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Abstract
During early stages of Alzheimer’s disease (AD), synaptic dysfunction induced by toxic

amyloid-β (Aβ) is present before the accumulation of histopathological hallmarks of the dis-

ease. This scenario produces impaired functioning of neuronal networks, altered patterns of

synchronous activity and severe functional deficits mainly due to hyperexcitability of hippo-

campal networks. The molecular mechanisms underlying these alterations remain unclear

but functional evidence, shown by our laboratory and others, points to the involvement of

receptors/channels which modulate neuronal excitability, playing a pivotal role in early Aβ-

induced AD pathogenesis. In particular, two potassium channels that control neuronal excit-

ability, G protein-coupled activated inwardly-rectifying potassium channel (GirK), and volt-

age-gated K channel (KCNQ), have been recently linked to Aβ pathophysiology in the

hippocampus. Specifically, by using Aβ25-35, we previously found that GirK conductance is

greatly decreased in the hippocampus, and similar effects have also been reported on

KCNQ conductance. Thus, in the present study, our goal was to determine the effect of Aβ

on the transcriptional expression pattern of 17 genes encoding neurotransmitter receptors

and associated channels which maintain excitatory-inhibitory neurotransmission balance in

hippocampal circuits, with special focus in potassium channels. For this purpose, we

designed a systematic and reliable procedure to analyze mRNA expression by reverse tran-

scriptase quantitative polymerase chain reaction (RT-qPCR) in hippocampal rat slices incu-

bated with Aβ25-35. We found that: 1) Aβ down-regulated mRNA expression of ionotropic

GluN1 and metabotropic mGlu1 glutamate receptor subunits as previously reported in other

AD models; 2) Aβ also reduced gene expression levels of GirK2, 3, and 4 subunits, and

KCNQ2 and 3 subunits, but did not change expression levels of its associated GABAB and

M1 receptors, respectively. Our results provide evidence that Aβ can modulate the expres-

sion of these channels which could affect the hippocampal activity balance underlying learn-

ing and memory processes impaired in AD.
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Introduction
Lastest findings support the emerging concept that the effects of Amyloid-β (Aβ) in Alzheimer
disease (AD) initially center on subtle alteration of synaptic function and, thus, precede syn-
apse loss, plaque accumulation, the formation of tangles and neurodegeneration [1]. In this
scenario, Aβ would affect neuronal activity at the molecular, synaptic or network level acting
on a particular receptor/channel and inducing an imbalance between excitatory and inhibitory
neurotransmission systems in relevant areas for learning and memory processes that might
underlie the synaptic dysfunction found before the neurological AD deficits [2–4].

In AD, the hippocampus is one of the brain regions firstly affected. This region is a highly
organized structure playing a pivotal role in learning and memory processes by the accurate
balance between excitatory and inhibitory systems [5]. Memory deficits and disorientation are
the first symptoms of AD [6,7] which brought up the hypothesis that hippocampal synaptic
transmission and plasticity may be impaired in experimental models of the disease [2,8–11].
Humans with AD, particularly early-onset AD and familial AD, have an increased incidence of
convulsive seizures [12]. Furthermore, AD transgenic models, as human amyloid precursor
protein (hAPP) transgenic mice, present epileptiform activity and the downstream conse-
quences of such aberrant hippocampal network synchronization and cognitive impairments
[13]. Therefore, synaptic depression and aberrant network activity coexist in AD and seem to
be mechanistically related [1,3]. It has also been reported that restoring hippocampal inhibitory
cells activity and inhibitory synaptic currents is able to reduce premature mortality, network
hypersynchrony, and memory deficits in hAPP mice [14]. Thus, experimental manipulations
that prevent network hyperexcitability would provide key insights into the pathogenesis of AD
and open new therapeutic approaches.

In this regard, several mechanisms of loss-of-function of sodium [14] or potassium [15–17]
channels (Kv4.2, KCNQ and GirK channels), which control neuronal excitability, have been
recently proposed to contribute to the alteration in AD hippocampal inhibitory neurotransmis-
sion, and to the subsequent network hyperactivity and hypersynchrony [18]. In particular, we
have recently showed for the first time that Aβ25–35 decreases GABAB currents in CA3 pyramidal
neurons, which likely occurs by decreasing GirK channels conductance, and leads to hippocam-
pal hiperexcitability in vitro [4,16]. However, the molecular mechanisms that could underlie the
above Aβ-induced functional changes, i.e, synaptic dysfunction and hippocampal neurotrans-
mission imbalance, remain mostly unrevealed, particularly at the transcriptional level [2,4]

Therefore, we have studied the transcriptional expression of neurotransmitter receptors and
associated channel genes involved in neuronal excitability control, that may more likely be tar-
geted by Aβ [4]. We developed and validated a highly sensitive reverse transcription-qPCR
(RT-qPCR) assay to quantify relative mRNA levels in rat hippocampal slices incubated for
long periods (up to two hours) with Aβ25–35 (the same preparation used in our previous
electrophysiological studies [16]). We standardized RNA quality control to check RNA integ-
rity maintenance in hippocampal slices and also calculated unbiased stability values of putative
valid reference genes to achieve accurate and reproducible mRNA quantification in the hippo-
campal slice preparation. Specifically, we analyzed the modulation by Aβ of mRNA levels of 17
receptors/channels genes that participate in excitatory and inhibitory neurotransmission
involving glutamatergic, GABAergic and muscarinic systems in the rat hippocampus [4]. For
the study of the glutamatergic system, NMDA, AMPA and Group I of metabotropic receptors
were selected while for the cholinergic system, M1 receptor and subunits of its effector, KCNQ
channel were analyzed. Finally, in the GABAergic system, subunits of GABAB receptor and its
effector, GIRK channel, were studied [4]. Since it has been reported that Aβ early soluble forms
anomalously increase activity-regulated cytoskeleton-associated protein (Arc) levels in AD
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patients and animal models [19], we also analyzed its mRNA expression as a positive control to
validate our results.

In summary, our data indicate that Aβmodifies the mRNA expression levels of GluN1 and
mGlu1 glutamatergic subunits as expected by previous reports [20,21], but also decreases the
mRNA expression levels of different subunits of two potassium channels, GirK2-4 and Kcnq2-
3, that control neuronal excitability and have been recently linked to hippocampal AD patho-
physiology. We suggest that these impairments at the transcriptional level could contribute to
the final excitatory-inhibitory hippocampal neurotransmission imbalance that causes aberrant
network activity and early cognitive impairment found in AD models [1,3,4].

Methods

Animals
Experiments were carried out on Wistar rats (50–100 g; P23-33) obtained from an authorized
distributor (Criffa Laboratories, France). All animal procedures were reviewed and approved
by the Ethical Committee for Use of Laboratory Animals of the University of Castilla-La Man-
cha, and followed the European Communities Council guidelines (86/609/EEC).

Preparation of slices
Animals were deeply anesthetized with halothane gas and decapitated. The brain was excised
and rapidly immersed in modified oxygenated ice-cold (4–6°C) artificial cerebrospinal fluid
(ACSF) containing: (in mM) 234 Sucrose, 4.7 KCl, 2.5 CaCl2, 1.2 MgCl2, 25 NaHCO3, 1.2
NaH2PO4, and 11 glucose. Horizontal hippocampal slices (350 μm-thick) were cut in cold oxy-
genated modified ACSF solution using a vibratome (Microm 7000smz-2, Campden Instru-
ments Ltd, UK). Hippocampal slices from each single hemisphere were obtained using a
dissecting microscope (Fig 1A), placed in an incubation chamber with ACSF containing NaCl
(117 mM) replacing sucrose and maintained in a carbogen (95%CO2/5%O2) saturated atmo-
sphere at room temperature through the incubation time, as we previously described [16,22,23].

Preparation of Aβ25–35 peptide solutions
It has been proposed that Aβ25–35 constitutes the biologically active fragment of Aβ [24], and has
been shown to induce major neuropathological signs related to early stages of AD in rats [25]. In
addition, Aβ25–35 is reported to be more soluble and presents toxic effects more rapidly than the
parent peptide Aβ1–42 [26] and has widely been used as a very useful tool to explore acutely the
pathophysiological events related with neuronal dysfunction induced by soluble Aβ forms
[16,22,27–29]. In addition, the main advantage for present work is that Aβ25–35 does not form
ion-permeable pores in neuronal membrane but acts mainly on neurotransmission [16,27,30,31].

Therefore, Aβ25–35 peptide was prepared as previously described by our laboratory
[16,22,29]. Briefly, the peptide was dissolved to 1 mM in bidistilled water and stored in aliquots
at -20°C. Then aliquots were diluted in ACSF to required concentration of 1 μM and incubated
for 24 hours at 37°C before experiments were performed [16]. Final concentration of 1 μMwas
chosen based on our previous functional results obtained with the same concentration in
350 μm-thick hippocampal, amygdalar and septal slices [16,22,29].

Experimental design
Hippocampal slices were incubated at room temperature in two different conditions, 1) ACSF
or 2) ACSF enriched with Aβ25–35 (Sigma, Poole, UK), during different time periods (0, 30, 120
minutes) (Fig 1B). Time points for gene expression analysis where chosen based on our
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previous in vitro results obtained for Aβ25–35 in the same experimental preparation [16]. Our
previous data showed Aβ25–35 synaptic activity disruption as early as 20 min after perfusion of
the peptide that lasted up to 2 h. In addition, maximum activity-dependent gene expression
changes have been reported to take place within the time window of 0.5-2h [32,33]. Therefore

Fig 1. Experimental design, RNA integrity category examples and reference gene selection. (A) Horizontal hippocampal brain slices from one
hemisphere were obtained using a dissecting microscope. Thick dashed lines indicate the cutting delimitation area. C, Caudal; L, Lateral. (B) Schematic
representation of hippocampal slices incubation procedure. Slices were incubated in ACSF or Aβ 1°μM during 30 or 120 min. At time zero, hippocampal
slices were considered as raw tissue and mRNA level for these samples 100% since incubation effects had no begun. All experiments were performed at
room temperature and bubbled with carbogen gas. (C) Representative examples of electropherogram of different RNA samples revealing RNA integrity
levels and virtual images of the gels for each sample. Left column (M), molecular weight marker; Right column (S), RNA sample. RQI values are ranged from
10 (intact) to 1 (totally degraded). The gradual degradation of RNA extracted from hippocampal slices was reflected by a continuous shift towards shorter
fragment sizes. The first peak found in all traces corresponds to a molecular weight marker. Electropherogram plots from top to bottom: (Top) Profile of RNA
with RQI = 9.1. The peaks correspond to 18S and 28S ribosomal subunits. In this case, there are no small peaks in profile which would indicate RNA
degradation. Two bands corresponding to the 28S and 18S ribosomal RNA respectively. The greater thickness of the band corresponding to 28S indicates
higher concentration compared to 18S subunit. (Middle) Profile of RNA with RQI = 7.1. Arrows indicate the different peaks from degraded RNA fragments
which appear at different time points along the reaction. In the sample are arrowed degraded fragments of different sizes. (Bottom) RNA profile with
RQI = 2.1. Plot corresponding to highly degraded RNA can be observed. No bands can be distinguished. (D) The BestKeeper and NormFinder softwares
were used to calculate the most stable gene among the 3 reference genes, in ACSF and Aβ incubation. For both softwares the most stable gene is that with
the lowest stability value. Asterisk indicates the selected gene (Ppia) as the most stably expressed reference gene. Actb, β-actin;Gapdh, Glyceraldehyde
3-phosphate dehydrogenase, Ppia, Peptidylprolyl isomerase A.

doi:10.1371/journal.pone.0134385.g001
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30 and 120 min were selected in order to correlate synaptic dysfunction induced by Aβ with
changes in mRNA expression levels.

Finally, the slices were collected after incubation and frozen at −80°C at each time point
until further processing.

RNA extraction, RNA quality and integrity, and reverse transcription of
mRNA
Total RNA was extracted from single homogenized hippocampal slices using Trizol (Invitro-
gen, Paisley, UK) and total RNA was purified using Rneasy Mini Kit (Qiagen, Crawley, UK).
RNA samples were treated with DNase I (Qiagen, Crawley, UK) according to the manufactur-
er’s protocol. For all samples, RNA quantification was routinely assessed on a Nanodrop 2000c
spectrophotometer (Thermo Scientific, Wilmington, USA). The quality and integrity of total
RNA was analyzed by using the RNA Quality Indicator number (RQI), which is calculated
from electropherograms obtained from an automated electrophoresis system (Experion Sys-
tem, Bio-Rad, USA). The electropherogram shows the RNA profile of ribosomal RNA degrada-
tion [34], according to the premise that over time RNA would accumulate as small degraded
RNA with low molecular weight (Fig 1C). The RQI allowed us to classify the quality of the hip-
pocampal samples from 1–10 (Table 1). The criterion for selection of the RNA samples used
for subsequent cDNA synthesis and gene expression analysis was RQI� 7.5 [34].

cDNA synthesis was performed by reverse transcription (RT). 0.198 μg of total RNA for
each sample were reversed transcribed using random nonamers 2 μM (Sigma, Poole, UK),
oligo(dT)20 primers 1 μM (Promega, Wisconsin, US), dNTPmix 0.5 μM, (Promega, Wisconsin,
US) in a RT mix volume of 13 μl per sample. Then we performed a “two step” amplification
cycle: 1) RT mix was incubated at 65°C for 5 min in a T-Professional Thermocycler (Biometra,
Gottingeng, Germany) for primers annealing and 2) RT was performed adding to RT mix
Buffer First-Strand 5X (Invitrogen, Paisley, UK), DTT 0.1 M ribonuclease Inhibitor 40 unit/ μl
(Promega, Wisconsin, US) and Superscript TM III RT (Invitrogen, Paisley, UK) in a final vol-
ume of 20 μl per sample. Then, RT mix was incubated at 25°C for 5 min, 50°C for 50 min and
70°C for 15 min.

Quantitative polymerase chain reaction (qPCR)
qPCR reactions were performed with equal amount of cDNA template, TaqMan fast Universal
Master Mix (2x) without AmpErase UNG and TaqMan Gene Expression Assays (20X)
(Applied Biosystems, Carlsbad, US) for the 18 genes of interest (see S1 Table) according to the
manufacturer’s protocol. The following thermal cycling specifications were performed on the
ABI 7900 Fast Real-Time PCR system (Applied Biosystems, Carlsbad, US): one cycle at 95°C
for 20 s, 40 cycles at 95°C for 3 s and one cycle 30 s at 60°C. Unless otherwise stated, all qPCR
reactions were performed with 5 biological samples and each sample had a technical duplicate.

Table 1. RNA integrity and quality. RNA quality indicator (RQI) for hippocampal slices and percentage of
samples for each RQI value range.

RQI % RNA Quality

RQI � 6 2.5 Very degraded

6< RQI � 7.5 15 Lightly degraded

7.5< RQI � 8.5 32.5 Good quality

8.5 < RQI � 10 50 High quality

doi:10.1371/journal.pone.0134385.t001
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Negative control RT samples (Non RT; samples without transcriptase for detection of genomic
DNA contamination) and Non template controls, NTC-RT; samples that contained only
RNasa/DNase free water, for detection of primers dimmers and contamination) were always
included, as well as samples without cDNA template, NTC-qPCR (contained only RNasa/
DNase free water for detection of probe’s degradation in qPCR reaction). No product was syn-
thesized in negative controls, indicating that RT and qPCRs reagents were not contaminated.
qPCR experiments were performed in accordance with MIQE (Minimum Information for
Publication of Quantitative Real-Time PCR Experiments) guidelines [35].

For relative mRNA quantification Cq values (Cq, standard name for threshold cycle or
crossing point value according to the Real-Time PCR Data Markup Language, RDML guide-
lines, [36]) were calculated in each sample set for reference and target genes. The expression of
each target gene relative to a normalizing factor (a reference gene that was chosen accordingly
to its stability; see section below) was calculated using the 2−ΔCq method [37,38] as described
by the manufacturer (Applied Biosystems: User Bulletin 2). Changes in gene expression
through the time course were reported as percent changes relative to basal control expression
at time zero (t = 0 min, i.e. before Aβ was added to the incubation media).

Reference gene selection
In order to compare the relative expression levels of Aβ-targeted genes following a standard-
ized and reliable procedure, data were normalized based on the most stable reference gene in
our experimental design.

As selection of suitable reference genes is critical for data normalization and interpretation,
two steps were performed to choose the most stable reference gen [39]. First, the stability of
three putative commonly used reference genes [40], Actb (β-actin), Gapdh (Glyceraldehyde
3-phosphate dehydrogenase), and Ppia (Peptidylprolyl isomerase A) was analyzed. Relative
mRNA levels of reference genes were studied for all experimental conditions. Cq value for each
reference gene was normalized to Cq mean value for t = 0, and mRNA level for these samples
was considered 100%. The analysis revealed that mRNA levels of the three candidate reference
genes were steady as expression levels of the three genes were no significantly affected by time
incubation (Actb: F(2,19) = 0.387, p = 0.684; Gapdh: F(2,19) = 0.643, p = 0.537; Ppia: F(2,18) =
1.921, p = 0.175), nor by Aβ incubation (Actb: F(1,19) = 0.432, p = 0.519; Gapdh: F(1,19) = 0.157,
p = 0.696; Ppia: F(1,19) = 2.928, p = 0.104), suggesting that any of them would be appropriate as
reference gene for our experimental conditions.

Second, to determine the most stably expressed reference gene among the different candi-
dates, the raw Cq values obtained for each sample for the candidate endogenous control genes
were processed by two different algorithms: NormFinder v0.953 [41] and BestKeeper v1 [42]
applications. These bioinformatics packages calculate a stability value, whereas a lower value
means a higher stability in gene expression. The genes were ranked according to these obtained
gene stability values and that with the lowest value chosen for data normalization.

Using this two-step approach that includes analysis by bioinformatics algorithms of expres-
sion stability of plausible reference genes allowed us to select the most stable gene based on an
objective value and exemplify the importance of selecting a particular reference gene among
different candidates to properly standardize the analysis and quantify relative mRNA levels.

Statistical analysis
Results were expressed as mean ± standard error of the mean (SEM). All calculations were per-
formed using SPSS version 20 software (SPSS Inc., Chicago, IL)., Comparisons of mRNA rela-
tive expression or of RNA integrity were made using two way ANOVA and followed by
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Bonferroni poshoc test when the distribution of the variables was normal. If the Levene’s test
for normal distribution was significant then data were normalized by logarithmic (log) trans-
formation. When the variables did not show normal distribution after transformation, compar-
isons were made using non-parametric tests. Significance level was set at p�0.05.

Results

Standardization of the analysis of mRNA expression patterns in
hippocampal slices
In order to standardize our RT-qPCR study, unbiased values were calculated to determine
both: i) integrity and quality of the RNA extracted from hippocampal slices and ii) stability of
reference genes in our experimental design.

RNA integrity and quality
Total RNA was extracted and purified from hippocampal slices (n = 44). RNA integrity was
analyzed for all samples using RQI value, which was calculated based on the electropherogram
areas that corresponded to the regions of 28S, 18S and pre-18S ribosomal RNA (Fig 1C). Hip-
pocampal total RNA quality was also checked by virtual gel images (Fig 1C, right column). As
shown in Table 1, RQI values were divided into four groups according to our pre-established
criterion. Data showed that more than 80% of the samples presented total RNA of highest qual-
ity (Table 1), confirming that the model would be appropriated to study the effects induced by
Aβ on the RNA obtained from the slice. No significant differences in RNA integrity were
found neither during Aβ incubation (F(1,35) = 0.206; p = 0.652) nor time (F(2,35) = 0.826;
p = 0.446).

Selection of the most stable reference gene
As indicated in the methods section, stability of the possible reference genes (Ppia, Gapdh y
Actb) in our experimental conditions was first evaluated. Among suitable candidates confirmed
by this first analysis, the most stably expressed reference gene (i.e. the one with lowest variation
and highest stability across biological samples) was finally selected for analysis of relative
expression levels of target genes after Aβ treatment in hippocampal slices.

mRNA expression levels of the three proposed genes (Ppia, Gapdh y Actb) were found to be
steady (see methods section) so they were all considered as suitable candidates for later bioin-
formatic analysis of stability. To select the most stable reference gene across the tested ACSF
and Aβ conditions, the expression stabilities of the 3 candidates, Ppia, Gapdh y Actb, were ana-
lyzed with two different software tools, NormFinder Program [41] and BestKeeper Program
[42]. After data were analyzed and genes ranked by both programs, the lowest rank represented
the most stably expressed reference gene, whereas the highest rank represented the least stably
expressed reference gene. Across the three candidates, Ppia was identified as the most stably
expressed reference gene by both programs (Fig 1D) and used for further analysis.

Aβ effects on hippocampal gene expression
In order to achieve the main aim of the present study, i.e to investigate the effect of Aβ on hip-
pocampal expression of genes related to glutamatergic, cholinergic and/or GABAergic neuro-
transmission, we studied the expression pattern of 17 subunits of receptors/channels than
control neuronal excitability, using Ppia as reference gene. As stated above, mRNA expression
of Arc was analyzed as positive control. Soluble Aβ has been shown to induce Arc expression
itself [19,43] and Arc overexpression has been linked to dysfunctional learning, suggesting a
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molecular basis for the specific loss of memory function in early AD. Accordingly, our results
showed Aβ to significantly increase ArcmRNA levels at 30 and 120 minutes incubation times
(Fig 2D) (F(1,9) = 5.428, p = 0.045) suggesting a role in neurophysiological alterations of our
AD experimental model.

mRNA levels for ionotropic NMDA and AMPA receptor subunits were found unchanged
except for NMDA GluN1 subunit, which was significantly decreased by Aβ (Fig 2A) after 30
min and 2 h incubation (F(1,9) = 7.242, p = 0.025).

Regarding metabotropic mGlu glutamate receptors, in our experimental conditions, Aβ
inducedmGlu1mRNA levels to decrease (30 min, p = 0.037; 120 min, p = 0.034) whilemGlu5
levels were not significantly modified (Fig 2A).

Aβ effects on mRNA expression of GABAB receptors and GIRK channels, second messenger
effectors of GABAB-mediated neurotransmission, were also analyzed. mRNA levels of GABAB

receptor subunits, GABAB1 and GABAB2 were not modulated by Aβ. However, the subunits of
its effector, GirK channel, were altered by Aβ incubation (Fig 2B). Thus, mRNA expression lev-
els for GirK2, GirK3, and GirK4 were found to be reduced at 30 and 120 minutes of Aβ incuba-
tion when compared to ACSF treated samples (GirK2: F(1,9) = 9.187, p = 0.014; GirK3: F(1,8) =
12.293, p = 0.008; GirK4: F(1,11) = 9.605, p = 0.010).

Relative expression of genes related to the cholinergic system were also analyzed and 30-min-
utes after Aβ incubation mRNA levels of muscarinic receptor subtype M1, Chmr1, did not
changed. mRNA levels of KCNQ channel subunits (that ensemble to formM1 receptor effector)
were more vulnerable and exhibited a down-regulation (Fig 2C; Kcnq2, p = 0.035; Kcnq3,
p = 0.037). In addition, after 120-minutes Aβ incubation only induced a significant decrease of
Kcnq3 subunit expression (Fig 2C, p = 0.034). Levels of Kcnq5 were not altered by Aβ.

Discussion
In the present work we studied the modulation by Aβ25–35 of gene expression of neurotransmit-
ter receptors and associated channels which maintain excitatory-inhibitory balance in hippo-
campal circuits. We provided evidence of two targets down-regulated by Aβ, KCNQ [15,27]
and GirK [16] channels, that participate in controlling neuronal excitability and have been
recently related with AD pathogenesis by our laboratory and others. We also showed that Aβ
reduced gene expression of glutamate ionotropic GluN1 and metabotropic mGlu1 receptor
subunits. Both potassium conductances have previously been shown to be decreased by Aβ,
which could contribute to the hyperexcitability and network dysfunction that underlie early
stages of AD [1,2].

In the present study we used the hippocampal slice preparation that was incubated with Aβ
up to 2h at room temperature. Therefore, as a crucial prerequisite for reliable qPCR conclu-
sions we designed and standardized an unbiased method to minimize the influence of sample
manipulation, time incubation and temperature in RNA integrity and data normalization in
hippocampal slices. RQI number for each sample was considered and unbiased stability values
for reference genes were calculated to ensure relevance, accuracy, correct interpretation, and
repeatability of the assays. Therefore, our present experimental design provides reliable and
consistent data concerning Aβ-modulation of key receptor/channel genes involved in hippo-
campal network excitability control, and lead us to consider it as a valid model for studying the
acute effects induced by Aβ on gene expression profile of hippocampal rat slices.

Quality and Integrity of RNA Samples (RQI)
Only samples with RQI� 7.5 were included in our study, i.e. good or high quality RNA. Our
data showed that neither time nor Aβ incubation affected RNA integrity of hippocampal slices.
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Fig 2. Relative expression of the main receptor and channel genes involved in excitatory and inhibitory hippocampal neurotransmission systems
during Aβ incubation. Expression levels of mRNA for (A) glutamatergic (B) cholinergic and (C)GABAergic genes, at 0, 30 and 120 min after ACSF (control)
or Aβ incubation, were analyzed by qPCR and normalized to Ppia, the most stably expressed reference gene in our study. Normalized 2–ΔCq expression for
each gene and time point is presented as percentage of gene expression at time 0 (t = 0 min) which is considered as 100% basal control expression. (A).
Relative mRNA expression levels of glutamatergic NMDA receptor subunitsGluN1,GluN2A andGluN2B, AMPA receptor subunitsGluA1 andGluA2, and
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Classically, RNA integrity has been evaluated using agarose gel electrophoresis, which allows
studying the ratio of two bands comprising the 28S and 18S ribosomal RNA species. However
this approach has been shown to be inconsistent, since relies on human interpretation of gel
images [34]. In the present work, the RQI number, an algorithm based in the electropherogram
areas corresponding to the regions 28S, 18S and pre-18S, was used both to evaluate RNA integ-
rity in an unambiguous way [34] and as an objective criterion to evaluate the quality of the
samples [44].

Reference genes
BestKeeper and NormFinder algorithms are novel approaches for examining potential refer-
ence genes to select the most stable housekeeping gen for a given set of conditions. Following
the MIQE recommendations, in the present work 3 putative reference genes, Actb, Gapdh and
Ppia, were investigated [40,45] and ranked according to their expression stability by both algo-
rithms. In our experimental conditions, mRNA levels for the three genes were maintained, so
from a classical point of view, they all could be considered suitable to be used as reference
genes [46]. However, Ppia had been previously shown to be more stable than Gadph or Actb in
different experimental preparations [39,47]. In agreement, in our study Ppia was selected for
data normalization among the three candidate genes as both stability BestKeeper and Norm-
Finder stability algorithms found Ppia as the most stable expressed reference gene in our exper-
imental conditions. This result further contributes to objectify and standardize a procedure for
relative gene expression analysis in hippocampal slices, and indicates that searching for appro-
priate reference gene or genes in any experimental design is a crucial step. Furthermore, we
have shown for the first time a method to analyze the integrity of total RNA in hippocampal
slices which have been used for other purposes such as electrophysiology [9]. Thus, this
approach represents a powerful tool to further analyze the molecular mechanisms involved in
hippocampus networking.

Aβ target genes in the hippocampus
Considering the large body of information available about its cytoarchitecture and synaptic
organization, the hippocampal slice preparation is an election model suitable to be used in AD
neuropharmacological studies [9]. The main advantage comes from the possibility of being
used in highly controlled in vitro environments, thus preserving the cellular interactions of the
brain in vivo, which allows analysis of drug effects, at the cellular and subcellular levels, on dif-
ferent excitatory and inhibitory neurotransmission systems [48–50].

Recent works suggest that Aβ impact transcription in several important neuronal pathways
preceding neurodegeneration [51]. These impairments might underlie early Aβ-induced syn-
aptic dysfunction and the imbalance observed in hippocampal networks which produce aber-
rant excitatory neuronal activity and contribute to cognitive deficits in AD models [1,8,52].
Although the precise mechanisms remain unknown, the synaptic impairments that lead to
neural network hyperactivity, an early event in AD [18], is likely the mechanism involved.
Along the different Aβ targets that could participate in controlling the excitability of the hippo-
campal networks, two potassium channels have been very recently identified: voltage-gated K

metabotropic receptormGlu1 andmGlu5. (B) Relative mRNA expression levels of GABAB receptor subunitsGABAB1 andGABAB2, and GABAB receptor
effector GIRK channel subunitsGirk1,Girk2,Girk3 andGirk4. (C) Relative mRNA expression levels of cholinergic M1 receptor and M1 receptor effector
KCNQ channel subunits Kcnq2, Kcnq3 and Kcnq5. (D) Relative mRNA expression levels of activity-regulated cytoskeleton-associated protein, Arc, at 0, 30
and 120 min after ACSF or Aβ incubation are also shown. Note that y-scale in D is different to A-C. Data are presented as mean ± standard error of the mean
(SEM). *p < 0.05. Aβ, amyloid-beta; Ppia, Peptidylprolyl isomerase A; ACSF, artificial cerebrospinal fluid.

doi:10.1371/journal.pone.0134385.g002
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channel, Kv7 (also termed KCNQ) [15] and G protein-coupled activated inwardly-rectifying
potassium channels, GirK [16]. In the present work, we found Aβ to down-regulate mRNA lev-
els of different subunits of both type of potassium channels. We also found Aβ to reduce gene
expression of glutamate ionotropic GluN1 and metabotropic mGlu1 receptor subunits.

Glutamate receptors and Aβ. Despite the wide evidence that Aβ affects glutamatergic
neurotransmission, in our experimental conditions significant changes were only found in
mRNA levels of NMDA and mGlu receptor subunits.

Glutamatergic neurotransmission through AMPA receptors has widely been involved in
AD pathology with different results. It has been shown that Aβ oligomers reduce phosphoryla-
tion of GluA1 subunit leading to a decrease of surface AMPA receptors without evident alter-
ation in mRNA transcripts [53]. Our results would be in accordance with these findings since
we did not observed changes in mRNA expression levels. On the other hand, GluA2 subunit of
glutamate AMPA receptors has been linked to Aβ neurotoxic mechanisms [54]. In synapto-
neurosomes from prefrontal cortex, an increase in mRNA encoding GluA2 subunit has been
reported to be paralleled by elevated expression of the corresponding protein in incipient AD
patients [55]. However, in the latter study only one reference gene was used for data validation
what might explain that we could not find such increase in our experimental conditions.

NMDA receptors activation has been extensively involved in AD-related synaptic dysfunc-
tion [56,57]. In the present study we did not find significant changes in the mRNA expression
of NMDA subunits GluN2A and GluN2B while GluN1 was decreased by Aβ.

In accordance with our results, GluN1mRNA levels were also found significantly decreased
in human AD cerebral cortex [21] as well as in rat brain tissue [58]. Moreover, a study evaluat-
ing alterations in the transcriptional expression of glutamatergic receptors in late stages of spo-
radic AD, has shown GluN1 to be down-regulated in the hippocampus of AD patients by using
qPCR and array hybridization methods [59]. It would be very interesting to know what hap-
pens in early stages of AD, when compensatory mechanisms would not have taken place yet.

Levels of GluN2B and GluN2AmRNA were decreased in susceptible regions of postmortem
human AD brains, such as the hippocampus and the cortex [60]. Conversely, as in our study in
rat hippocampal tissue, there is evidence that mRNA levels of and GluN2A and GluN2B sub-
units [61] are unchanged in AD patient's brains. It has also been reported that Aβ regulates
Fyn kinase, which has been proposed to disrupt hippocampal network activity [28]. Fyn signal-
ing drives phosphorylation of GluN2B subunit of NMDA receptor which in turn produces
altered surface expression of the receptor, dysregulation of receptor function, excitoxicity and
dendritic spine retraction [62,63]. The latter alterations are produced mainly at protein level,
so they might not be detected at mRNA level. Further analysis is needed in this line.

Group I of metabotropic glutamate receptors (mGlu), mGlu1 and mGlu5, participates in the
regulation of synaptic plasticity and postsynaptic glutamatergic excitability [64]. We found Aβ to
decrease mRNA levels ofmGlu1 but no significant differences were detected inmGlu5mRNA
expression. Similar results have been reported at the protein level in the cerebral cortex of
patients with AD [20], wheremGlu1 activity is down-regulated (with no changes inmGlu5) by
significant decrease in its expression levels, which correlated with severity of the disease. Very
recently a main role of mGluR5 as a triggering factor for the pathogenesis of AD has been pro-
posed, mainly through the interaction of Aβ oligomers with the receptor at the protein level [65].
Further studies at the mRNA level for these receptors in hippocampal neurons are still needed.

Potassium channels and Aβ. Our previous studies have shown that Aβ peptide perfusion
of hippocampal slices alters the septohippocampal neurotransmission through fimbria-CA3
synapse decreasing GIRK channel conductances [16]. These effects included depolarization of
CA3 pyramidal neurons, input resistance increase, and decrease of the GABAB-mediated
inhibitory neurotransmission [16]. Thus, GIRK channels might play a role as a part of the
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mechanisms underlying the loss of septohippocampal rhythmic state that promote failures in
synaptic plasticity and memory formation observed in AD patients [4,16]. In addition to this
acute effect of Aβ on GIRK function, in the present study we found that Aβ incubation also
induced down-regulation of three GIRK subunits, GirK2, GirK3 and GirK4 at the mRNA level.
mRNA levels of Girk2 and Girk3 were altered at 30 and 120 minutes. GIRK2 subunit is widely
expressed in the brain, forms functional heterotetramers (GIRK1–GIRK2, GIRK2–GIRK3) and
homotetramers (GIRK2–GIRK2) and has been implicated in various functions and pathologies
[66,67], such as learning and memory, reward, motor coordination, and Down syndrome.
Mutations in GIRK2 subunit have been previously reported to reduce LTP and increase LTD
in hippocampus [66]. These effects are especially relevant in Down syndrome, where cerebral
Aβ accumulation is greatly accelerated and leads to invariant early-onset AD neuropathology
[68–70]. Therefore, our results at the mRNA level might likely imply a decrease of GIRK2 sub-
unit at the protein level (once translated and trafficked to the membrane) and would be in
accordance with the key role of GIRK2 subunit in GIRK channel function and control of hip-
pocampal excitability.

We also found a marked down-regulation of Girk4mRNA levels through the time course of
Aβ incubation. Protein expression levels of GIRK4 are very low in most regions of the CNS
when compared with the abundant expression of other GIRK subunits in the rat brain [71]. In
the hippocampal formation, GIRK4 expression has been shown to be more prominent in CA3
pyramidal neurons but only moderate to low in both CA1 neurons and dentate gyrus granule
cells [72,73]. However, although immunohistochemical techniques have failed to show a robust
staining of GIRK4 expression in hippocampal formation [74,75], Girk4 knock-out mice has
exhibited impaired performance in spatial learning and memory tests [75]. It is plausible that
qPCR allowed us to find Girk4 transcript modulation by Aβ in hippocampal slices whereas his-
tological techniques are not able to detect these subtle changes, as occurs in other nervous tis-
sues with other potassium channels [38]. Thus, our results show a new reliable method to
detect changes in Girk4 gene expression which may explain the impairment of hippocampal
networks [75].

In summary, our data [16] suggest that Aβ could interfere with GIRK channel functioning
acutely by a mechanism non described yet (vg. altering channel relationship with lipid mem-
brane or acting directly on the channel). This acute effect could be linked to changes in the
gene expression of the channel that will reinforce the acute effect (changing channel expression
or turnover) and may explain long-term deficits found in transgenic mice models of AD. How-
ever, the hypothesis of two independent mechanisms (acute and at the mRNA level) cannot be
ruled out.

On the other hand, our results have shown that Aβ did not significantly modulate M1 mus-
carinic mRNA levels. Among different muscarinic receptors, M1 subtype has been widely
related with AD [76–78]. However it has been reported that Aβ has no influence on M1 musca-
rinic receptors or gene expression but on the receptor/G-protein interaction [79]. KCNQ chan-
nels are the effectors of muscarinic receptors. KCNQ family comprises five members,
KCNQ1–5, encoded by Kcnq1–5 genes [80]. In particular, it has been reported that KCNQ2–
KCNQ3 heteromers [81], KCNQ4 [82], and KCNQ5 [83], participate in the maintenance of
M-type K currents and play a crucial role in the regulation of neuronal excitability [84]. The
‘classical’M-channel is composed of KCNQ2–KCNQ3 heteromers [81,84]. mRNA levels of
both subunits are found to be early down-regulated by Aβ in the hippocampus in our study.
Consistent with our findings regarding Kcnq2–3 subunits alteration, it has been recently shown
that decrease in M-type K currents in medial septal area neurons may be an integral part of AD
pathophysiology [27], explaining why M-type K current blockers fail to improve cognition in
AD clinical trials [85]. It has also been reported that Kcnq2 gene is down-regulated by Aβ in
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the hippocampus [15] and, in this conditions, M-type K current reduction would rapidly
increase the excitability of hippocampal principal and GABAergic interneurons, impairing
rhythmicity and synchronic activities [15,27]. At 120 minutes Aβ did not induce significant dif-
ferences in Kcnq2 gene expression, suggesting some kind of compensatory response to restore
the pre-Aβ incubation status as also occurs with Aβ long term effects [15,27]. Finally, it has
recently been demonstrated that KCNQ5 controls excitability and function of hippocampal
networks through modulation of synaptic inhibition [86]. However, in our experimental model
its mRNA expression levels were found unchanged suggesting that further research is needed
in this interesting direction but for now, KCNQ5 may not be linked to AD physiopathology.

Conclusions
Based on an objective standardized and validated analysis method we show the modulation of
mRNA expression by Aβ25–35 in incubated hippocampal rat slices. In addition to the reported
modulation of hippocampal glutamatergic neurotransmission by Aβ, we provided evidence of
two targets for Aβ action at the molecular level that participate in controlling neuronal excit-
ability and have recently been related with AD, KCNQ [15,27] and GirK [16] channels. Both
potassium conductances have been shown to be decreased by Aβ, which contributes to the
hyperexcitability and network dysfunction that underlie early stages of AD [1,2]. Our data
show changes in mRNA expression of KCNQ and GirK subunits suggesting one potential Aβ
mechanism at the transcriptional level that could have functional consequences such as
increased network excitability. The presence of seizures and epileptiform activity in AD sub-
jects support the hypothesis that aberrant network activity contributes causally to synaptic and
cognitive deficits [13] and that a reduction in excitability with enhanced rhythmicity may be a
more promising therapeutic approach in AD [1,3,14,27,87,88]. Thus, antiepileptic drugs such
as KCNQ openers [89] or GirK activators [66,67,90] might ameliorate those deficits although
no clinical evidence is still available [4].
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