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Abstract 

SUMOylation is an important post-translational modification that participates in a variety of cellular physiological and pathological 
processes in eukaryotic cells. Sirt2, a NAD 

+ -dependent deacetylase, usually exerts a tumor-suppressor function. However, the role of 
SUMOylation in cancer cells is not fully known. In this study, we found that SUMOylation can occur in the Sirt2 protein at both 

lysine 183 and lysine 340 sites. SUMOylation did not affect Sirt2 localization or stability but was involved in P38-mTORC2-AKT 

cellular signal transduction via direct deacetylation on a new substrate MAPK/P38. SUMOylation-deficient Sirt2 lost the capability of 
suppressing tumor processes and showed resistance to the Sirt2-specific inhibitor AK-7 in neuroblastoma cells. Here, we revealed the 
important function of Sirt2-SUMOylation, which is closely associated with cellular signal transduction and is essential for suppressing 
tumorigenesis in neuroblastoma. 
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AM Nicotinamide 
TM Post-Translational Modification 
AE SUMO1 Activating Enzyme 
ENP SUMO1/Sentrin Specific Peptidase 
UMO Small Ubiquitin-like Modifier 
SA Trichostatin A 

BC9 Ubiquitin Carrier Protein 9 
TR Untranslated Region 
T Wide Type 

ntroduction 

The human Sirt2 protein, a homolog of the budding yeast silent
nformation regulator 2 (Sir2), is a member of the Sirtuin family of NAD 

+ -
ependent deacetylases and ADP-ribosyltransferases [ 1 , 2 ]. Accumulating
vidence has revealed that Sirt2 plays an important role in multiple cell events
3–5] , which involve a variety of biological and pathological conditions,
ncluding development, neural activity, obesity, and carcinogenesis [ 2 , 6 ,
 ]. Accordingly, various Sirtuin inhibitors have been developed and assessed
or their effects on different diseases by targeting specific protein structures,
iological activities, or signaling pathways [ 8 , 9 ]. 

As an important deacetylation enzyme, Sirt2 requires the inevitable 
AD-nicotinamide exchange reaction to deacetylate the specific lysine on 

ts substrates, such as those found in histone H4, α-tubulin, p65, and
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p53 [10–13] . Traditionally, Sirt2 maintains genome integrity and suppresses
tumorigenesis depending on its deacetylation activity [14] . In addition, it
acts as a substrate and can be affected by other enzymes or regulators after
post-translational modification (PTM). The histone acetyltransferase p300
is able to acetylate Sirt2 and attenuate its deacetylase activity to enhance
the acetylation level of its specific substrates [15] . Sirt2 phosphorylation at
Ser331, triggered by cyclin-dependent kinases, inhibits its catalytic activity
and decreases the cell motility [ 16 , 17 ]. However, ERK1/2 interacts with Sirt2
and enhances the stability of Sirt2 protein as well as deacetylase activity, which
is probably due to Sirt2 phosphorylation at other sites [18] . 

SUMOylation is a reversible PTM involved in protein subcellular
localization [19] , stress response [20] , transcriptional repression [21] , DNA
repair [22] , and many other cellular processes [ 23 , 24 ]. Small ubiquitin-like
modifier (SUMO) can be covalently attached to proteins as a monomer or a
lysine-linked polymer via the sequential action of E1 complex SAE1/SAE2,
E2 (UBE2I/UBC9), and E3 enzymes (PIAS, RANBP2, or CBX4), and can
be removed by SUMO1/Sentrin-specific proteases (SENPs). In the Sirtuin
family, Sirt1, Sirt3, and Sirt6 have been shown to be SUMOylated and
show significant biological and physiological functions in cellular activity or
tumor processes. SUMOylation of Sirt1 increases its deacetylase activity and
inactivates apoptotic proteins in response to genotoxic stress [25] . Similarly,
Sirt6 SUMOylation can also increase its deacetylation activity and exert a
tumor suppressive function [26] . However, mitochondrial deacetylase Sirt3
activity can be retrained by SUMOylation, but SENP1 translocated into
mitochondria upon metabolic stress activates Sirt3 to reduce fat mass and
antagonize high-fat diet-induced obesity [27] . 

Here, we reported that SUMOylation also occurred within the Sirt2
protein and that it ensured its deacetylase activity to suppress the tumor
processes in neuroblastoma. In addition, de novo evidence revealed that
Sirt2 was capable of directly deacetylating P38/MAPK and inhibited
P38-mTORC2-AKT signaling, which was also closely associated with its
SUMOylation function. 

Experimental procedures 

Cell cultures 

Human embryonic kidney 293T cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) (Hyclone, Logan, UT, USA) with 10%
FBS (BioSun, Shanghai, China) and 1% penicillin-streptomycin (Hyclone).
SH-SY5Y cells were maintained in Roswell Park Memorial Institute (RPMI)
1640 medium (Hyclone) with 10% FBS and 1% penicillin-streptomycin.
All cells were cultured at 37 °C in a 5% CO 2 humidified incubator.
Transfection of cells was performed using Hiff Trans Liposomal Transfection
Reagent (Yeasen, Shanghai, China). DMEM, RPMI 1640, and penicillin-
streptomysin solution were purchased from Hyclone. Polybrene and Cell
Counting Kit reagents were purchased from Yeasen. 

Antibodies and reagents 

Antibodies against HA-Tag Rabbit (C29F4, #3724), HA-Tag mouse
(6E2, #2367), acetyl-lysine (#9441), p-P38 (Thr180/Tyr182) (D3F9,
#4511), P38(#9212), p-ERK (E-4, #sc-7383), ERK (#4696), p-AKT
(Ser473, 193H12, #4058), AKT (#9272), p-mTOR (Ser2448, #2971),
mTOR (#2983), p-p70 S6K (Thr421/Ser424, #9204), S6K (#9202), and
UBC9 (D26F2, #4786) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Antibodies against SENP1 (A1260) were purchased
from ABclonal (Woburn, MA, USA). Antibodies against Flag-tag (F1804),
MG132, and cycloheximide were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Antibodies against Sirt2 (#ab67299) and SUMO1
(#Y299) were purchased from Abcam (Cambridge, UK). Puromycin (P8230)
nd rapamycin (R8140) were purchased from Solarbio (Beijing, China). 
egents of SB202190 (#S1077), LY294002 (#S1105), NAD 

+ (#S2518), 
richostatin A (TSA) (#S1045), nicotinamide (NAM) (#S1899), and protease 
nhibitor cocktail (EDTA-Free,100 × in DMSO) were obtained from Selleck 
Houston, TX, USA). The KOD-plus-mutagenesis kit was purchased from 

oyobo (Osaka, Japan). Protein A/G magnetic beads were purchased from 

hermo Fisher Scientific (Waltham, MA, USA). Ni-NTA beads were 
urchased from Qiagen (Hilden, Germany). 

UMOylation assays 

Three methods were used to determine SIRT2 SUMOylation. (1) Ni- 
TA pull-down assay : Briefly, 293T cells were co-transfected with plasmid 

ombination for 48h and were lysed in imidazole containing Buffer 1 
6 M guanidine-HCl, 0.1M NaH 2 PO 4 , 0.01M Tris-HCl, 10-mM β- 
ercaptoethanol, and 5 mM imidazole, pH 8.0). The cell lysates were 

ncubated with Ni-NTA beads at 4 °C overnight, and then the beads were
uccessively washed by buffer 2 (8 M Urea, 0.1 M NaH 2 PO 4 , 0.01 M
ris-HCl, 10mM β-mercaptoethanol, pH8.0), buffer 3 (8 M Urea, 0.1 M 

aH 2 PO 4 , 0.01M Tris-HCl, 10 mM β-mercaptoethanol, 0.2% TritonX- 
00, pH6.3), and buffer 4 (8M Urea, 0.1M NaH 2 PO 4 , 0.01M Tris-
Cl, 10 mM β-mercaptoethanol, 0.1% TritonX-100, pH 6.3). Purified 

rotein was eluted with elution buffer (200 mM imidazole, 0.15 M Tris- 
Cl, 30% glycerol, 0.72 M β-mercaptoethanol, and 5% SDS, pH 6.7) as 

reviously described [28] and determined by immunoblotting with anti- 
A antibody. (2) Immunoprecipitation assay : 293T cells transfected with 

lasmid combination were harvested and lysed at 48 h in 1% SDS lysis
uffer (containing 5 mM EDTA, 5 mM EGTA, 20 mM N-ethylmaleimide, 
nd a complete protease inhibitor cocktail). The cell lysate was diluted in 
re-RIPA (20 mM NaH 2 PO4/Na 2 HPO 4 , 150 mM NaCl, 1% Triton-100, 
.5% deoxycholic acid sodium salt) at a ratio of 1:10, and was incubated
ith 8 μL of Protein A/G Beads and 2 μL of anti-Flag antibody overnight at
 °C. After washing 3 times, the protein samples were subjected to western
lotting analysis. (3) GST-pull-down assay: Escherichia coli BL21 (DE3) 
arboring plasmid pGEX-6p-1/Sirt2 with or without pE1E2S1 construct 
as stimulated by 0.2 mM IPTG for 10 h at 16 °C and was lysed according

o the instruction of B-PER Protein Extraction Reagent (Thermo Fisher 
cientific). Lysate was then incubated with Glutathione Hicap Matrix 
Qiagen) overnight at 4 °C. After washing three times with lysis buffer, 
estern blotting was performed to determine the Sirt2 SUMOylation in 
itro. 

mmunoprecipitation and acetylation assays 

HEK293T cells were transfected with HA-tagged P38 with or without 
lag-tagged Sirt2 for 48 h and lysed in RIPA buffer (50 mM Tris-HCl
H 7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 1 mM EDTA, and a
omplete protease inhibitor cocktail). For the acetylation assay, HEK293T 

ells were cultured with 2 μM TSA for 16 h before harvest. Cell lysates
ere incubated with Protein A/G Mix Magnetic Beads and proper antibodies 
t 4 °C overnight followed by immunoblotting to determine the interaction 
etween P38 and Sirt2 protein, or the acetylation level of P38 in vitro and in
ivo. 

ell proliferation assay 

The CCK8 kit (Biotool, Shanghai, China) was used to measure the cell 
roliferation of the constructed stable SH-SY5Y cell lines according to the 
anufacturer’ s instructions. Briefly, 1000 cells/well were resuspended in 

00 μL of medium and seeded into a 96-well plate. After culturing at 24
 intervals for 3 days, the cells were treated with 10% CCK8 solution and
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incubated at 37 °C for one hour. The absorbance at 450 nm was measured
with a microplate reader (Thermo Fisher Scientific). The experiments were
performed independently in triplicate, and the data are presented as the mean
± S.E.M. 

Migration and invasion assays 

The migration assay was performed as previously described [29] . Briefly,
SH-SY5Y stable cells harboring wild HA-tagged Sirt2 or its mutants were
resuspended in 200- μL serum-free RPIM medium. Then, the cell suspension
was added into the upper uncoated (4 × 10 4 cells/well for migration) or
Matrigel matrix-coated (8 × 10 4 cells/well for invasion) chambers (Corning,
Corning, NY, USA). The complete medium containing 20% FBS was added
to the lower chambers as a chemoattractant at 37 °C in humidified 5% CO 2 .
The cells that migrated or invaded to the lower side of the upper chambers
were fixed and stained with 0.1% crystal violet solution for counting and
analysis. The experiment was performed independently in triplicate, and the
data are presented as the mean ± S.E.M. 

Soft agar colony formation assay 

The designated cells were seeded into soft agar to determine the effect of
anchorage-independent growth as described previously [29] . Briefly, 2 mL
medium containing 0.6% base agar gel (Ameresco, Framingham, PA, USA)
was solidified as the lower layer in 6-well plates. A total of 1000 cells were
seeded into 2 mL medium containing 0.35% base agar gel and 5% FBS and
layered onto the base in 6-well plates. Cell colonies developed in soft agar were
stained with 0.01% crystal violet after 2 wk. The colonies were photographed
under an inverted microscope and the number of colonies was counted using
ImageJ software. 

Xenograft tumor model 

The SH-SY5Y cells xenograft tumor model was developed in the back
of nude mice as described previously [29] . Five-wk-old male BALB/c nude
mice were subcutaneously injected with 100 μL of PBS containing 2 × 10 6
SH-SY5Y cells stably expressing Sirt2-shRNA, HA-Sirt2 WT , HA-Sirt2 K183R ,
HA-Sirt2 K340R , or HA-Sirt2 K183/340R . The wild-type SH-SY5Y cell was used
as a mock control. The operated mice were sacrificed at 2 wk after xenograft,
and the tumor weight was measured. All animal operations were conducted
with the approval and guidance of the Shanghai Jiao Tong University Medical
Animal Ethics Committee. 

Statistical analysis 

All data were analyzed as means ± S.D. for western blotting, or
means ± S.E.M for migration, invasion, soft agar, and mouse xenograft
experiments. Statistical calculations were performed using SPSS and the
graphs were constructed using the GraphPad Prism software. Differences
between individual groups were analyzed using a two-tailed and unpaired
t test. A P -value < 0.05( ∗), < 0.01( ∗∗), or < 0.001( ∗∗∗) was considered
statistically significant. 

Results 

Human Sirt2 can be SUMOylated in vitro and in vivo 

To determine whether Sirt2 can be SUMOylated, HEK293T cells were
used to overexpress HA-tagged Sirt2 with or without His-tagged SUMO1
and FLAG-tagged UBC9, cell lysis after transfection was subjected to
i-NTA pull-down assay and western blot analysis. Two major shifted
irt2 protein bands were observed and their levels were enhanced or
ttenuated by the E2 enzyme UBC9 or deSUMOylation enzyme SENP1,
espectively ( Fig. 1 A). Consistent with this, the immunoprecipitation assay
lso showed the same outcome for Sirt2 SUMOylation events in HEK293T
ells ( Fig. 1 B). To identify the endogenous SUMOylation of the Sirt2 protein,
H-SY5Y cells stably expressing HA-Sirt2 were harvested and subjected 
o immunoprecipitation with an HA antibody, which showed that Sirt2
UMOylation could indeed occur in vivo according to the detection by
UMO1 antibody and HA antibody ( Fig. 1 C). In the prokaryotic expression
ystem, an in vitro GST-pull down assay also proved that GST-tagged SIRT2
ould be SUMOylated when co-transfected with SUMO1, E1, and E2
nzymes in the BL21 E. coli host ( Fig. 1 D). Endogenous SUMOylation
n Sirt2 was also identified in SH-SY5Y cells through immunoprecipitation
ssay with SUMO1 and Sirt2 antibodies ( Fig. 1 E). In addition to SUMO1
odification, SUMO2 and SUMO3 modifications were also positively 

dentified in HEK293T cells (Fig. S1A). 
As Sirt2 is a NAD 

+ -dependent deacetylase, we wondered whether Sirt2
UMOylation could be stimulated by NAD 

+ in cells. Surprisingly, 1 mM
AD 

+ obviously enhanced the Sirt2 SUMOylation level, but higher NAD 

+ 

oncentration would not help further improvement ( Fig. 1 F). However, it
ad a significant and positive time effect on Sirt2 SUMOylation under 1mM
AD 

+ stimulation ( Fig. 1 G). In contrast, EGF, H 2 O 2 , or even cisplatin
CPT) did not affect the SUMOylation level of Sirt2 (Fig. S1B–D). Together,
hese evidences indicate that Sirt2 can be SUMOylated in vitro and in vivo,
hich can be specifically stimulated by NAD 

+ . 

irt2-SUMOylation does not affect the localization and stability of 
irt2 in cells 

To determine which lysine was conjugated by the SUMO1 molecule,
UMOplot Analysis Program ( http://www.abgent.com.cn/tools/sumoplot ) 
nd GPS-SUMO 2.0 Online Service ( http://sumosp.biocuckoo.org/online. 
hp ) were applied to predict the probability of SUMOylation sites within
irt2 protein (Fig S2A). There were six potential SUMOylation sites
redicted by both softwares with different system approaches [30] , including
ys183, Lys192, Lys216, Lys252, Lys301, and Lys340 ( Fig. 2 A and Fig.
2A). Sequentially, substitution of this lysine (K) to arginine (R) revealed
hat both K183R and K340R significantly attenuated the SUMOylation level
f Sirt2 (Fig. S2B and Fig. 2 B). Intriguingly, the K183R mutation within
he Sirt2 protein notably removed a shifted protein band but enhanced the
evel of another one; however, the K183R and K340R double mutations
aused a significant decline in the total Sirt2 SUMOylation level according
o both the Ni-NTA pull-down and immunoprecipitation assays ( Fig. 2 B
nd C). 

To assess whether SUMOylation can affect Sirt2 localization and stability
n the cell, HA-tagged Sirt2 wide type or mutants were cloned into the
GreenPuro-Dual vector (see description in Fig. 3 G) and transferred into SH-
Y5Y cells through lentiviral infection, respectively, and the expression level
as assessed by western blotting (Fig S2C). The nucleus/cytosol extraction

ssay revealed that SUMOylation did not alter the localization of Sirt2,
egardless of K183, K340, or K183 + 340 ( Fig. 2 D and E). Moreover, the
mmunofluorescence assay also showed a consistent outcome ( Fig. 2 F). Sirt2
rotein stability was controlled by the proteasome system, but not the

ysosomal pathway, according to the protein level detection in cells after
G132 or chloroquine treatment (Fig. S2D). However, SUMOylation on 

irt2 did not significantly affect its stability by detecting the protein half-life
fter cell treatment with cycloheximide ( Fig. 2 G). Taken together, these data
ndicate that both K183 and K340 are the main SUMOylation sites in Sirt2,
ut the SUMOylation on Sirt2 impacts neither of its localization nor stability
n neuroblastoma cells. 

http://www.abgent.com.cn/tools/sumoplot
http://sumosp.biocuckoo.org/online.php
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Fig. 1. Human Sirt2 can be SUMOylated in vitro and in vivo. (A) His-SUMO1 conjugates were isolated with Ni-NTA agarose under denaturing conditions 
and immunoblotted with antibodies against mouse-HA, mouse-Flag or rabbit-SENP1. ( B) Cell extracts were immunoprecipitated with mouse-Flag antibody 
and immunoblotted with antibodies against mouse-HA, mouse-Flag, mouse-Myc or rabbit-SENP1. ( C) SH-SY5Y cells overexpressing HA tagged Sirt2 
were extracted and cell lysis was immunoprecipitated with mouse-HA or normal mouse IgG antibodies and immunoblotted with antibodies against rabbit- 
SUMO1 or mouse-HA. The light-chain-specific HRP-conjugated anti-mouse/rabbit IgG was used for the second antibody for immunoprecipitation assay. 
( D) SUMOylation reaction was carried out in DE3 bacterial cells expressing GST tagged Sirt2. Bacterial extracts were immunoblotted with antibodies against 
rabbit-SUMO1 or rabbit-Sirt2 after isolation with GST agarose. ( E) SH-SY5Y cell extracts were used for immunoprecipitated with antibodies against rabbit- 
SUMO1 and immunoblotted with rabbit-Sirt2 antibody. ( F and G) 293T cells expressing HA-Sirt2 and His-SUMO1 were treated with gradient concentration 
NAD 

+ (0, 1, 2, or 5 mM) for 24 h or treated with 1 mM NAD 

+ for different time periods (0, 3, 12 or 24 h). Cell extracts were immunoblotted with antibody 
against mouse-HA after the method of Ni-NTA pull down. The asterisks represent nonspecific bands. GST, Glutathione S transferase. 
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Sirt2-SUMOylation mainly inhibits P38-mTORC2-AKT signaling in 

neuroblastoma cells 

As an important deacetylation enzyme, Sirt2 participates in various cell
activities such as aging, cell signal transduction, and carcinogenesis [31] ;
however, its signaling mechanisms in cells are still not fully understood.
Considering this, we silenced the expression of Sirt2 in SH-SY5Y cells
through the pGreenPuro-dual lentiviral system with the specific shRNA.
pP38, pAKT, and pmTOR were significantly enhanced, but pERK was
short-term attenuated when Sirt2 expression was abrogated after starvation
ollowing complete culture medium stimulation ( Fig. 3 A left two lanes 
n 3B, Fig. S3A). mTORC1 and mTORC2 are the two main sensors of

TOR signaling, while the activation of pS6K (pP70)/p4E-BP1 or pAKT 

eflects the mTORC1 or mTORC2 signaling pathway, respectively. Here, 
irt2 silencing did not significantly enhance the activation of p4E-BP1, but 
nly slightly affected pS6K ( Fig. 3 A, Supplemental Fig. S3A). These data
ndicated that Sirt2 was mainly involved in P38, AKT, and mTORC2 signal 
ransduction in neuroblastoma cells. To clarify the regulation role between 
38 and mTORC2/AKT caused by Sirt2 abrogation, several inhibitors 
ere applied for further analysis ( Fig. 3 B–E). Rapamycin, a mTOR-specific
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Fig. 2. Sirt2-SUMOylation does not affect the localization and stability of Sirt2 in cells. (A) Putative SUMOylation sites of human Sirt2 predicted by 
SUMOplot and GPS-SUMO software were shown in the pie chart. ( B and C) 293T cells were co-transfected with His-SUMO1/Flag-SUMO1 and HA- 
tagged Sirt2 or its mutants at K183 and K340. SUMOylated Sirt2 was isolated by Ni-NTA agarose or immunoprecipitated with mouse-Flag antibody and 
detected with antibodies against mouse-HA or -Flag using the method of western-blot. ( D and E) SH-SY5Y cell lines stably expressing HA-tagged Sirt2 or 
its mutants were extracted by the Nuclear/Cytosol Fractionation kit. Cell extracts were subjected to immunoblot. Sirt2 distribution in cells was calculated by 
Image J software. ( F) The localization of HA-Sirt2 K183R , HA-Sirt2 K340R and HA-Sirt2 K183/340R in SH-SY5Y cells were shown by immunofluorescence staining 
with the anti-HA antibody. Nuclear DNA was stained with DAPI. ( G) SH-SY5Y cells expressing HA-Sirt2 K183R , HA-Sirt2 K340R and HA-Sirt2 K183/340R were 
treated with 100 μM CHX for different time periods (0, 6,12 or 24 h). Mixture extracts were immunoblotted by antibodies against HA and Tubulin. ( H) Its 
half-life period is shown as the line graph according to the quantification of protein level by using Image J software. CHX, Cycloheximide. 
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inhibitor, inhibited mTORC1 activation but had no effect on mTORC2,
and it did not affect the levels of pP38, pmTOR, and pAKT under the
Sirt2 silencing conditions ( Fig. 3 B middle 4, 5 lanes and C). In addition,
AKT inhibitor LY294002 did not affect P38 activation, but significantly
abolished the pmTOR and pS6K levels ( Fig. 3 B right, 3,4 lanes, and
C). Intriguingly, both pAKT and pmTOR were suppressed when the P38
signal was blocked by SB202190 ( Fig. 3 B right 1, 2 lanes and C). In
addition, pp242, an inhibitor of both mTORC1 and mTORC2, was used
to confirm that the mTOR signal did not affect the Sirt2-associated P38
activity ( Fig. 3 D and E). These data indicated that Sirt2 in neuroblastoma
mainly suppressed P38-mTORC2-AKT signaling ( Fig. 3 A–E). The strategy
of cell signal transduction mediated by specific inhibitors showed that Sirt2
could only slightly or temporarily affect mTORC1 or ERK signaling, but
was mainly responsible for suppressing the P38-mTORC2-AKT signaling in
neuroblastoma ( Fig. 3 F). 

To rescue Sirt2 expression in SH-SY5Y cells harboring silenced
endogenous Sirt2 for reobserving signal transduction, we constructed a
homemade lentivector based on pGreenPuro shRNA lentivector (System
Biosciences, Heidelberg, Switzerland), termed pGreenPuro-Dual. This
construct contained two independent expression cassettes that generated
noncoding RNA transcripts (i.e., shRNA, miRNA, or lncRNA) by
the H1 promoter, and produced mRNA for translation by the CMV
promoter ( Fig. 3 G). This all-in-one lentiviral vector can be used
for recombinant lentivirus packaging to silence endogenous genes and
express exogenous genes (i.e., wild-type or mutants) with only one
infection force on the target cell, which avoids the uncontrollable
hanges in cellular behavior caused by multiple viral infections and drug
elections. 

Then, the SH-SY5Y cells were subjected to infection with recombinant
entivirus harboring shRNA targeting the endogenous Sirt2-3’UTR and 
escued exogenous HA-Sirt2-WT, -K183R, -K340R or -K183/340R, 
nd cells infected with virus generated by pGreenPuro-Dual vector or
GreenPuro-Dual/shRNA were set as the system control. After puromycin 
election, the endo- or exo-Sirt2 protein expression levels in these cell lines
ere quantified by western blotting (Fig. S3B). Surprisingly, reintroduced 
irt2-WT suppressed the activation of P38, mTOR, and AKT resulting from
ndo-Sirt2 ablation, while SUMOylation-deficient Sirt2 (K183R, K340R, 
r K183/340R) did not resume normal signal transduction in SH-SY5Y
ells ( Fig. 3 H and I). Taken together, these results indicated that Sirt2-
UMOylation was critical in inhibiting the P38-mTORC2-AKT signaling 
athway in neuroblastoma. 

irt2 is a promised deacetylase of MAPK/P38 and its enzyme activity 
elates to SUMOylation 

Acetylation of lysine residues within proteins is relevant to the
hysiological activities of the targeted proteins. P38 is reversibly acetylated
y PCAF/P300 and deacetylated by HDAC3, which regulates its affinity for
TP binding and P38 kinase activity [32] . However, there is no evidence
et to illuminate the relationship between Sirt2 and P38. To investigate
hether Sirt2 could directly regulate P38, the immunoprecipitation assay 

evealed that Sirt2 could interact with P38 in cells ( Fig. 4 A). Consistent
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Fig. 3. Sirt2-SUMOylation mainly suppresses P38-mTORC2-AKT signaling in neuroblastoma cells. (A) SH-SY5Y cells infected with lentiviral expressing 
shRNA targeting to Sirt2 3’-UTR or control were starved for 2 h and then stimulated by complete culture medium for 5 min. Cell lysis was collected and 
resolved by SDS-PAGE for western-blot analysis. ( B–E) SH-SY5Y cells infected with lentiviral expressing Sirt2 shRNA or control were treated with mTORC1 
inhibitor Rapamycin (20 ug/mL), AKT inhibitor LY294002 (50 μM), P38 inhibitor SB202190 (20 μM), pp242 (0.5 or 1 μM) or dimethylsulfoxide (DMSO) 
as a control for 60 min. Cell lysis was performed and visualized by SDS-PAGE for western-blot analysis (B and D) . Protein levels were quantified by Image J 
software and showed as a graph (C and E) . ( F) A snapshot of the relationship of P38-mTOR-AKT signal mediated by Sirt2. ( G) The homemade lentivector 
contained CMV promoter for overexpressing foreign gene, H1 promoter for expressing shRNA and EF1a promoter for Puromycin and EGFP expression. 
The vector map was drawn by using DNAMAN software. ( H and I) Cell lines of SH-SY5Y harboring silenced endogenous Sirt2 with or without expressing 
exogenous wild-type Sirt2 or its mutants were harvested for western blot analysis (H) . Protein levels were quantified by Image J software and are shown as a 
graph (I) . All the western-blot analysis was repeated at least 3 times. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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with this, the GST-pull down assay also proved that GST-Sirt2 recombinant
protein could specifically bind to endogenous P38 in SH-SY5Y cells, but
GST-Sirt1 protein could not ( Fig. 4 B). As one of the deacetylation enzymes,
we wondered whether Sirt2 could regulate the acetylation level of P38. The
immunoprecipitation assay showed that Sirt2 could obviously decrease both
exogenous and endogenous P38 acetylation levels ( Fig. 4 C and D). Compared
with the known deacetylase HDAC3, Sirt2 showed a similar deacetylation
ability of P38 protein ( Fig. 4 E). Moreover, the P38 acetylation level was
bviously enhanced by treatment with the Sirt2-specific inhibitor AK-7 
 Fig. 4 F). Traditionally, acetylated proteins are more stable compared to their
nacetylated counterparts because unacetylated lysines are usually targeted 
or ubiquitination-mediated proteasomal degradation [33] . Considering this, 
e compared the half-life of P38 with or without Sirt2 expression. The 

esults showed that deacetylated P38 was more stable than acetylated one 
 Fig. 4 G and Fig. S3C), which was consistent with the observation that
irt2 deficiency can stabilize NFATc2 to enhance its transcription activity 
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Fig. 4. Sirt2 is a promising deacetylase of MAPK/P38 and its enzyme activity relates to SUMOylation. ( A) HEK293T cells were transfected with HA-Sirt2. 
Cell extracts were immunoprecipitated for western blot analysis. ( B) GST-Sirt1 or -Sirt2 was expressed in DE3 bacterial cells. Purified recombinants by GST- 
pull down and was immunoblotted with GST or P38 antibodies. ( C) Exogenous Flag-Sirt2 and HA-P38 were co-expressed in HEK293T cells. Cell lysis 
was subjected to immunoprecipitation with antibody against Ace-lysine and immunoblotted with HA, Flag, or Ace-lysine antibodies. ( D) HEK293T cell 
extracts with or without overexpressed Flag-Sirt2 were immunoprecipitated with Ace-lysine or normal IgG antibody and immunoblotted with Flag, P38, or 
Ace-lysine antibodies. ( E) HEK293T cells co-transfected with HA-P38 and Flag-Sirt2/Flag-HDAC3 or its vector were harvested, immunoprecipitated with 
Ace-lysine antibody and immunoblotted with antibodies against HA, Flag, or Ace-lysine. ( F) HEK293T cells expressing HA-tagged P38 were treated with 
AK7 (10 μM) or DMSO for 24 h. Cell extracts were immunoprecipitated with Ace-lysine antibody and immunoblotted with antibodies against HA, Sirt2, 
or Ace-lysine. ( G) HEK293T cells expressing HA-P38 with or without exogenous Flag-Sirt2 were treated with 100 μM CHX for different time periods, and 
then were harvested for western blot analysis. The degradation rate of P38 is quantified as the line diagram. ( H) HEK293T cells were transfected with or 
without wild-type HA-Sirt2 or its mutants were harvested and extracted for immunoprecipitation with Ace-lysine antibody and immunoblotted with P38, 
HA, tubulin, or Ace-lysine antibodies. CHX, Cycloheximide; GST, Glutathione S transferase. 
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[34] . To assess whether Sirt2-SUMOylation could affect its deacetylation
activity, SH-SY5Y stable cell lines harboring Sirt2-WT or -mutants were used
for immunoprecipitation with acetyl-lysine antibody and the acetylated-P38
level indicated that SUMOylation significantly impaired the deacetylation
ability of Sirt2 ( Fig. 4 H). Thus, these results together suggested that Sirt2 is
a promised deacetylase of P38, and the enzyme activity is closely associated
with its SUMOylation. 

Sirt2-SUMOylation is critical in suppressing the phenotypes of 
neuroblastoma cells 

To assess the phenotypes induced by Sirt2-SUMOylation in
neuroblastoma cells, we first detected the proliferation ability of SH-
SY5Y cell lines with silenced Sirt2 or directly overexpressed Sirt2 variants
(i.e., WT, K183R, K340R, or K183/340R), which showed Sirt2 ablation
or Sirt2-SUMOylation deficiency significantly facilitated the proliferation
capability, but Sirt2-WT showed an opposite effect ( Fig. 5 A). Meanwhile,
reapplied Sirt2-WT, but not Sirt2-K183R, -K340R, or -K183/340R, re-
stablished the proliferation in Sirt2-silenced cells ( Fig. 5 B). According to
he soft-agar colony-forming assay, knockdown of Sirt2 or overexpression of
irt2 mutants (K183R, K340R, or K183/340R) enhanced clone formation, 
et overexpressed Sirt2-WT had significantly suppressed clone formation 
 Fig. 5 C upper panel and D). Similarly, re-applied Sirt2 variants in
irt2-deficient cells showed almost the same outcomes ( Fig. 5 C lower
anel and E). To inspect the cell mobility and invasiveness resulting from
irt2-SUMOylation, migration and invasion assays were conducted using 
he cell chamber in 24-well plates. The results revealed that Sirt2 was
ble to significantly suppress the migration and invasion abilities of SH-
Y5Y cells ( Fig. 5 F-K). However, SUMOylation-deficient Sirt2, whatever
verexpression ( Fig. 5 F, I upper panel and G, J) or rescued expression ( Fig. 5 F,
 lower panel and H, K), intensified the cell capabilities of migration and
nvasion in vitro. In addition, we wondered whether Sirt2-SUMOylation 
ffected drug susceptibility, and the IC50 of CPT and AK-7 were detected
n the cell lines mentioned above. The results showed that CPT, a frequently
sed chemical drug for neuroblastoma, did not have any effect on SH-SY5Y
ells with or without Sirt2 or its mutants compared to the control (Fig
3D). While AK-7 proved to be able to inhibit Sirt2 activity and enhance
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Fig. 5. Sirt2-SUMOylation is critical in suppressing the phenotypes of neuroblastoma cells. ( A–H) SH-SY5Y cells lines stably over-expressing HA-tagged 
Sirt2-WT, -mutants or shRNA targeting to Sirt2 3’-UTR were constructed with the pGreenPuro-Dual lentiviral system. The cell line harboring vector was 
set as the negative control. SH-SY5Y cells lines stably expressing shRNA targeting to Sirt2 3’-UTR or co-expressing shRNA and Sirt2-WT or -mutants were 
also generated by pGreenPuro-Dual lentiviral system. The cell line harboring vector or shRNA was set as system control. Cell proliferation was detected with 
CCK-8 proliferation assay (A and B) . 1000 SH-SY5Y cells were seeded in the top layer with 0.35% agar for clone formation assay. The photos were taken 
at 10 days after seeding. The number of colonies was counted by Image J and analyzed by SPSS software (C–E) . 4 × 10 4 SH-SY5Y cells were seeded in the 
upper uncoated chamber. The photos were taken after 0.1% crystal violet staining at 24 h post cell seeding. The number of cells was assessed by Image J and 
analyzed by SPSS software (F–H) . A total of 8 × 10 4 SH-SY5Y cells were seeded in the upper matrix-coated chamber. The photos were taken after 0.1% crystal 
violet staining at 48 h post cell seeding. The number of cells was assessed by Image J and analyzed by SPSS software (I–K) . ( L) Cell viability was detected by 
treatment with a gradient concentration of AK7 for 48 hours. All the experiments were repeated at least 3 times. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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the phosphorylation of P38 in SH-SY5Y according to our previous report
[35] , there was a significant difference in drug-effect between SH-SY5Y
cells harboring Sirt2-WT and those harboring Sirt2-mutants (K340 mainly)
( Fig. 5 L). Together, these data revealed that Sirt2-SUMOylation played an
important role in inhibiting the malignant phenotypes in neuroblastoma
cells and contributed to the cell sensitivity to the Sirt2-specific inhibitor
AK-7 in vitro. 

Sirt2-SUMOylation exerts tumor-suppressor property in mice and Sirt2 

expression is closely related to patient prognosis 

In the xenograft mouse model, the tumor size or weight was measured at
2 wk after subcutaneous injection. Compared with the vector or mock group,
both the weight and size of the tumors from the Sirt2-deficient or -mutant
cell injection group were much greater. However, overexpression of Sirt2-WT
significantly suppressed tumor growth ( Fig. 6 A and B). To trace expression
changes of Sirt2 in the development and progression of neuroblastoma, a
series of statistical analyses were performed using the R2 online database
 https://hgserver1.amc.nl/cgi-bin/r2/main.cgi ). Compared to normal brain 
issue, Sirt2 expression was significantly suppressed in tumors from three 
ifferent datasets ( Fig. 6 C). The sur vival cur ve also revealed that lower Sirt2
xpression predicted a poor survival probability, both event-free and overall 
 Fig. 6 D and E). Moreover, with the increase in tumor pathological stage,
he expression of Sirt2 showed a downward trend according to the R2 dataset
nalysis, particularly in stage 4 ( Fig. 6 F). Moreover, neuroblastoma from stage
s, which is similar to those from stages 1 and 2 in molecular characteristics
36] , showed the same Sirt2-expression pattern ( Fig. 6 F). Taken together,
hese results indicated that Sirt2 expression was closely associated with the 
evelopment of neuroblastoma and patients’ prognosis. SUMOylation on 
irt2 seemed essential for suppressing the tumorigenesis of neuroblastoma 
n mice. 

iscussion 

Neuroblastoma, an embryonal tumor of the autonomic nervous system, 
s the most common extracranial tumor in children and infants. Nearly 

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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Fig. 6. Sirt2-SUMOylation exerts tumor-suppressor effects in mice and Sirt2 expression is closely related to patients’ prognosis. ( A and B) Five-wk old nude 
mice were subcutaneously injected with 2 × 10 6 SH-SY5Y cells stably expressing Sirt2-shRNA, -WT, or mutants. Mice were injected with naked or lentivector 
infected SH-SY5Y cell line was set as the mock or control group, respectively. All mice were sacrificed and tumors were dissected, photographed, and weighted 
at 2 wk (A) . The weight of tumors was analyzed by SPSS software (B) . ( C) R2 online database was used for comparison among normal brain tissue (Berchtold 
172 cases) and tumor tissues (DeLattre 34 cases; Hiyama 51 cases; Lastowska 30 cases). ( D and E) Kaplan curve representing event-free survival probability 
(D) or overall survival probability (E) associated with Sirt2 gene expression was generated by R2 online software (Accession: GSE45547, 649 cases). A total of 
173 samples lacking survival data were omitted from the analysis. ( F) Sirt2 expression levels were compared among patients with different pathological stages 
(Accession: GSE45547, 649 cases). One way analysis of variance (ANOVA) was used for the statistical analysis. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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half of all neuroblastomas occur in children younger than 2 years of age.
Neuroblastoma accounts for approximately 6% to 10% of childhood tumors
and 15% of childhood tumor mortality. Neuroblastoma is a neurosecretory
tumor that may originate in any ridge of the sympathetic nervous system,
typically in the adrenal medulla or paraspinal ganglia [37] . Recent advances
in neuroblastoma research have focused on inhibition of the cell signaling
pathway, tyrosine kinase activity, differentiation, or immunotherapy, and
increasing evidence has revealed that AKT is a clinically relevant target in
neuroblastoma [ 38 , 39 ]. 

Human deacetylase Sirt2, which is closely related to yeast Hst2p, localizes
in the cytoplasm in mammalian cells [10] and regulates various cellular
processes by promoting deacetylation of multitudinous substrates in diverse
cellular compartments. In cancer, Sirt2 frequently displays tumor suppressor
function [ 31 , 40 ]; however, this intrinsic mechanism is still not clearly
understood. PTM is an important process to ensure that proteins exert further
cellular functions in eukaryotes. To date, it has been reported that Sirt2 can
be phosphorylated or acetylated by altering the deacetylation activity, which
directly or indirectly affects the biological function of its substrates [ 16 , 18 ].
In this work, we identified a novel PTM-SUMOylation on Sirt2 at both K183
and K340 sites, which makes a great contribution to its tumor-suppressor
function as well as the cell signal transduction. Because Sirt2 is a NAD 

+ -
dependent deacetylase [ 41 , 42 ], we also revealed that Sirt2-SUMOylation can
be specifically and positively regulated by NAD 

+ in the cell, which logically
highlights the importance of SUMOylation to Sirt2 protein function ( Fig 1 F
and G). SUMOylation is called a small ubiquitin-like modifier because of its
partial similarity to ubiquitination [43] . It often influences protein stability
and subcellular localization [44] . However, we did not observe significant
changes in either its localization or stability following a series of point-
mutation assays ( Fig. 2 ), which prompted us to speculate the other biological
functions of Sirt2-SUMOylation. 
a  
It has been reported that Sirt2 is closely associated with the activities
f P38 and AKT in a variety of physiological conditions or diseases [45–
7] . Hence, we investigated the regulatory relationship between Sirt2,
38, AKT, and even mTOR by using specific chemical inhibitors in
euroblastoma cells, which showed that mTOR-AKT activation resulting 
rom Sirt2 deficiency mainly relied on P38 activation because the mTOR
r AKT signal almost vanished after the blocking of P38 activity ( Fig. 3 B,
ight lanes 1 and 2). Similarly, we also demonstrated that Sirt2-mediated
KT activity was completely dependent on mTORC2 signaling in SH-
Y5Y cells ( Fig. 3 B, right 3, 4 lanes & E). However, whether P38 can
irectly regulate mTOR is still unclear, although there is some evidence
bout the crosstalk between the P38/MAPK and mTOR signaling pathways
n human glioblastoma cells [48] . More interestingly, SUMOylation-Sirt2 
ignificantly affected Sirt2-mediated P38-mTORC2-AKT signaling ( Fig. 3 H 

nd I), which was important for SUMOylation to Sirt2 function. In addition,
e have provided evidence that Sirt2 is a promising deacetylase of substrate
38 and directly impaired the phosphokinase activity of P38 in vitro
nd in vivo, which was consistent with earlier reports that acetylation of
38 enhances its kinase activity [32] . Likewise, the deacetylation activity
f Sirt2 has also been shown to be related to its SUMOylation status
 Fig. 4 ). Based on these considerations, we propose that Sirt2 is involved
n regulating the P38-mTORC2-AKT signaling axis through the direct 
eacetylation of P38, which is largely associated with its SUMOylation
unction. 

Although Sirt2 usually functions as a tumor suppressor in cancer, most of
he studies focus on seeking its substrates to reflect the regulation mechanism
n the process of tumor development, such as deacetylation of P73 [49] and

IF-1 α [50] . However, little research has been conducted on the regulatory
echanism of the intrinsic functions of Sirt2. According to our phenotype

nalysis in vitro and in vivo, we revealed that Sirt2-SUMOylation played
 critical role in promoting the processes of neuroblastoma as well as drug
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Fig. 7. Graphical abstract. Sirt2 is a NAD 

+ -dependent deacetylase and 
targets both histone and non-histone protein for deacetylation. NAD 

+ 

induced SUMOylation was important for Sirt2 to activate its deacetylase 
activity. Meanwhile, nonhistone protein MAPK/P38 was revealed as a new 

substrate of Sirt2 and its acetylation ensured the phosphokinase activity which 
induced the AKT activation through mTORC2 complex. In neuroblastoma 
cells, Sirt2-SUMOylation seemed to function as a ‘brake’ to control P38 
acetylation level and to avoid the excessive activation of P38-mTORC2- 
AKT. However, SUMOylation-deficient Sirt2 decreased the capability of 
deacetylation on P38 and resulted in the aberrant activation of AKT, which 
ultimately promoted the tumorigenesis or cancer cell metastasis in the 
development of neuroblastoma. 
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sensitivity to AK-7 in SH-SY5Y cells ( Fig. 5 , Fig. 6 A and B). In the clinical
setting, we showed that lower Sirt2 expression was closely associated with
tumor occurrence or progression and poor prognosis in patients ( Fig. 6 C–
F). Nevertheless, there are still a number of patients harboring high-Sirt2
expression that present rapid progress and short-survival time. This could
be due to the Sirt2-SUMOylation deficiency, which causes the loss of Sirt2
activity and the aberrant activation of AKT. Unfortunately, we did not
have enough clinical samples and commercial Sirt2-SUMOylation specific
antibodies to detect the association between Sirt2-SUMOylation status and
patient survival outcomes. 

In summary, our findings shed light on a novel biological insight that
SUMOylation of Sirt2 is capable of inhibiting the aberrant transduction of
the P38-mTORC2-AKT signal through the direct deacetylation effect on
a new substrate, MAPK/P38. Sirt2-SUMOylation seemed to function as a
‘brake’ to control P38 acetylation level, helped avoid the excessive activation
of P38-mTORC2-AKT, and is essential for its tumor-suppressor function in
neuroblastoma ( Fig. 7 ), which may represent an innovative strategy for cancer
prognosis or therapy. 
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