessels, each remained patch is implanted in an individual dermis layer.
All patches are used only once, ensuring a distinct vascular structure
for each phantom. Optical properties are determined using empirical
equations and parameters from Refs. [31,49] to enhance data real-
ism. Additionally, pixel-wise variations in absorption are introduced to
augment textural richness.

(iii) Sparse target dataset. This dataset aims to assess the effective-
ness of our method in reconstructing sparsely distributed and small-size
targets, in which the phantoms employ the identical two-layer skin
model and optical parameter assignment approach as those in the Va
dataset. The sparsely distributed vascular structures are extracted from
a publicly available lung image dataset.1 As shown in Fig. 4(b), the
imaging field is largely occupied by the skin tissue.

1 Public Lung Image Database, http://www.via.cornell.edu/lungdb.html.
4

(iv) Acoustic reconstruction dataset. The PA images in the three
mentioned datasets represent ideal initial pressure distributions. How-
ever, real images are susceptible to corruption from factors such as
system noise and imperfect detection conditions during the acquisition
process. To account for these influences, we created the AR dataset by
simulating the acoustic measurement process on the RS dataset using
the MATLAB toolbox k-Wave [50]. The 𝑝𝑟𝑒𝑐𝑜𝑛0 images are reconstructed
from the simulated time-domain PA signals using a time reversal algo-
rithm [9]. Implementation details are available in the supplementary
materials.

3.2. Phantom experiment

To verify the feasibility of our method in real-world scenarios, we
applied it to phantom images acquired by a commercial photoacoustic
tomography system mentioned in Section 3.4. The geometries of real
phantoms are close to that of the RS dataset. Each phantom, with a
radius of 9.6 mm, contains five inclusions, as shown in Fig. 6. Based
on the recipe in Ref. [51], we first mixed 1% agar powder solution
(A-1296, Sigma) with 20% Intralipid to produce a base solution. The
solutions constituting different tissues were prepared by adding corre-
sponding concentrations of India ink into the base solution. We provide
more details on preparing phantoms in supplementary materials.

In the acquisition process, we initially averaged the raw time-
domain signals from ten repetitive measurements to improve the signal-
to-noise ratio (SNR). Subsequently, a high-accuracy model-based iter-
ative reconstruction algorithm [8,52] processed the averaged signals
and generated raw images. Finally, these images were normalized to
their maximum values to remove scalar factors associated with system
parameters.

All networks used in this phantom experiment were trained on the
AR dataset. For quantitative assessment of network performance, we
annotated several phantom images with 𝜇𝑎 determined by the following
experimental procedure. First, each used material was poured into a
mold consisting of two glass slides and a U-shaped spacer to prepare
a corresponding slab-shaped test sample. Subsequently, a spectropho-
tometer (LAMBDA 950, PerkinElmer) equipped with an integrating
sphere was used to measure the total transmittance and reflectance
of these samples. Optical properties were then derived via the inverse
adding-doubling algorithm [53], assuming a constant anisotropy of 0.9.

http://www.via.cornell.edu/lungdb.html
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m

Table 2
Quantitative evaluation (MEAN ± SD) for 400 test images from the RS dataset. SD denotes the standard deviation of a single metric across the test set. As explained in Section 3.6,
the tissue-wise metrics (i.e., MREm and PSNRm) refer to the result within a specific tissue region. The tSD refers to the standard deviation across the mean values of tissue-wise

etrics of a given method. The tMRE and tPSNR are used as image-wise metrics. The regions corresponding to the labels ‘‘bk’’ and ‘‘#1’’–‘‘#5’’ can be found in Fig. 2.
Algorithms Tissue-wise metrics tSD tMRE (top)

tPSNR (bottom)

bk #1 #2 #3 #4 #5

|Relative error|
Unet-MSE 0.058 ± 0.013 0.007 ± 0.003 0.009 ± 0.003 0.031 ± 0.009 0.054 ± 0.026 0.064 ± 0.036 0.023 0.037 ± 0.009
Unet-MSRE 0.034 ± 0.007 0.022 ± 0.006 0.023 ± 0.009 0.026 ± 0.012 0.033 ± 0.015 0.052 ± 0.029 0.010 0.032 ± 0.007
Ours 0.014 ± 0.006 0.016 ± 0.005 0.016 ± 0.005 0.017 ± 0.006 0.018 ± 0.007 0.021 ± 0.012 0.002 0.017 ± 0.005

PSNR (dB)
Unet-MSE 22.437 ± 1.731 40.498 ± 2.513 38.268 ± 2.419 28.673 ± 2.106 24.571 ± 3.148 24.338 ± 4.507 7.057 29.797 ± 1.428
Unet-MSRE 27.284 ± 1.654 31.009 ± 1.995 31.230 ± 2.344 30.097 ± 2.587 28.567 ± 2.917 25.749 ± 4.064 2.010 28.989 ± 1.318
Ours 35.517 ± 2.528 34.005 ± 2.273 33.891 ± 2.137 33.702 ± 2.255 33.241 ± 2.595 33.611 ± 3.999 0.722 33.994 ± 1.703
m
b
a
b
i
t
a

M

w
o
c

M

w

m

3.3. In vivo experiment

We conducted a preliminary validation in an in vivo scenario. A
healthy nude female mouse weighing approximately 15 grams was
imaged after anesthesia. Cross-sectional PA images were acquired at the
abdominal region, mainly treating kidneys as the regions of interest.
The acquisition adhered to the procedure outlined in Section 3.2.
Animal procedures adhered to the Guidelines for Care and Use of
Laboratory Animals of Shanghai Jiao Tong University, and experiments
received approval from its Animal Ethics Committee. Since constructing
a specialized training dataset for in vivo data is non-trivial and usually
regarded as an independent research task, the networks for this initial
experiment are trained using synthetic data. We explain this dataset in
the supplementary materials.

3.4. PAT imaging system

All experimental data was acquired by a commercial small-animal
multispectral optoacoustic tomography system (MSOT inVision256,
iThera Medical). The light source consists of a pulsed Nd:YAG laser
(9 ns pulse width and 10 Hz repetition rate) and an optical parametric
oscillator, enabling a multi-wavelength irradiation ranging from 680 to
1200 nm. Incident light is delivered to sample surfaces via a ten-arm
fiber bundle to achieve 360-degree illumination in the imaging plane.
PA waves are recorded by a ring-shaped transducer array consisting of
256 cylindrical-focused elements characterized by a central frequency
of 5 MHz and a bandwidth of 60%. These transducer elements are
arranged in a 270-degree arc with a radius of 40.5 mm.

3.5. Comparative methods

For comparison, we employed the two-step iterative algorithm
(TSIA) [17] as a conventional method and UNet (Fig.S1) as the network
benchmark. UNet was trained with mean squared error (UNet-MSE) and
mean squared relative error loss (UNet-MSRE) to explore the impact of
different loss functions. We provide details on the implementation of
comparative methods in supplementary materials. Notably, the compar-
ison experiments focus on the superiority of EAPNet as a fundamental
architecture, and only UNet was employed here because, in the context
of qPAT, most models are built upon UNet. Strategies, including em-
ploying multiple UNets [30,32] and using modified convolution units
(such as the residual block [29] and 3-D block [31]), could be readily
applied to EAPNet and achieve corresponding enhancements from an
improved performance baseline, while these are beyond the scope of
our investigation.

3.6. Evaluation metrics

Evaluation metrics in previous studies may inadequately reflect the
overall accuracy of predicted images in some cases. Per-pixel metrics,
such as mean absolute error and mean relative error (MRE) [32,54], are
inclined to reflect the error levels within those large tissues. The peak
signal-to-noise ratio (PSNR), directly computed from the maximum 𝜇 ,
5

𝑎

ay result in a biased value when there is a significant disparity in 𝜇𝑎
etween different tissues [55]. To address these limitations, two metrics
dopted in this study, tMRE and tPSNR, are computed on a per-tissue
asis. Specifically, tissue-wise metrics (MREm or PSNRm) are computed
nitially, where 𝑚 represents the tissue index. Evaluation metrics for
he predicted image (tMRE or tPSNR) are subsequently derived by
veraging these tissue-wise metrics. tMRE is formulated as:

REm = 1
𝑁𝑚

∑

𝑟∈𝛺𝑚

|

|

𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 − 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎
|

|

𝜇𝑡𝑟𝑢𝑡ℎ
𝑎

, (7)

tMRE = 1
𝑀

𝑀
∑

𝑚=1
MREm, (8)

here 𝛺𝑚 and 𝑁𝑚 denote the domain of the 𝑚th tissue and the number
f pixels within it, respectively. 𝑀 is the number of tissue types. tPSNR
an be formulated as:

SEm = 1
𝑁𝑚

∑

𝑟∈𝛺𝑚

(

𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 − 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎
)2, (9)

PSNRm = 20 log 10

(

max
(

𝜇𝑎,𝑚
)

√

MSEm

)

, (10)

tPSNR = 1
𝑀

𝑀
∑

𝑚=1
PSNRm, (11)

here max
(

𝜇𝑎,𝑚
)

indicates the maximum possible value within 𝛺𝑚.
Moreover, the standard deviation across tissue-wise metrics (the

ean values of MREm or PSNRm on the test set are adopted here)
is employed to assess the consistency of prediction accuracy among
various tissues for each method, and we denote it as tSD.

In addition, we introduce a constrained generalized contrast-to-
noise ratio (gCNR) [55–57], denoted as CgCNR, to evaluate the efficacy
of our method in recovering intricate or fine structures. CgCNR is
exclusively applied to the ST and Va datasets since the RS and AR
datasets only consist of simple structures.

Previous studies have proven that gCNR is directly associated with
the separability of the target from the background, offering a better
metric of distinction (or sharpness) compared to contrast and contrast-
to-noise ratio [57]. However, gCNR fails to consider the agreement
between the target distribution and the ground truth, and only a high
distinction does not match the goal of qPAT. CgCNR is a modification
of the standard gCNR and can be expressed as follows:

CgCNR = min
𝜀

{

1 −
(

∫

𝜀

−∞
𝑝𝑖 (𝑥) 𝑑𝑥 + ∫

∞

𝜀
𝑝𝑜 (𝑥) 𝑑𝑥

)}

,

s.t. 𝜀 > 𝜀𝐿,
(12)

where 𝑥 denotes the pixel value. 𝑝𝑖 (𝑥) and 𝑝𝑜 (𝑥) represent the probabil-
ity density functions of the target and background, specifically referring
to the vascular and dermal areas in this context. From Eq. (12), CgCNR
shares an identical optimization problem with gCNR but poses a lower
limit 𝜀𝐿 for 𝜀 as an additional constraint. Under this constraint, the
CgCNR only evaluates the separability of target pixels sufficiently close
to the ground truth. Target pixels whose predicted values below 𝜀 are
𝐿
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Table 3
Quantitative evaluation (MEAN ± SD) for 400 test images from the Va dataset. A detailed explanation of all used metrics can be found in Table 2.

Algorithms Tissue metrics tSD tMRE (top)
tPSNR (bottom)

Epidermis Dermis Vessel

|Relative error|
Unet-MSE 0.023 ± 0.028 0.349 ± 0.150 0.186 ± 0.055 0.133 0.186 ± 0.058
Unet-MSRE 0.024 ± 0.023 0.065 ± 0.010 0.254 ± 0.155 0.100 0.114 ± 0.051
Ours 0.062 ± 0.030 0.070 ± 0.013 0.081 ± 0.030 0.008 0.071 ± 0.020

PSNR (dB)
Unet-MSE 36.142 ± 8.917 4.160 ± 3.522 13.832 ± 2.271 13.392 18.045 ± 2.812
Unet-MSRE 31.777 ± 4.944 22.051 ± 1.373 11.462 ± 4.168 8.296 21.763 ± 1.540
Ours 22.700 ± 3.525 20.468 ± 2.929 20.168 ± 3.169 1.130 21.112 ± 2.738
Fig. 3. Example images of the Va dataset. Tag numbers indicate the example index. (a) Raw PA images. (b) Ground truth, 𝜇𝑡𝑟𝑢𝑡ℎ
𝑎 . (c–f) 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎 obtained from different methods.
The ROI of each example is delineated by a white dotted box in (b) and magnified for better visualization. These ROIs are also used for calculating CgCNR. (g) Profiles along the
horizontal red dotted line in (b). (h) Profiles along the vertical red dotted line in (b). Quantitative metrics of example images are detailed in Table S4.
directly treated as false negatives because they lack practical signifi-
cance for quantification applications. In our study, 𝜀𝐿 was set to 75%
of the mean value of 𝜇𝑎 in vascular regions. Implementation details are
available in the supplementary materials.

4. Result

4.1. Simulation data analysis

Upon a preliminary observation of Figs. 2 to 5, we can easily find
that there is a depth-dependent decline in the intensities of 𝑝0 images
due to fluence attenuation. In addition, the TSIA produces acceptable
results only in certain cases [Figs. 3(c1,c2) and 4(c1,c2)] because the
𝛿-Eddington model used performs poorly in regions near light sources
or with high absorption. Therefore, TSIA demonstrates inadequate
robustness against variations in illumination conditions and the optical
properties of the imaging medium. Due to the significantly lower
accuracy of TSIA compared to DL-based methods across all datasets,
we focus our comparison on DL-based methods in the following parts.

(i) Random shape dataset. As shown in Table 2, our method
outperforms other algorithms significantly in terms of both tMRE and
tPSNR comparisons. Moreover, tissue-wise evaluation reveals a distinct
variation in the accuracy of both UNet-MSE and UNet-MSRE across
different tissues. UNet-MSE’s performance deteriorates as tissue ab-
sorption decreases, leading to relatively large errors in regions with
low absorption (e.g., the background and tissues #3–#5), while UNet-
MSRE exhibits relatively subpar performance in the small-sized tissue
#5. The non-uniform accuracy causes unreliable results in practical
6

applications, as the target tissues are not always of high absorption
or large size. Our method is insensitive towards tissue properties and
enables greater uniformity in accuracy across tissues, as evidenced
by the minimal tSD. This also implies that our method has broader
applicability.

There is no marked visual distinction among the 𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 images of

different methods (Fig. 2). The profiles and their magnified regions
display subtle differences, indicating that results predicted by our
method provide closer concordance with the ground truth.

(ii) Vasculature dataset. Due to the highly unbalanced contribu-
tions of different tissues to the loss value, the performance of both
UNet-MSE and UNet-MSRE varies significantly across them, as shown
in Table 3. While excelling in the epidermal and dermal regions, respec-
tively, the two methods underperform in vascular regions of significant
medical interest. Our method provides distinct superiority in vascular
regions and also better overall accuracy, achieving the lowest tMRE,
the second-highest tPSNR, and the minimal tSD.

Fig. 3 showcases three skin models with progressively enhanced
epidermal absorption, representing Caucasian, Asian, and African skin
types. The enlarged images display regions of interest (ROIs) high-
lighted by white dotted boxes in Fig. 3(b). UNet-MSE performs poorly
in preserving delicate features and structures. It outputs vessels with
blurred edges and may produce non-existent vessels, as indicated by
the red arrow in Fig. 3(d3). In cases of relatively strong epidermal
absorption, UNet-MSRE fails to adequately compensate for the effects
of fluence attenuation, notably underestimating 𝜇𝑎 of deep vessels,
thereby rendering them unobservable in the images. Our method re-
constructs vascular structures with exceptional fidelity and well-defined
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Table 4
Quantitative evaluation (MEAN ± SD) for 400 test images from the ST dataset. A detailed explanation of all used metrics can be found in Table 2.

Algorithms Tissue-wise metrics tSD tMRE (top)
tPSNR (bottom)

Epidermis Dermis Vessel

|Relative error|
Unet-MSE 0.010 ± 0.019 0.171 ± 0.050 0.173 ± 0.058 0.076 0.118 ± 0.032
Unet-MSRE 0.017 ± 0.014 0.045 ± 0.011 0.645 ± 0.187 0.290 0.236 ± 0.060
Ours 0.049 ± 0.030 0.055 ± 0.016 0.076 ± 0.030 0.012 0.060 ± 0.020

PSNR (dB)
Unet-MSE 43.686 ± 9.127 13.136 ± 3.048 15.888 ± 3.032 13.799 24.237 ± 2.378
Unet-MSRE 34.397 ± 4.380 25.700 ± 2.257 5.587 ± 2.565 12.066 21.895 ± 1.391
Ours 24.204 ± 3.025 24.123 ± 2.551 22.444 ± 3.533 0.811 23.590 ± 2.568
Fig. 4. Example images of the ST dataset. Tag numbers indicate the example index. (a)
Raw PA images. (b) Ground truth, 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎 . (c–f) 𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 obtained from different methods.

The ROI of each example is delineated by a white dotted box in (b) and magnified
for better visualization. These ROIs are also used for calculating CgCNR. Quantitative
metrics of example images are detailed in Table S4.

edges, demonstrated by the highest CgCNR score in Table S5 of the
supplementary materials. The line profiles illustrate that the predicted
𝜇𝑎 of our method exhibits a greater degree of alignment with the
ground truth. Meanwhile, UNet-MSE and UNet-MSRE are sensitive to
the epidermal absorption intensity, resulting in a decrease in image
quality with its escalation. In contrast, our method shows sufficient
robustness to this variation.

(iii) Sparse target dataset. As illustrated in Table 4, the sparse
distribution of blood vessels significantly impacts the performance of
UNet-MSRE, resulting in considerable estimation biases in vascular re-
gions. This is because MSRE only corrects for the unbalanced impact of
absorption intensity on loss values. In contrast, our method utilizes the
weight factor 𝛼𝑚 to effectively address the training imbalance resulting
from the difference in pixel occupancy among tissues, making it robust
to sparse targets, as evidenced by significantly better performance in
vascular regions and the lowest tSD.

Representative images of three skin types (Caucasian, Asian, and
African) are displayed in Fig. 4. Similar to the findings in Fig. 3, UNet-
MSE overly smooths vessel boundaries, sacrificing structural details.
The 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎 images produced by UNet-MSRE fail to adequately distin-
guish deep vessels. Our method recovers vessels of superior sharpness,
which is also demonstrated by the highest CgCNR in Table S6 of the
supplementary materials.

(iv) Acoustic reconstruction dataset. From Fig. 5, it is evident
that the 𝑝𝑟𝑒𝑐𝑜𝑛 images are distorted compared to the ideal 𝑝 images
7

0 0
due to noise and artifacts. Metrics for 400 test images are listed in
Table 5. As expected, utilizing non-ideal input data results in reduced
performance across all methods compared to the results presented in
Table 2. The tMRE and tPSNR demonstrate that the overall performance
of our method ranks at the top. Meanwhile, our method surpasses other
methods in tSD, suggesting our method effectively provides consistent
accuracy for different tissues. The profile images further confirm the
accuracy advantage of our method, particularly in tissue #5 and the
background.

4.2. Phantom data analysis

Fig. 6 shows the phantom experiment results. The acquired 𝑝0
images contain severe artifacts and have weak visibility in the deep
area. There is a noticeable degradation across all evaluation indicators
compared to the simulation results since the networks were only trained
on the AR dataset. Although possessing similar internal geometries and
optical properties, the AR dataset still fails to sufficiently represent the
phantom data, leading to networks lacking an understanding of the
features specific to the experimental domain. Here are several specific
manifestations. In our imaging system, the ring-like transducer array
provides only 270-degree angular coverage around the object, leaving
the top 90 degrees uncovered to accommodate the mouse holder. The
limited view results in signal loss and significant reconstruction errors
in neighboring regions, notably for tissue #2 and the upper regions
of tissues #1 and #3. Moreover, significant errors can be observed at
phantom boundaries due to mismatches in illumination conditions. De-
spite these challenges, it seems that all methods can output reasonable
𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 images, suggesting that networks trained on synthetic datasets, to

some extent, can be applicable to real data with sufficient similarity.
Quantitative indicators of the phantom results are shown in Ta-

ble 6. Our method obtains the best scores for the tMRE and tPSNR.
For the 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎 images, our method effectively corrects out the spatial
varying fluence, and tissues obtain enhanced signal homogeneity. This
advantage is further shown by the profile images. Particularly for the
background area with low fluence, both UNet-MSE and UNet-MSRE are
inclined to underestimate 𝜇𝑎, whereas our method consistently aligns
closely with the reference value.

Notably, while experimentally obtained 𝜇𝑎 of each tissue offers a
reasonable reference, uncertainties introduced by human and equip-
ment factors are unavoidable.

4.3. In vivo data analysis

Fig. 7 shows the results of the cross-sectional abdominal images at a
wavelength of 760 nm. In the acquired 𝑝0 images, the signal is stronger
on the body surface, and the visibility diminishes in the central region.
Our method efficiently corrects internal fluence attenuation, restoring
the arterial signal to a relatively normal magnitude. In the 𝑝0 profiles,
signals of identical organs exhibit a depth-dependent decrease, whereas
they become more homogeneous in predicted images obtained from our
method, as indicated by the corresponding black dotted lines and red
arrows [Fig. 7(c–f)]. To enable a convenient comparison between two
measurements of the same slice, we horizontally flipped example 1 (𝑝
0
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Fig. 5. Example images of the AR dataset. Tag numbers indicate the example index. (a) Reconstructed PA images as inputs, 𝑝𝑟𝑒𝑐𝑜𝑛0 . (b) Initial pressure distributions (perfect PA
images). (c) Ground truth, 𝜇𝑡𝑟𝑢𝑡ℎ

𝑎 . (d–f) 𝜇𝑟𝑒𝑐𝑜𝑛
𝑎 images obtained from different methods. (g) Profiles along the horizontal white dotted line in (c). (h) Profiles along the vertical white

dotted line in (c). In (g) and (h), the contained insets show the enlarged parts within the black boxes that are labeled by corresponding line styles. ‘‘bk’’ is the abbreviation of
‘‘background’’. Quantitative metrics of example images are detailed in Table S4.
Table 5
Quantitative evaluation (MEAN ± SD) for 400 test images from the AR dataset. A detailed explanation of all used metrics can be found in Table 2. The regions corresponding to
the labels ‘‘bk’’ and ‘‘#1’’–‘‘#5’’ can be found in Fig. 5.

Algorithms Tissue-wise metrics tSD tMRE (top)
tPSNR (bottom)

bk #1 #2 #3 #4 #5

|Relative error|
Unet-MSE 0.148 ± 0.064 0.040 ± 0.022 0.043 ± 0.025 0.092 ± 0.051 0.108 ± 0.059 0.101 ± 0.047 0.038 0.088 ± 0.022
Unet-MSRE 0.085 ± 0.025 0.075 ± 0.025 0.071 ± 0.024 0.100 ± 0.044 0.110 ± 0.054 0.139 ± 0.050 0.023 0.097 ± 0.019
Ours 0.035 ± 0.018 0.068 ± 0.031 0.066 ± 0.030 0.082 ± 0.042 0.072 ± 0.040 0.073 ± 0.042 0.015 0.066 ± 0.018

PSNR (dB)
Unet-MSE 12.214 ± 2.704 26.052 ± 3.277 25.764 ± 3.420 20.187 ± 3.597 18.748 ± 2.844 18.150 ± 2.844 4.749 20.186 ± 1.555
Unet-MSRE 19.345 ± 2.242 16.678 ± 1.481 17.533 ± 1.501 17.816 ± 2.267 18.143 ± 2.952 13.991 ± 1.654 1.660 17.251 ± 1.137
Ours 23.868 ± 2.445 19.518 ± 2.297 20.045 ± 2.241 20.243 ± 3.037 21.864 ± 3.402 21.133 ± 3.438 1.449 21.112 ± 1.592
Table 6
Quantitative evaluation of the phantom results in Fig. 6 (MEAN ± SD). A detailed explanation of all used metrics can be found in Table 2. The regions corresponding to the labels
‘‘bk’’ and ‘‘#1’’–‘‘#5’’ can be found in Fig. 6.

Algorithms Tissue-wise metrics tMRE (top)
tPSNR (bottom)

bk #1 #2 #3 #4 #5

|Relative error|
UNet-MSE 0.253 ± 0.029 0.407 ± 0.121 0.222 ± 0.023 0.243 ± 0.075 0.137 ± 0.006 0.315 ± 0.090 0.263 ± 0.008
UNet-MSRE 0.270 ± 0.014 0.319 ± 0.088 0.277 ± 0.026 0.284 ± 0.062 0.218 ± 0.015 0.330 ± 0.118 0.283 ± 0.015
Ours 0.194 ± 0.073 0.165 ± 0.004 0.097 ± 0.001 0.240 ± 0.082 0.137 ± 0.002 0.110 ± 0.043 0.157 ± 0.009

PSNR (dB)
UNet-MSE 4.285 ±0.640 6.673 ± 2.174 11.333 ± 0.530 11.309 ± 1.751 15.883 ± 0.322 9.231 ± 2.216 9.786 ± 0.334
UNet-MSRE 6.030 ± 1.307 8.833 ± 2.316 10.021 ± 0.556 9.828 ± 1.306 12.420 ± 0.598 8.286 ± 2.169 9.236 ± 0.032
Ours 3.649 ± 1.309 13.274 ± 0.745 15.476 ± 0.321 10.958 ± 1.769 15.682 ± 0.011 14.544 ± 1.044 12.264 ± 0.071
image) to generate example 2, which, for the network, is equivalent to
distinct imaging data [58,59]. The predicted values for corresponding
locations from the two images show satisfactory agreement, further
confirming the network’s effectiveness.

It is important to mention that, as our network was not trained on
specialized in vivo data, its effectiveness shown in this validation is rel-
atively limited, and only qualitative analysis was conducted. The lack of
labeled in vivo data undoubtedly hinders our network from reaching its
full performance potential. We elaborate on these challenges associated
with in vivo applications in Section 5.
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4.4. Ablation study

An ablation study was conducted on the RS and Va datasets, exam-
ining the network architecture, loss function, and attention module:

(1) Network ablation: UNet-Bloss;
(2) Loss ablation: EAPNet with the MSE loss function (EAPNet-MSE)

and EAPNet with the MSRE loss function (EAPNet-MSRE).
(3) Attention module ablation: removing the proposed sAM from

EAPNet (EPNet-Bloss), and replacing our activation function with the
sigmoid function in the sAM [EAPNet-Bloss (sigmoid)].
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Fig. 6. Results of the phantom experiment. Tag numbers indicate the example index. (a) Experimentally acquired PA images. (b) Reference value of 𝜇𝑎 determined experimentally.
(c–e) 𝜇𝑟𝑒𝑐𝑜𝑛

𝑎 images obtained from different methods. (f) Profiles along the horizontal white dotted line in (b). (g) Profiles along the vertical white dotted line in (b). ‘‘bk’’ is the
abbreviation of ‘‘background’’.
Fig. 7. Results of the in vivo experiment. Pictures with the same label number correspond to the results of one example. (a) Experimentally acquired PA images. (b) The predicted
images obtained from our method. (c, e) Profiles of 𝑝𝑚𝑒𝑎𝑠0 along the two white dotted lines in (a). (d, f) Profiles of the predicted images along the two white dotted lines in (a).
Description of markers: A: artery; IVC: inferior vena cava; K: kidney; Sp: spine; Brc: boundary region of the renal cortex.
The results for the RS and Va datasets are listed in Table 7 and Table
S7, respectively, which consistently demonstrate our method obtains
the best evaluation metrics. This ablation study confirms that each
proposed module in our method is valuable and contributes to better
performance.

4.5. Network design analysis

Table S8 of the supplementary materials presents information re-
garding the number of parameters, floating point operations (FLOPs),
9

and computational time for each network. Compared to the UNet,
EAPNet shares a comparable network size and computational complex-
ity, yet consistently obtains superior performance conditioning on the
identical loss function, as shown by the ablation experiments.

To further demonstrate the superiority of our network architecture,
we trained two more complex UNets with the Bloss on the RS dataset,
one wider and one deeper. Compared to the base UNet, the channel
dimension of each convolution layer in the wider UNet is doubled,
and the deeper UNet includes an extra contracting block and an extra
expanding block The comparison results are listed in Table S8. While
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Fig. 8. Attention map analysis of two examples in the RS dataset. Tag numbers indicate the example index. (a) Ground truth, 𝜇𝑡𝑟𝑢𝑡ℎ
𝑎 . (b–e) Attention maps obtained from different

methods, from left to right: proposed sAM with Bloss but using the sigmoid function as the activation function, proposed sAM with MSE, proposed sAM with MSRE, proposed sAM
with Bloss (ours).
Table 7
Results of the ablation study on the RS dataset (MEAN ± SD). A detailed explanation
of all used metrics can be found in Table 2.

Algorithms tMRE tPSNR

Full method Ours 0.017 ± 0.005 33.994 ± 1.703

Network ablation UNet-Bloss 0.030 ± 0.006 29.567 ± 1.270

Loss ablation EAPNet-MSE 0.035 ± 0.009 30.552 ± 1.543
EAPNet-MSRE 0.019 ± 0.005 33.174 ± 1.554

sAM ablation EPNet-Bloss 0.029 ± 0.007 30.217 ± 1.479
EAPNet-Bloss (sigmoid) 0.028 ± 0.006 30.275 ± 1.392

widening or deepening the contracting–expanding structure of UNet
benefits in improved performance, it also results in a significant in-
crease in the model size by 300% and 303%, respectively. Our EAPNet
achieves the best performance with only a negligible increase in pa-
rameters and computational load, demonstrating its better suitability
for addressing the optical inverse problem.

4.6. Attention module analysis

As presented Table 7 and Table S7, the network’s performance
degrades whether removing the entire sAM or just the softmax function,
thereby fully confirming the effectiveness of the proposed sAM.

To better understand the benefits of our sAM, we visualized the
attention maps of two samples from the RS dataset in Fig. 8, which
indicate attention weights assigned to every pixel. It turns out that
the sAM activated by the commonly used sigmoid function generates
attention maps lacking discernible features and displaying a nearly
uniform distribution Fig. 8(b). In contrast, our sAM, benefiting from the
attention competition mechanism, yields attention maps possessing in-
creased distinction Fig. 8(e). Moreover, we investigated the influence of
loss functions on our sAM. MSE guides the sAM to assign more attention
weights to inclusions with high absorption and their vicinities. When
implemented with MSRE, our sAM produces larger attention weights
in background areas. In contrast, the proposed Bloss assists our sAM in
gaining broader and more uniform attention on inclusions, including
deep-located tissue #5, despite its considerably weaker signal in the
input 𝑝0 images.

5. Discussion

We have conducted simulation validations, including multiple po-
tential application scenarios. Besides achieving improved image-wise
10
quantitative metrics, the proposed method delivers multifaceted advan-
tages. Firstly, our method demonstrates impressive robustness to the
intrinsic properties of targets (e.g., size, location, and relative absorp-
tion intensity), achieving superior consistency in tissue-wise accuracy.
This suggests that our method has broader applicability and higher
reliability in practical scenarios. Consistent accuracy in the spatial
domain also enhances edge sharpness and target distinction, which is
crucial for precise segmentation of regions of interest (ROIs) from the
predicted image, thereby aiding further tasks like spectral unmixing.
Further, the mean values within ROIs can be utilized as a statistically
more reliable estimate if ROIs can be assumed optically homogeneous.
The proposed Bloss plays a crucial role in the mentioned accuracy
consistency. It effectively balances the contribution of each tissue to
the loss function, enabling unbiased optimization of the entire image
domain during training.

On the other hand, the EAPNet is a high-efficiency architecture
for qPAT, which effectively enhances the performance baseline while
maintaining a comparable level of network complexity to the conven-
tional UNet (Table S8). The advance arises from two key components:
the proposed E-P structure and sAM. In the E-P framework, spatial
information capture and aggregation occur exclusively during the ex-
traction phase, wherein the extractor learns global dependencies and
generates contextual representation vectors for each pixel. Based on
the extraction phase, the predictor can operate on a per-pixel basis
and enhance nonlinear modeling capability in a parameter-efficient
and computation-friendly manner. Consequently, the extractor and
predictor primarily focus on global dependency and high nonlinearity,
respectively, which suggests that the network, to some degree, deals
with the two intractable features of the optical inverse problem in a
stepwise manner, consequently reducing overall complexity. In addi-
tion, our sAM employs a novel attention competition mechanism, which
aids the extractor in discerning valuable information from input images
and its effective utilization in the predictor. Further, guided by the
Bloss, our sAM can effectively attend to subtle yet crucial pixels in 𝑝0
images (Fig. 8).

The phantom and in vivo experiments demonstrate the promising
feasibility of our method in real-world scenarios. However, further in
vivo research remains challenging. First, PA images are input data
for models, while they often severely distort in practice, due to the
non-ideal imaging system, as depicted in Fig. 7(a). Consequently, net-
works are forced to deal with PA image restoration, which is out of
its intended task, resulting in degraded performance. Besides, low-
quality regions, where noise overwhelms the signal, can contaminate
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the contextual representation vectors captured by the extractor and
induce large prediction errors. To obtain accurate results, the quality of
PA images should be carefully considered. Image restoration techniques
may be applied beforehand if needed. Additionally, due to the lack of
reliable in vivo measuring techniques for absorption coefficients, all
experimental data of this study was processed by networks trained on
simulated data. The simulated data is generated based on approximate
models of physical processes, detector characteristics, and noise, and
inevitably suffers a domain gap to real data. Consequently, networks
cannot learn real-world information adequately. Recently, there has
been rapid progress in generative networks and unsupervised learning,
which may provide new opportunities for tackling this challenge [34,
45].

Another potential limitation is related to using the softmax as
the activation function. In our sAM, the constant total attention is
distributed to all pixels, including ones outside the imaging medium.
These meaningless pixels may get a considerable portion of the at-
tention weight when they contain significant noise levels. To mitigate
it, a straightforward approach is to filter out signals originating from
outside the imaging medium before inputting them into the network,
as depicted in Fig. 7(a).

6. Conclusion

In this study, we propose a deep learning-based method for recover-
ing the absorption coefficient distribution from PA images. The EAPNet
proves to be a more suitable and efficient architecture than UNet, as
it boosts the accuracy of predicted 𝜇𝑎 images with nearly identical
etwork parameters and computational complexity. In addition, the
loss effectively mitigates the difference in prediction accuracy be-
ween diverse tissues and consequently improves the applicability and
eliability of our method in practice. Simulation and phantom exper-
ment results demonstrate the improved performance of our method
oncerning both quantitative metrics and image quality. Our method
lso shows a promising result in a preliminary in vivo experiment. Our
uture work focuses on constructing high-quality experimental datasets
o enable more complex real-world validations and thus facilitate the
linical translation process.
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