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Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as
heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B733Mo17 and Mo173B73
and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of
heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e.,
86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were
differentially expressed between the two parents and 42%–55% of expressed genes were differentially expressed between
one of the parents and one of the hybrids. In both hybrids, ~10% of expressed genes exhibited nonadditive gene expression.
Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids
were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of comple-
mentation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were acti-
vated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these
types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ~14% of
expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred ex-
pression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target
genes from the other parental genome.

[Supplemental material is available for this article.]

Heterosis describes the superior vigor of heterozygous F1-progeny

as compared to the average of their genetically distinct, homozy-

gous parents. The superior vigor of hybrid plants can be measured

for a diverse set of agronomically important traits such as stress

resistance, maturity, biomass, and grain yield (for review, see Falconer

and Mackay 1996). The degree of heterosis in a hybrid can differ for

distinct traits of a genotype or different genotype combinations

(e.g., Hoecker et al. 2006).

Heterosis is extensively exploited in commercial plant

breeding programs (Duvick 1999). Virtually all maize (Zea mays L.)

grown commercially in North America and western Europe is hy-

brid (Duvick 1999, 2005). Despite its agronomic importance, the

molecular principles underlying heterosis are still only poorly

understood. Plant growth and development are determined by

complex, tightly regulated global gene expression networks (Long

et al. 2008). Hence, the superior vigor of highly heterozygous hy-

brid plants compared to their homozygous parental inbred lines

is assumed to be a result of global differences in gene expression

between inbred lines and hybrids. Such differences have been

observed for many genes in different tissues and genotypes (for

review, see Birchler et al. 2010). These studies revealed tissue- and

stage-specific differential gene expression patterns between inbred

lines and hybrids (for review, see Hochholdinger and Hoecker

2007) and the consistent differential expression of key genes

(Hoecker et al. 2008a). In addition, for some traits a correlation

between the number of differentially expressed genes and the de-

gree of heterosis was suggested (Li et al. 2009; Riddle et al. 2010).

Significantly, gene expression divergence in hybrids seems to

correlate with the genetic divergence of the parental inbred lines

(Birchler and Veitia 2010). Recently, some initial experiments

correlating parental gene expression with hybrid vigor have been

performed (Frisch et al. 2010; Thiemann et al. 2010).

Phenotypically, the degree of heterosis for a specific trait in

hybrids is defined with respect to the quantitative deviation of a

trait from the average parental value, designated mid-parent value

(MPV). Mid-parent heterosis (MPH) is defined as hybrid perfor-

mance of a trait that exceeds the MPV, whereas hybrid traits that

display best-parent heterosis (BPH) significantly exceed the better

performing parent (Hochholdinger and Hoecker 2007). In addi-

tion to high levels of phenotypic variation, heterosis is also often

associated with transcriptional variation, and the classification of
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nonadditive gene expression is usually based on the terms de-

scribing the phenotypic degrees of heterosis-related traits reviewed

in Hochholdinger and Hoecker (2007). Accordingly, hybrid gene

expression levels that equal that of one parent but are significantly

different from that in the second parent are classified as high- or

low-parent heterosis, while hybrid gene expression levels signifi-

cantly exceeding parental values are defined as above high-parent

or below low-parent heterosis.

In the past, several classical genetic concepts were consid-

ered to explain hybrid vigor (for review, see Hochholdinger and

Hoecker 2007). Among those, the dominance model explains the

better performance of hybrids by the complementation of delete-

rious recessive alleles by superior dominant alleles at multiple loci

( Jones 1917). Recently, it was suggested that a combination of dif-

ferent genetic principles might best explain the manifestation of

hybrid vigor (Swanson-Wagner et al. 2006; Lippman and Zamir 2007).

To better understand the processes underlying the manifestation of

heterosis for different phenotypic traits, versatile molecular data were

collected at different regulatory levels including the genome (Lai

et al. 2005; Swanson-Wagner et al. 2010), the proteome (Hoecker et al.

2008b; Marcon et al. 2010), the metabolome (Römisch-Margl et al.

2010), and the transcriptome (for review, see Paschold et al. 2010).

Nevertheless, association of multilevel molecular data with phe-

notypic variation of hybrids remains challenging. Consequently,

thus far most studies focused on distinct regulatory levels.

Maize is a highly polymorphic species with a level of struc-

tural genomic diversity that is, perhaps, unique among higher eu-

karyotes (Springer et al. 2009). Different maize genotypes display

significant copy number variation (CNV) and presence/absence

variation (PAV) of genes, which have been hypothesized to con-

tribute to the unusual level of phenotypic diversity in this im-

portant cereal (Lai et al. 2010; Swanson-Wagner et al. 2010). The

regulatory machinery controlling gene expression was considered

to play a key role in the manifestation of heterosis. The recent

availability of high-throughput gene expression surveys has fos-

tered transcriptome analyses of inbred lines and hybrids in search

of nonadditive gene expression patterns in highly heterozygous

heterotic hybrids (Guo et al. 2006; Stupar and Springer 2006;

Swanson-Wagner et al. 2006; Wang et al. 2006; Meyer et al. 2007;

Uzarowska et al. 2007; Hoecker et al. 2008b; Wei et al. 2009; He

et al. 2010; Jahnke et al. 2010). The fraction of nonadditively

expressed genes in these studies greatly differed depending on the

analyzed species, tissue, experimental procedures, and surveyed

genes. This observation is consistent with studies suggesting varying

degrees of heterosis in different tissues and organs of plants

(Springer and Stupar 2007). Moreover, allele-specific gene expres-

sion levels have been determined in hybrids in search of genes

displaying asymmetric activity ratios of their alleles compared to

their parental inbred lines (Guo et al. 2004; Stupar and Springer

2006; Stupar et al. 2007; Zhuang and Adams 2007; Guo et al. 2008;

Swanson-Wagner et al. 2009; He et al. 2010).

Based on gene expression profiling studies, specific genes

were suggested to be involved in the manifestation of heterosis for

a number of traits in maize, rice, and tomato (Hoecker et al. 2008a;

Wei et al. 2009; Guo et al. 2010; Krieger et al. 2010). However,

whether such genes contribute to general molecular mechanisms

underlying the formation of hybrid vigor remains to be determined.

The recent development of high-throughput sequencing

technologies, including the availability of protocols for sequenc-

ing mRNA populations (e.g., RNA-seq) has enabled unprecedented

resolution in global analyses of gene expression (Marioni et al.

2008; Z Wang et al. 2009). Next generation sequencing (NGS) ap-

proaches such as sequencing-by-synthesis (SBS) allow unbiased

and highly reproducible deep-sequencing of entire transcriptomes

(Metzker 2010). A major advantage of NGS approaches in contrast

to closed platforms such as microarrays is that they allow for se-

quencing all expressed genes in a specific tissue, irrespective of

accurate genome annotation or even without a priori knowledge

of the genome (Hurd and Nelson 2009). Moreover, in contrast to

microarray-based assays, NGS approaches allow for the detection

of single nucleotide polymorphisms (SNPs) which are of particular

interest when studying allele-specific expression patterns. The tran-

scriptomes of several plant species and different tissues have been

sequenced by NGS (Swanson-Wagner et al. 2009; Filichkin et al.

2010; Lai et al. 2010; Larsen et al. 2010; Wang et al. 2010; Zenoni

et al. 2010; Zhang et al. 2010) and a few studies have used RNA-seq

to compare the transcriptomes of inbred and hybrids, providing

initial insights into their regulatory landscapes (XF Wang et al.

2009; He et al. 2010). However, to date a replicated and unbiased

survey of gene expression patterns using NGS approaches related

to plant heterosis is not at hand.

The aim of the present study was to globally survey the

transcriptome of the two inbred lines B73 and Mo17 in compari-

son to their reciprocal F1-progeny in an unbiased approach via

RNA-seq using four biological replicates to increase the power for

detecting differential expression while maintaining a low false dis-

covery rate (FDR). For this purpose, primary roots of 3.5-d-old seed-

lings were surveyed, as young primary roots display a very simple

structure. This stage was previously demonstrated to precede the first

detectable developmental changes between inbred lines and hybrids

during heterosis manifestation for numerous root-related traits

(Hoecker et al. 2006). By choosing this particular stage, we intended to

identify transcriptional patterns and regulators possibly determining

the processes leading to heterosis for these early root system traits.

Results

Next generation sequencing and mapping of maize inbred
and hybrid transcriptomes

Global gene expression profiles of 3.5-d-old primary roots of the

reciprocal hybrids B733Mo17 and Mo173B73 and their parental

inbred lines B73 and Mo17 were analyzed via RNA-seq using four

biological replicates. Between 31 and 37 million 40-bp reads were

obtained for each of the replicates and genotypes (Supplemental

Table S1). Among these, 53%–68% mapped to unique positions in

the maize B73 reference genome (ZmB73_RefGen_v2; Supple-

mental Table S1). After removal of ‘‘stacked reads’’ (duplicate reads

removal, see Methods), 91%–96% of the remaining reads mapped

to the ‘‘filtered gene set’’ (ZmB73_5B_FGSv2), a set of 39,656 high-

confidence, predicted gene models defined via a combination of

evidence-based and ab initio approaches followed by stringent TE

filtering (Schnable et al. 2009; http://www.maizesequence.org). In

total, 34,233 genes of the FGSv2 were expressed in the analyzed

tissue (i.e., 86% of genes in the FGSv2) in at least one of the four

genotypes (sum of the number of expressed genes included in the

Venn diagram in Figure 2B, see below) based on a Bayesian data-

augmented Markov chain Monte Carlo approach (see Methods).

Differential gene expression is more common between parental
inbred lines than between parents and hybrids or between
reciprocal hybrids

To achieve a comprehensive overview of differential gene expres-

sion, all possible (N = 6) pairwise comparisons of the four geno-
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types were performed (Fig. 1A) based on the criteria defined in the

Methods section. By controlling the false discovery rate at 5%, the

expected ratio of false discoveries divided by the number of genes

declared to be differentially expressed is kept at ;5%. However, the

number of false negative results (genes that are truly differentially

expressed but are not declared to be so) can be quite high. Fortu-

nately, it is possible to estimate the number of false negatives that

result for any particular significance threshold (Nettleton 2006).

Because it is not possible to determine which genes are false neg-

atives without additional experimentation, it is not possible to

make a list of such genes. Even so, the total number of differen-

tially expressed genes (m1 = true positives plus false negatives) can

be estimated by comparing the observed distribution of P-values

for any comparison of interest to a uniform distribution (Nettleton

et al. 2006). An estimate of m1 provides an important measure of

the full extent of differential expression and supplements a list of

specific genes that can be confidently declared differentially

expressed. Thus, in this report we have usually provided estimates

of the total number of differentially expressed genes (m1) along

with the number of genes declared to be differentially expressed

while controlling FDR at the 5% level.

When controlling FDR at 5%, 19,382 (Fc [Fold change] $ 2:

6959) genes were declared to be differentially expressed between

the inbred lines B73 and Mo17 (Fig. 1B). The overall number of

genes differentially expressed between the inbred lines B73 and

Mo17 (m1) was estimated to be 21,290, which corresponds to

;70% of all expressed genes in these genotypes (Table 1). In the

comparison between the reciprocal hybrids, 341 (Fc$2: 39) spe-

cific genes were declared to be differentially expressed when

controlling the FDR at 5%. The overall number of genes differ-

entially expressed between reciprocal hybrids (m1) was estimated

to be 4585 genes (15% of all expressed genes). The four hybrid-

inbred line comparisons revealed between 7416 (Fc $2 : 2225) and

11,207 (Fc $ 2: 2777) differentially expressed genes when con-

trolling the FDR at 5%, and estimates of m1 ranged from 12,793 to

16,870 genes which corresponds to 42% and 55% of all expressed

genes. Hence, inbred-hybrid comparisons revealed fewer differ-

entially expressed genes than the comparison of the two parental

inbred lines but more than the comparison of the reciprocal hy-

brids. Plotting fold-changes versus gene frequency for the FDR 5%

genes (Supplemental Fig. S2) for which we did not introduce a fold-

change cut-off demonstrated that many of statistically significant

changes in gene expression were modest fold-changes. Even so,

several thousand genes exhibited greater than twofold changes in

expression (see numbers in brackets above).

Many genes exhibit nonadditive expression patterns which
are often conserved between reciprocal hybrids

To determine relative expression levels of genes in hybrids as

compared to their parental inbred lines and to identify genes

displaying expression levels that differ from additivity, nine gene

expression classes were defined (Table 1) based on similar classifi-

cations published previously (Stupar and Springer 2006; Hoecker

et al. 2008a). First, for any given gene, differential expression

values in the hybrid relative to the parental inbred lines displaying

the lower (low-parent, LP) and higher (high-parent, HP) expression

levels, were estimated by combining three pairwise t-tests (‘‘Crite-

ria’’ in Table 1). According to this classification scheme, 4065

(B733Mo17) and 4297 (Mo173B73) genes were expressed in hy-

brids at levels between the parental values (class 1, ‘‘Total number

of genes,’’ Table 1; Supplemental Table S3). Furthermore, 4160

(B733Mo17) and 4166 (Mo173B73) genes exhibited low-parent

expression levels in a hybrid (class 2), whereas 4905 (B733Mo17)

and 5092 genes (Mo173B73) exhibited high-parent expression

levels in a hybrid (class 3). Class 4 represents the largest class,

containing 10,110 (B733Mo17) and 9722 (Mo173B73) genes

that do not exhibit differential expression among the parents and

hybrids. Finally, 350 (B733Mo17) and 686 (Mo173B73) genes

display extreme expression levels above the HP or below the LP

(classes 5–8).

Within these classes, a subset of genes displayed nonadditive

gene expression, i.e., expression levels in a hybrid that were signifi-

cantly different from the average of the parental values (mid-parent

value). Testing for expression levels deviating significantly from

the MPV (‘‘Number of nonadditive genes,’’ Table 1) identified 2649

and 3405 nonadditively expressed genes in the reciprocal hybrids

B733Mo17 and Mo173B73, respectively, with an overlap of 1412

(53%) genes between the two hybrids. The observed overlap

significantly exceeds the number of 296 genes expected purely

by chance (P # 0.01) (see footnote b, Table 1).

Extreme expression complementation

An extreme case of differential expression occurs when some ge-

notypes express a gene, but others do not. We determined whether

or not a gene is expressed in each of the four genotypes using

a Bayesian data-augmented Markov chain Monte Carlo approach

(see Methods). The results of this experiment were summarized in

Figure 1. Tests for differential gene expression were conducted on the
six pairwise comparisons between the four analyzed genotypes. (A) The
transcriptomes of primary roots (2–4 cm long) of 3.5-d-old seedlings of
two inbred lines (B73 and Mo17) and their reciprocal hybrids were
compared. (B) The estimated total number of differentially expressed
genes (i.e., m1; dark gray) and the number declared to be differentially
expressed while controlling the false discovery rate (FDR) at 5% (light
gray) are shown.

Transcriptome complexity of hybrid maize
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a four-way Venn diagram (Fig. 2). The 15 possible genotype com-

binations of the two inbred lines B73 (1) and Mo17 (2) and the

reciprocal hybrids B733Mo17 (3) and Mo173B73 (4) are sum-

marized in Figure 2A. The number of genes for each of the 15

classes that displayed such expression patterns is depicted in Figure

2B. In total, 34,233 genes were expressed in at least one of the 16

classes depicted in the Venn diagram. This number in Figure 2B

differs from the total number of genes displayed in Table 1. This

discrepancy is due to the application of different statistical ap-

proaches (see Methods and Discussion). Only eight genes were

expressed in only one or two genotypes, and no gene was expressed

in both parents but in only one of the two reciprocal hybrids (Fig.

2). In contrast, hundreds of genes (N = 358 and N = 766) (Fig. 2;

Supplemental Table S4) were expressed in both hybrids but in only

one of the two parental inbred lines. Such single parent expression

(SPE) patterns represent a special instance of the dominance (i.e.,

complementation) model. As a consequence of complementa-

tion, both hybrids expressed more genes (34,225 and 34,226 in

B733Mo17 and Mo173B73, respectively) than did either parental

inbred (33,460 and 33,874 in B73 and Mo17, respectively) (Fig. 2;

Supplemental Table S4). To exclude the possibility that SPE is

simply the result of the complete absence of affected genes from

the genomes of one of the parental inbred lines (rather than dif-

ferentially regulated gene expression), all SPE genes were compared

to a previously published set of presence/absence variation genes

(Swanson-Wagner et al. 2010). For technical reasons, only PAVs

that are present in the B73 reference genome but absent from

the Mo17 genome were detected by Swanson-Wagner et al. (2010).

Hence, in our analysis we only considered the SPE class 1-3-4

(Fig. 2). Of the 358 SPE genes in this class, 65 matched genomic

PAVs identified by Swanson-Wagner et al. (2010) and C Rustenholz,

C-T Yeh, Y Huang, and PS Schnable, pers. comm. (Supplemental

Table S4 and Methods). Hence, the remaining 293 genes of the

1-3-4 class (Fig. 2B) represent cases of genotype-dependent dif-

ferential gene expression. For all of these genes, expression in

the hybrids was dominant over lack of expression in one of the

parental inbreds.

To determine whether complementation of gene expression

in hybrids is associated with the reactivation of the ‘‘silenced’’ al-

lele or if the hybrids only express the allele contributed from the

‘‘active’’ parent, we used a set of more than 4 million single nu-

cleotide polymorphisms between the B73 and Mo17 transcriptomes

(C-T Yeh and PS Schnable, unpubl.; Methods) to ascertain allele-

specific expression levels in the SPE genes (classes 1-3-4 and 2-3-4 in

Fig. 1B, respectively). It was possible to assay for allele-specific

expression in 174 of the 358 class 1-3-4 genes and for 373 of the

766 class 2-3-4 genes due to the presence of SNPs in these genes. In

the hybrids, both parental alleles of 33/174 class 1-3-4 genes and

139/373 class 2-3-4 genes were expressed (Supplemental Table S5),

suggesting that regulatory factors from the active parent success-

fully interacted with and activated the allele from the silent parent.

In the remaining instances, the allele from the silent parent may be

defective in some manner.

Hybrids exhibit a high frequency of novel allele-specific
expression patterns

For each gene, we determined the allelic expression ratios in hy-

brids and compared these ratios to the expression ratio of the two

inbred parents. Overall, an estimated 4239 (B733Mo17) and 4245

(Mo173B73) genes exhibited allelic expression levels in the hy-

brids that differed significantly from the expression ratio of the

parental inbred lines (Table 2). When controlling the FDR at 5%,

516 (B733Mo17) and 600 (Mo173B73) of these genes could be

identified. The overlap (N = 276) between the gene lists from the

two hybrids is significantly larger than expected by chance (N = 10;

P # 0.01) (footnote b, Table 2). Of these overlapping genes, 249

displayed conserved allelic directionality between the two hybrids,

while for 23 genes, the two hybrids exhibited opposite direc-

tionality (Supplemental Table S5). Ninety six (B733Mo17) and 111

Table 1. Classification of the genes expressed in the two reciprocal hybrids according to their expression levels in comparison to the
corresponding parental values (defined as lower parent [LP] and higher parent [HP])

Class
Expression

pattern

Total number of genes Number of nonadditive genesa

Criteria

B73xMo17 Mo173B73

Overlapb

B733Mo17 Mo173B73

Overlapb

LP 6¼H HP 6¼H LP 6¼HP Expected Observed Expected Observed

1 LP<H<HP Y Y Y 4065 4297 573 3241* 1036 1078 37 819*
2 LP=H<HP N Y Y 4160 4166 569 1918* 336 606 7 120*
3 LP<H=HP Y N Y 4905 5092 820 2591* 853 897 25 315*
4 LP=HP=H N N N 10,110 9722 3226 9146* 0 0 0 0
5 LP<HP<H Y Y Y 42 77 0 19* 42 77 0 19*
6 LP=HP<H Y Y N 123 136 1 37* 113 130 0 34*
7 H<LP<HP Y Y Y 58 189 0 36* 58 189 0 36*
8 H<LP=HP Y Y N 127 284 1 60* 119 270 1 57*
9 Ambiguousc Vary Vary Vary 6880 6507 1469 3991* 92 158 0 12*

Total 30,470 2649 3405 296 1412*

The classes 1–9 have been designed to evaluate the expression levels in the hybrids (H). In addition, the inferred degree of heterosis for the indicated
expression patterns is shown. The classification is based on three different tests. Tests 1 and 2 estimate if the expression level of the considered gene in the
hybrid differs from that of the LP and/or the HP, whereas test 3 compares HP and LP. The number of genes expected to overlap between the reciprocal
hybrids B733Mo17 and Mo173B73 as well as the observed overlap are shown. In addition, the numbers of genes found to be nonadditively expressed
using the MPV approach are presented.
aGenes have been determined by comparing their expression levels in the hybrid to the mid-parent value (MPV).
bExpected values were calculated as (# nonadditive genes in B733Mo17 3 # nonadditive genes in Mo173B73)/# all expressed genes; # of all expressed
genes is the sum of classes 1–9; expected and observed overlap values were compared using a x2 test for independence; significant differences between
expected and observed overlap values are indicated by * (P # 0.01); (Y) yes, (N) no.
cGenes showing expression patterns (LP#H#HP, LP<HP), (H#LP#HP, H<HP), or (LP#HP#H, LP<H) have been assigned to class 9.
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(Mo173B73) genes showed nonadditive gene expression, and for

32 genes, the patterns of unexpected allelic expression and non-

additive expression were found in both hybrids (Table 2). Again,

the observed overlap significantly exceeded the expected values

(N = 0; P # 0.01).

To analyze if allele-specific expression levels exhibit reciprocal

effects, we searched for genes showing differences in the ratio of

allelic contributions between the two hybrids. In each of the two

hybrids, 10,462 genes expressed the parental alleles in a ratio dif-

ferent from 1 (Supplemental Table S2). Controlling the FDR at 5%

resulted in the identification of 8305 (B733Mo17) and 8261

(Mo173B73) genes for which the two alleles were not equally

expressed. Due to the slight mapping bias of Mo17 reads (Mo17

reads that contain polymorphisms relative to B73 are at a disad-

vantage when being aligned to the B73 reference genome), more

genes displayed a preferential expression of the B73 allele. For such

genes, an increase in allelic expression cannot be separated from

artifacts introduced by the mapping bias. Hence, we considered

only genes for which the Mo17 allele was expressed at a higher

level than the B73 allele. Using this conservative strategy, signifi-

cantly higher expression of the Mo17 allele was found for 1480

(B733Mo17) and 1551 (Mo173B73) genes. For 1020 of these

genes, a stronger expression of the Mo17 allele was found in both

hybrids (Supplemental Table S2). This overlap significantly ex-

ceeds the number expected purely by chance (N=75; P#0.01) (see

footnote a, Supplemental Table S2).

Discussion
Heterosis is manifested early in seedling development for a

number of root traits (Hoecker et al. 2006). To account for this in

the present study, global gene expression patterns of the inbred

lines B73 and Mo17 and their reciprocal hybrids B733Mo17 and

Mo173B73 were compared very early in development, i.e., 3.5 d

after germination. While in the past, global gene expression sur-

veys related to heterosis were mainly conducted via microarray

analyses (for review, see Hochholdinger and Hoecker 2007; Goff

2010; Paschold et al. 2010); the present study was performed using

RNA-seq technology. Statistical power provided by fourfold bi-

ological replication of each genotype allowed a fully quantitative

survey of overall and allele-specific gene expression profiles of all

annotated genes that are expressed in seedling roots.

Single parent expression is complemented in reciprocal hybrids

Approximately 70% of all expressed genes were differen-

tially expressed between the two inbred parents. This value is

significantly higher than in previous reports. For example,

Figure 2. Analysis of transcriptomic expression complementation by
single parent expression (SPE) among the genes expressed in the two
inbred lines. (A) The different genotypes are indicated with numbers 1–4,
and each square field of the four-way Venn diagram represents a different
expression class. (B) The numbers of genes of the various expression
classes are indicated.

Table 2. Genes whose allelic expression levels in hybrids differ from the expected values

Inbred
(maternal)

Inbred
(paternal) Hybrid Criteria

Genes showing unexpected allelic expression

m1

Total Nonadditively expressed genesa

FDR 5%

Overlapb

FDR 5%

Overlapb

Expected Observed Expected Observed

B73 Mo17 B733Mo17 BB73/MMo17 6¼
BB733Mo17/MB733Mo17

4163 516

10 276*

96

0 32*
Mo17 B73 Mo173B73 BB73/MMo17 6¼

BMo173B73/MMo173B73

4245 600 111

Expected allelic expression levels are calculated from the expression level ratios of their parents. All genes for which the depicted criteria are fullfilled (m1)
and those which remain after applying a false discovery rate (FDR) of 5% are depicted. The number of genes expected to overlap between the reciprocal
hybrids B733Mo17 and Mo173B73 as well as the observed overlap are shown. In the second part of the table, the number of genes showing unexpected
allelic expression and nonadditive expression are presented.
aGenes were determined by comparing their expression levels in the hybrid to the mid-parent value (MPV).
bExpected values were calculated as (# nonadditive genes in B733Mo17 3 # nonadditive genes in Mo173B73)/# all expressed genes; # of all expressed
genes is the sum of classes 1–9 from Table 1; expected and observed overlap values were compared using a x2 test for independence; significant
differences between expected and observed overlap values are indicated by * (P # 0.01); (Y) yes, (N) no.
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microarray-based analyses reported that 4%–18% of maize genes

were differentially expressed in different tissues of the maize in-

bred lines B73 and Mo17 (Stupar and Springer 2006). Moreover,

high density SNP tiling array profiling of Arabidopsis seedlings

revealed that 31% of all analyzed genes were differentially ex-

pressed between the parental inbred lines (Zhang and Borevitz

2009). Furthermore, in an RNA-seq experiment of 4-wk-old rice

shoots, 24% of all expressed genes were differentially expressed

(He et al. 2010). These distinct rates of differential gene expression

between parental inbred lines might be species-, genotype-, tissue-,

or stage-specific, but most likely they are, in part, a consequence

of differences in experimental design, technology platforms,

and statistical analysis procedures. For instance, microarray ex-

periments tend to underestimate the number of differentially

expressed genes. Moreover, differentially expressed genes are

typically calculated with reference to the total number of genes

on a chip; hence, it is difficult to determine how many genes are

actually expressed in such experiments. Finally, in microarray

experiments, often arbitrarily introduced fold-change cut-offs

such as Fc $ 2 are introduced. By contrast, RNA-seq experiments

allow full quantification of gene expression. In addition, deep

sequencing allows for the detection and quantification of weakly

expressed genes, which contribute significantly to the total

number of expressed genes (Supplemental Figs. S1, S2). Therefore,

we did not introduce any fold-change cut-offs because even small

fold-changes of genes with low expression levels could be bi-

ologically relevant. While in the present study, 70% of all

expressed genes were differential between B73 and Mo17, only

36% of the differential genes displayed Fc $ 2, which is similar to

numbers observed in previous studies. In the present study, it was

possible to determine that 86% of all high-confidence maize genes

were expressed in young maize roots, while in 4-wk-old rice shoots,

52% of non-transposable element (TE) genes were shown to be

expressed (He et al. 2010). The observation of significant rates of

differential gene expression between parental lines supports the

notion that transcriptome diversity in young maize hybrid roots

could be mainly conditioned by transcriptomic differences of the

distantly related parental inbred lines (Stupar et al. 2008). As sug-

gested by the dominance model, the combination of two diverse

inbred genomes in hybrids might lead to their integration or

complementation promoting the ‘‘selection’’ of superior alleles

and supporting the formation of more vigorous plants ( Jones

1917). A special instance of the complementation model is single

parent expression, i.e., the expression of a gene in reciprocal hy-

brids, which is expressed only in one parental inbred line. This

expression pattern was observed for 1124 genes (Fig. 2B). Some SPE

genes were also observed in microarray analyses of different maize

tissues (Stupar and Springer 2006). Although maize exhibits high

rates of presence/absence variation (Springer et al. 2009; Swanson-

Wagner et al. 2010), only 65 of 358 B73-expressed SPEs detected in

this study were the result of PAVs. Hence, most of the SPE patterns

observed in this study are probably the consequence of differential

expression of genes, rather than presence/absence variation in

genomic DNA. As a result of complementation, the absolute

number of expressed genes in both hybrids was higher than in

their parental inbred lines. The expression of more genes in hy-

brids as compared to their parental inbred lines might provide

a phenotypic advantage to hybrid plants.

Compared to the parental inbred lines B73 and Mo17, fewer

gene expression differences were observed between the reciprocal

hybrids B733Mo17 and Mo173B73 harboring identical nuclear

genomes (Fig. 1B). Similar tendencies have been reported pre-

viously in maize (Stupar and Springer 2006) and Arabidopsis

(Vuylsteke et al. 2005), while larger reciprocal effects than in the

present study have been documented in rice (He et al. 2010) and

maize (Swanson-Wagner et al. 2009). The four pairwise compari-

sons of gene expression in inbred lines versus hybrids revealed

intermediate numbers of differentially expressed genes with ref-

erence to the hybrid and inbred line comparisons. Hence, the

degree of genomic difference correlates with differential gene ex-

pression. In each of the four comparisons the hybrid displayed

a 50% genomic identity with the respective inbred line to which

it was compared. Moreover, the observation that each hybrid

showed less differential expression when compared to its mother

(Fig. 1B) suggests that the maternal influence on the hybrid tran-

scriptome exceeds the paternal influence, independent of their

genotype. In the maize inbred lines B73 and Mo17, hybrid gene

expression patterns that resemble the transcriptome of the ma-

ternal (Guo et al. 2003) or paternal (Swanson-Wagner et al. 2009)

parent have been reported previously, while transcriptomic sur-

veys of other genotypes did not support such a trend (Uzarowska

et al. 2007).

Differential and nonadditive gene expression shape the hybrid
transcriptome

Gene expression in hybrids compared to their parental inbred lines

can be classified as differential (Springer and Stupar 2007) or non-

additive (Hoecker et al. 2008a). Differential gene expression is

defined as expression in a hybrid that is significantly different from

expression in at least one parental inbred line. Differential ex-

pression between inbred lines and hybrids was observed for the

majority of genes in the present study (classes 1–3 and 5–8 in Table

1). In contrast, nonadditive gene expression is defined as expres-

sion of a gene in a hybrid that is significantly different from the

average value of the parental inbred lines (mid-parent value).

Hence, while nonadditive gene expression is observed in the same

classes as differential expression (Table 1), nonadditively expressed

genes represent a subset of differentially expressed genes. Classes

5–8 represent extreme expression classes. In classes 5 and 6, the

hybrid displays a significantly higher expression than both par-

ents, and in classes 7 and 8, the hybrid displays a significantly

lower expression than both parents. These instances have been

previously designated above high-parent and below low-parent

expression (Hoecker et al. 2008a) or under- and overdominance

(Swanson-Wagner et al. 2006). Therefore, almost all genes be-

longing to these classes (in classes 5 and 7, even all genes) display

nonadditive expression. The numbers of genes showing expres-

sion that exceeds or is below both parental expression values is

lower than those found in rice shoots (He et al. 2010) and in

meristems of other maize genotypes (Uzarowska et al. 2007).

Similar numbers of such genes were reported from different

tissues of the rice hybrid LYP9 (Wei et al. 2009), whereas other

studies found fewer such genes in maize embryos, endosperm,

seedling shoots, and immature ears of hybrids (Stupar and

Springer 2006; Swanson-Wagner et al. 2006; Meyer et al. 2007;

Stupar et al. 2007; Uzarowska et al. 2007). Although it is possible

that there are organ-specific differences in nonadditive gene

expression, it is more likely that differences in experimental

approaches play a larger role in explaining the differences

among reports. Among the genes classified in the eight classes

displayed in Table 1, ;10% were nonadditively expressed.

Compared with previous studies, these numbers (considered as

a ratio of all expressed or all analyzed genes) are in the range of
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nonadditively expressed genes detected in inbred lines and

hybrids of rice (He et al. 2010), Arabidopsis (Vuylsteke et al.

2005), and maize (Stupar and Springer 2006; Swanson-Wagner

et al. 2006; Stupar et al. 2007).

Another notable finding was the high degree of conservation

of all nonadditively expressed gene classes between the two re-

ciprocal hybrids (Table 1). The number of such genes significantly

exceeded the expected values, hence underscoring the importance

of nuclear genome composition in reciprocal hybrids irrespective

of the parental origin of the two alleles.

Different statistical approaches were applied to determine the

expression classes in Table 1 and expression complementation in

Figure 2B (see Methods). This explains the different numbers of

expressed genes in these two experiments. Briefly, in Table 1, a

conservative approach was used in determining what genes were

expressed in order to have high confidence that the genes it was

examining were truly ‘‘ON’’ and to have better power for differ-

ential expression detection. In doing so, we used a strict total read

cut-off, and genes which did not make this threshold were elimi-

nated from the analysis.

In Figure 2B, we did not make any inference regarding the

relative ratios of the expression, and the inference was strictly

limited to whether genes were expressed at all. As such, we used a

more flexible model that did not include any prior censoring of the

data.

Differential allele-specific expression affects nonadditivity

For more than 4100 genes, allelic ratios in the hybrids were ob-

served that differed from the parental ratios (Table 2). These

expression patterns might be predetermined by the parental ge-

nomes or, alternatively, could also be the result of epigenetic reg-

ulation. For example, reduced levels of 24-nt sRNAs in reciprocal

hybrids compared to the parental lines have been suggested to be

involved in the altered epigenetic landscape of hybrids thereby

promoting the formation of heterotic phenotypes (Groszmann

et al. 2011). Controlling the FDR at 5% left only ;13% of the genes

with unexpected allelic ratios, a number which is lower than that

previously reported in Arabidopsis F1-hybrids (Zhang and Borevitz

2009). Interestingly, ;19% of these genes also show nonadditivity

in their total gene expression levels. This considerable fraction

implies that altered allelic activity in hybrids contributes to non-

additive gene expression patterns.

In summary, RNA-seq sequencing technology allows for un-

precedented accuracy and coverage in transcriptome studies. The

results presented in this study allow for statistically substantiated

conclusions about the quantitative transcriptomic complexity of

maize hybrids in comparison to their parental inbred lines. Single

parent expression seems to play a major role in shaping tran-

scriptomes of hybrids. The ability to compensate for alleles not

expressed in one of the two parents might be a mechanism

contributing to hybrid vigor. Furthermore, it was demonstrated

that the parental inbred lines greatly differ in gene expression

levels and that most of these differences are no longer present in

reciprocal hybrids. Nonadditivity seems to be the rule rather

than the exception in hybrids, and analyses of the allelic gene

expression landscape revealed numerous deviations from the

parental ratios. Finally, for a large number of genes, these clas-

sification patterns are highly conserved between reciprocal hy-

brids, indicating that they are determined by the nuclear ge-

nomes of their parents rather than by cytoplasmic or epigenetic

factors.

Methods

Plant material and growth conditions
Seeds of the inbred lines B73 and Mo17 and the two reciprocal
hybrids B733Mo17 and Mo173B73 were germinated in paper
rolls in distilled water as previously described (Hoecker et al. 2006).
For each genotype, 18 paper rolls each containing 10 kernels were
prepared. All material was germinated in a single 10-L bucket in
which the 72 paper rolls were arranged randomly. Three and a
half d after germination primary roots of 2–4-cm-length were
harvested. Ten primary roots were pooled for each of the four bi-
ological replicates per genotype.

Even at this very early developmental stage, hybrid primary
roots were longer than those of their parental inbred lines. To avoid
differential gene expression patterns based simply on root length,
pools of roots having the same lengths (2–4 cm) were analyzed for
all genotypes and replicates.

RNA isolation and sequencing library construction

The pooled primary roots were ground under liquid nitrogen,
and RNA was isolated as previously described (Winz and Baldwin
2001). RNA quality was assayed via agarose gel electrophoresis and
a Bioanalyzer (Agilent Technologies, Boeblingen, Germany). Only
samples with an RIN (RNA integrity number) (Schroeder et al.
2006) $8.7 were used for downstream analyses. The cDNA libraries
for sequencing-by-synthesis were constructed according to the
protocol of the manufacturer (Illumina). The 16 samples were
loaded on two flow cells in a predefined order (Supplemental Table
S1). Cluster generation and sequencing (40-bp, single read) were
performed as per the instructions of the manufacturer (Genome
Analyzer II, Illumina).

Analysis of raw sequencing data

Illumina’s RTA software version 1.6.32.0 was used for real time
image analysis and the Genome Analyzer data analysis pipeline
OLB version 1.6 for base calling and run statistics on all 16 lanes
(flow cells EAS517_0031_FC611DEAAXX and EAS517_0032_
FC611DLAAXX). On average, a raw cluster density of 300,000
clusters per tile was achieved yielding between ;0.95 and ;1.2 Gb
(;31 to ;37 million reads) per lane and sample post filtering (see
Supplemental Table S1 for sample allocation and sequencing per-
formance per lane). Sequencing error rates per lane were esti-
mated using ELAND alignments against the maize cDNA release
ZMGI 19.0 (http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.
pl?gudb=maize) suggesting per base error probabilities of 0.76%–
1.41% and 0.52%–0.84% for the two flow cells, respectively. Fur-
ther analyses were performed based on OLB’s fastq output files.

Read mapping and allele-specific read calling

The maize B73 reference genome (RefGen_v2) (Schnable et al. 2009)
was indexed using novoindex (hash length 14 and step size 1), and
all high quality reads were aligned to the whole reference genome
using the short reads aligner NOVOALIGN (http://www.novocraft.
com, version 2.07.11). Only those reads uniquely mapping to the
B73 reference genome (Schnable et al. 2009) with a maximum of
two mismatches out of 40-bp read length were subsequently ana-
lyzed. In addition, redundant reads mapping at the same starting
coordinate and mapping orientation (‘‘stacked reads’’) were re-
moved from the set of uniquely mapping RNA-seq reads. The
remaining reads of all samples were projected to the filtered gene
set (FGSv2; http://ftp.maizesequence.org/current/filtered-set/, Re-
lease 5b.60) of the B73 reference genome derived from the maize
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genome sequencing project (MGSP) using a Perl script. Allele-
specific gene expression was analyzed with a set of 4,034,683 single
nucleotide polymorphisms (identified between the B73 and Mo17
genotypes via 123SNP software which is available for download
from http://schnablelab.plantgenomics.iastate.edu/software). B73-
Mo17 SNPs were called by aligning B73 RefGen_v2 sequences
and Mo17 sequences retrieved from NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) records (accession numbers:
SRA009756, SRA049859, SRA048055, SRA053592, SRA050451) and
MaizeGDB (http://ftp.maizegdb.org/MaizeGDB/FTP/Mo17/).

The allele-specific reads were extracted from the reads
uniquely projected onto the FGSv2 and associated with any B73-
Mo17 SNP using a customized Perl script. Since the mapping
procedure presented here did not allow for quantifying sequence
reads mapping to repeats throughout the genome, only uniquely
mapping genes were considered. In addition, transcript isoforms of
a given gene locus could not be distinguished.

Expression complementation

Classification of the genewise transcriptional activity (presence/
absence) for each genotype was determined by a Bayesian data-
augmented Markov chain Monte Carlo approach (Tanner and
Wing 1987), treating the status of transcription for each genotype
within each gene as missing information. We modeled the status
of transcription for all four genotypes for a given gene simulta-
neously as a state vector, composed of four binary variables,
resulting in 16 total possible classes. The reads were modeled via
a negative binomial distribution using the mean-overdispersion
parameterization, with the median read count across transcripts
selected as an offset for each experimental unit. A log-link was used
to model the mean read counts, with random effects used for
overall gene effects as well as gene-specific genotype effects, which
we assumed were both normally distributed. Each gene was as-
sumed to have its own unique dispersion parameter, which was
treated as random and gamma distributed. A background error rate
was included in order to account for falsely mapped reads. This
parameter was estimated from the data using an initial ‘‘naive’’
classification of the transcriptional statuses in which the expres-
sion of a gene was classified as absent for a particular genotype if at
least half of the observed counts for that gene-by-genotype com-
bination were zero. Given this initial ‘‘naive’’ classification, the
maximum likelihood estimate of the background error rate pa-
rameter was obtained. The background error rate was then fixed at
the value of the maximum likelihood estimate during the model
fitting process to avoid identifiability complications. With respect
to prior distribution selection, we modeled the marginal proba-
bility of state vector class membership using a Dirichlet distribu-
tion and selected the remaining priors either to take advantage of
conditional conjugacy or to be noninformative. The model was
defined using JAGS (Plummer 2011), an extension of the BUGS
language (Gilks et al. 1994), and fit in R using the R2jags library
package (Su and Yajima 2011). We ran two Markov chains at
a total of 15,000 iterations each, treating the first 5000 as
a burn-in and then thinning the remaining iterations by sav-
ing every 10th iteration to avoid issues with autocorrelation,
resulting in parameter traces of length 1000 for our posterior
sample. We also analyzed the sample to verify that the model
had converged by visually inspecting the mixture of the chains
and using posterior checking procedures from the coda output
diagnostics package (Plummer et al. 2010) in R. Traces of the
state vector were used to estimate the posterior probability of
class membership, and we determined classification based upon
the state vector which had the largest proportion of instances
within the trace.

Statistical procedures for analyzing differential gene expression
and differential allele-specific expression

To estimate differences in total and allele-specific gene expression
between the four genotypes, two different models within the
GLIMMIX procedure in SAS were used. In both cases, data were
modeled one gene at a time, and the observed counts were treated
as Poisson random variables conditional on their means, which
were modeled using the log link. In both models, differences
among library sizes for the experimental units were accounted for
with the offset option in Proc GLIMMIX. Following Bullard et al.
(2010), the log of the upper quartile of the experimental-unit-
specific total count distribution across genes was used as the offset.
The model for total counts included fixed effects for flow cells and
genotypes. Additionally, a normally distributed random effect was
included for each experimental unit to account for overdispersion
(extra Poisson variation). The model for allele-specific counts in-
cluded fixed effects for flow cells, genotypes, alleles, and the in-
teraction between genotype and allele. Additionally, a random
effect for each experimental unit was included to account for
overdispersion (extra Poisson variation) and to account for corre-
lation between the two allele-specific counts arising from each
experimental unit within a hybrid genotype. Each model was fit
twice for each gene, once using the observed counts and a second
time using the observed counts added to one. There were 1176
(714) genes in the allele-specific (total count) analysis for which
adding one to the observed counts allowed SAS to converge and
produce results when using the original counts failed to converge.
In these cases, results from the analysis using the observed counts
plus one were used. In all other cases, results from the analysis
using the original counts were used.

Hypotheses tests of interest were conducted using the con-
trast statement within Proc GLIMMIX. The resulting P-values for
each hypothesis test were used to estimate the total number of
differentially expressed genes for each comparison (Nettleton et al.
2006). The P-values for each comparison were converted to q-values
that were then used to identify differentially expressed genes while
controlling the FDR at the 5% level (Storey and Tibshirani 2003).

Genes with few or no observed reads may have inadequate
power to detect differential expression; that is, genes with very few
reads will produce large P-values for tests of differential expression
regardless of how those reads are distributed across treatments. The
inclusion of such genes and their corresponding large P-values can
distort the distribution of P-values from which the number of true
null hypotheses is estimated, which in turn affects estimated false
discovery rates (q-values). To address this issue, the total count
(allele-specific) analysis described in this paper was applied to
genes that had at least 20 total (allele-specific) reads summed across
the 16 samples and for which at least six samples had at least one
total (allele-specific) read.

Classification of gene expression patterns

To classify gene expression in the hybrids relative to their parental
inbred lines, nine gene expression classes were postulated (Table
1). Moreover, each gene was classified according to the expression
level of each hybrid versus both parental lines. For each gene, the
degree of estimated expression levels for a hybrid and the two
parental lines directly follows from the estimated coefficients from
the GLIMMIX analysis of total counts. If the contrast that com-
pared the expression of two genotypes produced a q-value less than
0.05, a strict inequality was used to describe their relative expres-
sion. For each gene, the parental line with the larger estimated
expression was denoted high-parent, and the other parental line
was denoted low-parent. In a second approach to identify non-
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additively expressed genes, gene expression levels in hybrids were
compared to the mid-parent values. To conduct MPV analyses, two
contrast statements were used for each gene to compare the esti-
mated (log-scale) expression of each hybrid to the average (log-
scale) expression of the parental lines.

Presence/absence variation calling

To identify the PAVs summarized in Supplemental Table S4, com-
parative genomic hybridization probes from Springer et al. (2009)
were mapped to the B73 reference genome (AGPv2). Probes that
exhibited 100% identity over 100% of their length at three or fewer
locations in the genome were used for further analyses. Segmen-
tation and PAV calling were performed as described by Springer
et al. (2009).

Data access
Raw sequencing data are stored at the NCBI Sequence Read Archive
(SRA) (http://www.ncbi.nlm.nih.gov/sra) under accession number
SRA049019.
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