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ABSTRACT Plasmids play a major role facilitating the spread of antimicrobial resistance
between bacteria. Understanding the host range and dissemination trajectories of plas-
mids is critical for surveillance and prevention of antimicrobial resistance. Identification
of plasmid host ranges could be improved using automated pattern detection methods
compared to homology-based methods due to the diversity and genetic plasticity of
plasmids. In this study, we developed a method for predicting the host range of plas-
mids using machine learning—specifically, random forests. We trained the models with
8,519 plasmids from 359 different bacterial species per taxonomic level; the models
achieved Matthews correlation coefficients of 0.662 and 0.867 at the species and order
levels, respectively. Our results suggest that despite the diverse nature and genetic plas-
ticity of plasmids, our random forest model can accurately distinguish between plasmid
hosts. This tool is available online through the Center for Genomic Epidemiology
(https://cge.cbs.dtu.dk/services/PlasmidHostFinder/).

IMPORTANCE Antimicrobial resistance is a global health threat to humans and ani-
mals, causing high mortality and morbidity while effectively ending decades of suc-
cess in fighting against bacterial infections. Plasmids confer extra genetic capabilities
to the host organisms through accessory genes that can encode antimicrobial resist-
ance and virulence. In addition to lateral inheritance, plasmids can be transferred
horizontally between bacterial taxa. Therefore, detection of the host range of plas-
mids is crucial for understanding and predicting the dissemination trajectories of
extrachromosomal genes and bacterial evolution as well as taking effective counter-
measures against antimicrobial resistance.
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Plasmids are extrachromosomal DNA sequences that have crucial roles in bacterial
ecology, evolution, and the spread of antimicrobial resistance (AMR) (1). They are

typically circular, self-replicating, and transferable and tend to obtain, lose, or rear-
range their genetic content rapidly, which make them extremely mosaic, diverse, and
plastic. Plasmids are generally composed of backbone and accessory genes. The back-
bone includes replication (rep) and mobility (mob) genes, which are relatively con-
served among the plasmids of the same family (2). These features have also been used
to type and compare plasmids that are isolated from different hosts by using replicon
and MOB typing (3–5). The accessory genes generally confer selective advantages to
the host, such as AMR, virulence, and metal resistance, increasing host survival under
stress conditions despite the metabolic costs that plasmids cause to the host (6).
Plasmids also harbor toxin-antitoxin systems and act as parasitic entities (7). Plasmids
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are often competent horizontal gene transfer vectors and are able to move from one
bacterium to another via conjugation, transduction, or transformation, causing persis-
tent genetic exchange between bacterial hosts (1, 8).

Plasmids vary in the number and range of taxa they can transfer to, replicate in, and
be maintained in. They can be roughly categorized as having narrow or broad host
ranges (9). The features that determine the host range capacity of plasmids are not
fully understood yet, but origin of replication, replication initiation dependencies, and
origin of transfer are known to be important for host range (9).

Plasmid host ranges can be determined empirically by testing potential hosts in
vitro (10, 11). However, sequence-based approaches can be used for plasmid host
range prediction, which is more practical than the empirical methods in terms of turn-
around times and usage of laboratory resources (11). Previous studies have attempted
to predict plasmid host ranges by comparing oligonucleotide compositions of plas-
mids and chromosomes (1, 9, 10, 12–14). Narrow-host-range plasmids are expected to
have similar oligonucleotide compositions to the host organism due to plasmid
sequence amelioration: e.g., adaptation to a preferred host codon usage (12).
However, this method falls short when predicting broad-host-range plasmids because
plasmids can often transfer to distantly related hosts (9, 12).

Previously developed plasmid identification tools such as PlasmidFinder and
PlasFlow have been developed to determine plasmid hosts (3, 15). PlasmidFinder iden-
tifies plasmids in whole-genome sequences by searching against plasmid replicon
sequences from the Enterobacteriaceae and Gram-positive species. This alignment-
based tool identifies plasmids from these taxa with high accuracy by indicating a source
organism based on the best-matching replicon. PlasFlow was developed using a deep
neural network and trained by the k-mer counts of fragments at least 1,000 nucleotides
in length, and it can detect plasmid hosts at the phylum level. To our knowledge, the
PlasFlow tool is not currently maintained. Recently, in 2021, Redondo-Salvo et al. (16)
developed an automated plasmid classification tool called COPLA that works by assigning
plasmid taxonomic units (PTUs) based on total average nucleotide identity.

Machine learning, a form of artificial intelligence, has been utilized in recent years
to understand various biological systems by detecting the linear and nonlinear correla-
tions between input and output data (17). It has been used to predict phenotypes and
structures in nature, and it has the potential to discover unknown features, such as
novel AMR genes (18–20). In this study, in order to better predict plasmid hosts and
infer plasmid host ranges, we developed a set of random forest-based machine learn-
ing models for predicting plasmid hosts at several bacterial taxonomic levels.

RESULTS
Plasmid host prediction performances for the PATRIC hold-out data set. In

order to develop models for predicting the host organisms of plasmids, a total of 8,519
plasmids with at least species-level host information were downloaded and curated
from the the Pathosystems Resource Integration Center (PATRIC) database and
included in this study (see Table S1B in the supplemental material). These plasmids
originate from 359 species belonging to 174 genera, 93 families, and 50 orders (see
Fig. S1 and Table S1C in the supplemental material). Most of the plasmids in the collec-
tion come from the orders Enterobacterales, Bacillales, and Lactobacillales, which com-
prise 55.6% of the hosts in the data set (Fig. 1).

To predict the taxonomic label of the host organism, machine learning models
were trained using nucleotide k-mer counts from the plasmids. The predictions were
carried out using 5-, 8-, and 10-mer oligonucleotides, since the short and long k-mers
might provide different types of information to the models. For example, 5-mers do
not usually appear in the plasmid genome uniquely and instead provide the models
with information regarding the profile of oligonucleotide frequencies for each plasmid.
On the other hand, the longer k-mers, such as 8- and 10-mers, are likely to occur
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uniquely in a given plasmid and offer counts of unique subsequences. Moreover, k-
mer distributions are subject to changes based on the sequence size.

Using each k-mer size, random forest-based classifiers were built to predict host tax-
onomy from order to species levels. The model based on the 5-mer counts has a
Matthews correlation coefficient (MCC) of 0.655 for predicting the plasmid host spe-
cies, and this was moderately lower than the 8-mer and 10-mer models, which had
MCCs of 0.662 and 0.680, respectively (Fig. 2; Table S1D to F). At the order level, the
model performances achieved an MCC of 0.899 for 5-mers and an MCC of 0.867 for 8-
mers and 10-mers (Fig. 2; Table S1D to F).

By increasing the k-mer size from 5 to 10, the prediction performances increased
3.8% in MCC at the species level but decreased 3.6% at the order level, although the
fluctuations in the performances of both sets are not statistically significant based on
the paired t test (P values of 0.404 and 0.883, which are greater than the significance
threshold of 0.05). To limit computational needs, we used the 8-mers to build input
matrices for all subsequent analyses. Overall, the plasmid host prediction models have
low sensitivity (true-positive rate) and high specificity (true negative rate). The lowest
sensitivity was detected at the species level compared to other taxonomy levels, where
sensitivity falls into the range between 0.493 and 0.761.

The ratio of the false-negative predictions was increased inversely by the presence of
the hosts in the input data (Fig. 3), moreover, this correlation was significant at the spe-
cies level (Spearman’s correlation coefficient of 0.545 and P value of 0.00, which is less

FIG 1 Plasmid host distribution at the order level in the PATRIC data set. The PATRIC plasmid collection was
dominated by the Enterobacterales, Bacillales, and Lactobacillales orders, which make up 55.6% of the plasmid hosts.
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than the significance threshold of 0.05). These findings suggest that the host classification
becomes more challenging at the species level, and the model performances improve
proportionally to the host representations in the training data. In addition to the false
negatives, false-positive predictions made by the model (see Fig. S3 and S4 in the supple-
mental material) were frequently phylogenetically close to the actual hosts. For instance,
the model frequently predicted Escherichia coli hosts instead of Salmonella enterica and
Klebsiella pneumoniae, where all of them belong to the Enterobacteriaceae.

In an attempt to improve the 8-mer model performances, we combined the k-mer
frequencies with the information in nucleotide compositions of plasmid sequences,
including plasmid size, GC content, and codon usage. These additional features yielded
an approximately 0.6% to 1.6% increase in the MCCs of the models (see Fig. S2 and
Table S1G in the supplemental material); however, this improvement was not statisti-
cally significant based on the paired t test (P value of 0.892, which is greater than
the significance threshold of 0.05). Therefore, the following analyses were carried out
without these additional features.

To understand the impact of plasmid sequence similarity on the model performan-
ces, the plasmid genomes were clustered based on the k-mer similarity using KMA. The
plasmids belonging to the same cluster at a given k-mer similarity threshold were kept
in the same training, testing, or hold-out data set. When the k-mer similarity decreased
to 80%, thus making the clusters more inclusive, the model performances decreased in
MCC between 7.7% and 29.8%, depending on the taxonomic level (Fig. 4; Table S1H
and I). The performance decrease shows that the similarity has an effect on the host
predictions, especially at the lower taxonomic levels, although the model can still be
generalized to distant sequences.

Plasmid host predictions with random fragments. Due to the fragmented nature
of plasmid assemblies, which results from the difficulty in assembling plasmids from
the short reads, we wanted to develop random forest models that can make predic-
tions from incomplete sequences. To do that, we trained and tested our plasmid host
prediction models with random fragments of plasmid sequences. Fragments of 500,
1,000, or 1,500 nucleotides were randomly sampled from each assembled plasmid
sequence over 10 rounds. By sampling multiple times, we attempted to introduce vari-
ous regions of the plasmid sequences to the models. The fragment model that was
trained with the 500-nucleotide fragments using 5-mers reached MCCs of 0.426 for the

FIG 2 Host prediction performances by k-mer size for the test and hold-out data sets. Each bar represents the
model performance per taxonomic level. While the test performances were reported with standard deviations,
the hold-out performances do not have standard deviations as the five models were combined and a single
performance was calculated. The plots show that the prediction performances vary when using different k-mer
sizes. 5-mers yield the highest MCC at higher taxonomies, while 10-mers yield the highest MCC at lower
taxonomies. The model performances generally increased from the species to order level for all the k-mer sizes.
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species model and 0.674 for the order model (Fig. 5; Table S1J). When the same frag-
ments were subsampled into 8-mers, the species-level model had MCCs of 0.489 and
0.686 MCC for the species and order levels, respectively (Fig. 5; Table S1K). By increas-
ing the fragment size from 500 to 1,000 nucleotides, the model performances
increased 8.2% to 10.7% in MCCs with the 5-mers and 6.3% to 10.1% in MCCs with the
8-mers (Fig. 4 and 5; Table S1J to K). When the fragment size increased from 1,000 nu-
cleotides to 1,500 nucleotides, the model performances increased 4.8% to 5.1% in
MCCs with the 5-mers and 3.3% to 1.7% in MCCs with the 8-mers (Fig. 4 and 5;
Table S1J to K). The fragment models reached their highest performances using 1,500-

FIG 3 Model accuracy for the PATRIC plasmids tested with the whole model. Each bar shows the number of bacterial orders in the hold-out data, and the
corresponding model accuracy was color coded. The percentage on the top of each bars shows the percentage of bacterial orders in the training data.
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nucleotide fragments and 8-mers as the features, where the MCCs were 0.537 and
0.768 for the order and species models, respectively (Fig. 5; Table S1K).

Validation of the plasmid host prediction model with the NCBI validation data
set. To validate the plasmid host prediction models, we used plasmids in the NCBI
RefSeq collection that are not present in our training, test, or hold-out data sets.
Overall, 7,670 bacterial plasmid sequences with taxonomic metadata were included in
the analysis (Table S1L and M). As in the PATRIC database, the NCBI validation data are
also dominated by the few major orders, such as Enterobacterales, Lactobacillales, and
Pseudomonadales, which make up approximately 76% of the data set (Fig. 6).

When the whole model (trained with 8-mers of the PATRIC training set) was tested
with the NCBI validation data, the ratio of the correct and wrong predictions was deter-
mined as shown in Fig. 7. Our plasmid host prediction model has relatively low sensi-
tivity (0.483) and a high specificity (1.0) at the species level (Table S1N), similar to the
results shown above. Moreover, when the NCBI validation data were tested with the
random model generated by shuffled labels, the model performance dropped to an
MCC of 0.028 at the species level. This suggests that even though the sensitivity is low,
the model has adequate generalizability, which is far from being random.

Because the NCBI collection contained many short plasmid sequences, we filtered it
based on the sequence size. Overall, plasmid sequences of $5,000 bp performed 43%
better than plasmid sequences of ,5,000 bp in terms of MCC at the species level.
However, this performance gap was reduced to 1% at the order level. This means that
the plasmid host range model accuracy improves with longer plasmid sequences at
lower taxonomic levels.

As shown in the predictions for the hold-out data set, the plasmid host prediction
model predicted additional hosts for 499 plasmids in the NCBI validation data set (see
Fig. S5 in the supplemental material). In the validation data set, the model frequently
predicted Escherichia coli as being the host instead of the close relatives Salmonella
enterica and Klebsiella pneumoniae: this pattern repeats in the hold-out results.

The fragment-based models were also validated using the NCBI data set. The 7,670
NCBI plasmids were randomly subsampled into 500-, 1,000-, and 1,500-nucleotide frag-
ments, and each plasmid was randomly sampled 10 times per fragment size. Similar to
the PATRIC results, the fragment models reached the best performances (MCCs of

FIG 4 Effects of clustering plasmids at different k-mer similarity thresholds on the plasmid host predictions
using 8-mers and different taxonomic levels. Each bar represents the model performance per taxonomic level,
and each error bar represents the standard deviation across folds. The plot shows the influence of plasmid
sequence similarity on prediction performances in MCCs from the species to order level. The plots suggested
that the prediction models pick up sequence similarity mostly at lower taxonomic levels. When the dissimilarity
was increased between the training, test, and hold-out data sets by applying the 80% k-mer similarity
threshold, 7.7% to 29.8% losses in MCC performance were observed for the hold-out data.
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0.485 at the species level and 0.778 at the order level) for the NCBI validation data with
the 1,500-nucleotide fragment size and 8-mers (Fig. 8; Table S1O and P).

Model interpretation. To increase our understanding of the host prediction models,
we measured the impact of the features on the final decisions. We first found the most
important 10 features per model and host and investigated only the features that
occurred at least in three out of five models. Second, we detected the origin of these in-
formative 8-mers by mapping them against the plasmid sequences. Finally, we annotated
these hits to the gene products. As the 8-mers could appear in the plasmid sequences
more than once, the random forest trees could make the decision based on the 8-mer

FIG 5 Fragment model performances for the 5-mer and 8-mer models. The fragment models were trained with either 500-, 1,000-, or 1,500-nucleotide (nt)
fragments that were subsampled from the PATRIC plasmids. The bar plots show the test and hold-out performances for the 5-mers and 8-mers in MCC.
The error bars represent standard deviations. The best-performing model was trained with the 1,500-nucleotide fragments using 8-mers.
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distributions in addition to the absence or presence of the 8-mers. Therefore, the
mapping could lead to detection of many irrelevant genes containing the selected 8-
mers. In order to reduce the bias in the annotations, we repeated the same analysis
with 10-mers. In spite of the multiple occurrences of 8-mers, we detected approxi-
mately 80% overlap in the annotated features between 8-mers and 10-mers (data not
shown).

The top features that were found important by the majority of the cross-validation
models were mostly poorly characterized features, such as polyketide synthase mod-
ules and related proteins, hypothetical proteins, mobile element proteins and repeat
regions (see Table S2 and Table S3 in the supplemental material). Also, these poor
annotations do not provide distinctive information as they were found to be important
for each classifier. Therefore, we focused on the well-annotated genes that were only
present in a unique host. It was observed that k-mers in signal peptides, clustered reg-
ulatory interspaced short palindromic repeats (CRISPR) repeats, insertion sequences,
transmembrane helices, transcriptional regulators, ABC transporters, and replication
origins and replication-related proteins were frequently used in distinguishing the
plasmid hosts at the genus and order levels (Table S2 and Table S3).

Comparison to PlasmidFinder and COPLA. The PlasmidFinder tool uses an align-
ment-based strategy to identify plasmid sequences and can often provide host

FIG 6 Plasmid host distribution in the NCBI validation data set. The validation data set was dominated by the
Enterobacterales, Lactobacillales, and Pseudomonadales, which make up 76% of the NCBI plasmid hosts.
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information when it is available (3). We used 391 Enterobacteriaceae plasmids in the
PATRIC validation data set that were not already part of the PlasmidFinder database to
compare the accuracy of PlasmidHostFinder to those of PlasmidFinder and COPLA for
plasmid host identification. Overall, PlasmidFinder correctly identified the hosts of 336
plasmids, incorrectly identified the hosts of 16 plasmids, and identified no host for 39
plasmids at the species level. The COPLA tool classifies plasmids by assigning them to
PTUs, where each PTU establishes a characteristic host range (16, 21). COPLA correctly
identified the hosts of 292 plasmids, incorrectly identified the hosts of 12 plasmids and
identified no host for 87 plasmids at the species level. It should be noted that COPLA
made additional false predictions for 245 out of 292 correctly predicted plasmids.
PlasmidHostFinder—for complete sequences—correctly identified the hosts of 229
plasmids, incorrectly identified the hosts of 46 plasmids and identified no host for 116
plasmids at the species level.

FIG 7 Model accuracy for the NCBI plasmids tested with the whole model that was trained with the PATRIC data set. Each bar shows
the number of bacterial orders in the validation data, and the corresponding model accuracy was color coded. The plot showed that
the accuracy of the models changed roughly according to the availability of the host organisms in the training data, which is
indicated on top of the bars.
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In order to compare the accuracies of PlasmidFinder and PlasmidHostFinder for the
partial plasmid sequences, we randomly sampled each of the 391 plasmids into 1,500-
nucleotide fragments 10 times. Overall, PlasmidFinder was able to identify 347 out of
3,910 fragmented sequences as plasmid derived. However, none of the returned
matches contained plasmid host information. On the same set of sequence fragments,
PlasmidHostFinder correctly identified the hosts of 1,927 fragmented plasmids, incor-
rectly identified the hosts of 742 fragmented plasmids, and identified no host for 1,241
fragmented plasmids at the species level. COPLA was not included in this part of the
analysis due to the high computational overhead of using the tool.

For the Enterobacteriaceae species, the alignment-based PlasmidFinder tool pro-
vides more accurate predictions than PlasmidHostFinder when plasmids are near
complete. However, when the plasmids are incomplete, the machine learning-based
PlasmidHostFinder becomes more advantageous because the presence of specific
sequences is required for the correct PlasmidFinder identification.

The web server. The plasmid host prediction models that were trained using 8-
mers from whole plasmid sequences can be used online at the Center for Genomic
Epidemiology (https://cge.cbs.dtu.dk/services/PlasmidHostFinder/). This web server
tool accepts one FASTA file at a time and provides an output file containing the pre-
dicted plasmid host range at the selected taxonomic level from species to order
(Fig. 9a). It has two options for running the tool—fast and slow—with various class
thresholds (Fig. 9a). The slow mode uses all five cross-validation models to make a
final decision on the plasmid host range. The fast mode uses only the first cross-vali-
dation model out of five to predict the plasmid host range. Therefore, one can expect
to obtain more confident predictions with the slow mode. Once the input file is
uploaded and appropriate options are selected, PlasmidHostFinder runs on the CGE
server, which is located physically at Technical University of Denmark, Denmark. The
web server reports the plasmid host predictions in two formats: an HTML table and a
downloadable tab-separated text (TSV) file. In the HTML table, PlasmidHostFinder
reports the predicted hosts, defined as having class probabilities that are equal to or
greater than the selected class probability threshold, per entry of the given input
FASTA file (Fig. 9b and c). Meanwhile, in the TSV file, all possible plasmid hosts and
corresponding probabilities are reported, even if the assigned probabilities are below
the class probability threshold; this is practical for exploring other possible hosts
with different plasmid class thresholds.

FIG 8 The fragment models were validated with the NCBI plasmids. The fragment models that trained with the
500-, 1,000-, and 1,500-nucleotide (nt) fragments from the PATRIC plasmids were validated with the fragments
that were subsampled from the NCBI plasmids. Similar to the hold-out results, the best performance was
obtained with the 1,500-nucleotide fragments and 8-mers.
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DISCUSSION

In this study, we built random forest models that can predict plasmid hosts and
host ranges at taxonomic levels between species and order; these models achieved
accuracies from MCCs of 0.662 to 0.867. The model prediction performs better at
higher taxonomic levels, with the “order” level being the best. We observed that the k-
mer size does not have a significant influence on the prediction performances. Among
the three k-mer sizes, we chose to build our prediction models with 8-mers since the 8-
mer provides robust predictions at all taxonomic levels with less computational effort
than 10-mers. Moreover, we tried to improve the host range predictions with addi-
tional genome features such as plasmid size, GC content, and codon usage, but the
increase in the prediction performances was negligible. We validated our models using
an independent data set from the NCBI RefSeq. These performances were comparable
with our previous test and validation results. In addition, to assess the utility of this
approach with partially assembled plasmid sequences, we generated models for 500-,
1,000-, and 1,500-nucleotide fragments, and even the smallest fragments of 500 nucle-
otides have sufficient information for the identification of plasmid hosts. Overall, the
PlasmidHostFinder models were trained using assemblies from short or long reads.

FIG 9 Web server for PlasmidHostFinder. (a) The interface of the PlamidHostFinder web server is shown. The web server runs online after uploading a
query file in FASTA format and selecting appropriate parameters for the taxonomic level (species to order), class probability threshold (0.1 to 0.9), and
mode of the program (fast or slow). (b) An example of output of the PlasmidHostFinder web server is shown. In this example, the query_2.fna file was run
using the following parameters: species level, 0.5 class probability threshold, and fast mode. The tool has two kinds of output files: HTML table and
downloadable TSV file. While the HTML table includes only the detected plasmid host with at least 0.5 host probability, the TSV file includes the
probabilities of all possible hosts at the species level. (c) Another example of the PlasmidHostFinder output. In this example, the query.fna file was run
using the following parameters: genus level, 0.5 class probability threshold, and fast mode. Differently, this query file includes two contigs in the same file.
Thus, the predicted hosts and all of the host probabilities were reported per contig in the HTML table and the TSV file, respectively.
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Although the online tool supports predictions based on the assumption that the
sequence file is based on complete plasmid sequences, in theory, the fragment-based
models could be extended to putative plasmid sequence from assembled metage-
nomic samples using the command line-based tool.

Machine learning. We observe that the robustness of the models is dependent on
the quantity, quality, and accuracy of the input and output data. In this study, the plasmid
host prediction models might suffer from incomplete metadata. The plasmid data and
corresponding plasmid hosts were retrieved from the PATRIC database. However, the
PATRIC data set is likely to contain some plasmids with incomplete host range informa-
tion. This issue might have an effect on robustness of the models, but is most likely to
have a minor impact due to the relatively large input data set. Nevertheless, some of the
false-positive predictions might be the consequence of incomplete metadata. Some of
the other false positives might potentially be new discoveries relating to plasmid trans-
mission in diverse hosts, although this should be validated experimentally.

PlasmidHostFinder uses a different set of random forest models per taxonomic level,
namely, species, genus, family, and order. The accuracy of models increases going from
the species to order levels. These general predictions are a useful approximation when
the species-level predictions are not available. This can happen when the host probabil-
ities of a query plasmid remain below the given probability threshold. In addition, predict-
ing the same host at several taxonomy levels provides a way to assess the accuracy of
predictions by confirming the predictions at different levels.

Plasmid genomes are extremely plastic (22). Accessory genes vary in their presence or
absence from the plasmids, which makes plasmid host prediction a complicated task. In
order to understand the impact of the genome similarity on the plasmid host model
learning, we clustered the plasmids for a given similarity threshold. By keeping the similar
plasmids in the same training, test, or hold-out data sets, the learning from the sequence
similarity was minimized since the similar plasmids tend to have the same hosts. This clus-
tering approach caused less accurate results than the baseline model. These results sug-
gest that sequence similarity has an impact on the model learning. Therefore, to boost
the model performances, the training data should be updated regularly to increase the
input diversity when more plasmid data are available. In addition to the sequence similar-
ity, host-related signals from the relatively conserved regions of the plasmid sequences,
such as rep ormob genes, are learned from the model (Table S2 and Table S3).

The model performances were evaluated using several performance measurements,
including area under the curve (AUC), MCC, and macro F1. The AUC and MCC perform-
ances were not always correlated and caused different conclusions in some cases, such
as in the random forest model with the clustered plasmids. The reason for this discrep-
ancy may be the applied class thresholds. AUC uses a range of thresholds to measure
the model performances and does not require a defined class threshold. In contrast to
AUC, the MCC and macro F1 calculations require predictions instead of probabilities.
Therefore, a defined class probability threshold is needed for conversion of probabil-
ities to predictions. This threshold was set to 0.5 for all the models. However, this
threshold might not be the ideal threshold for some of the models, particularly for the
imbalanced classes (23). For instance, the species-level prediction model has a lower
sensitivity (0.493) than its specificity (1.0). In other words, the model failed to predict
some of the hosts (Fig. 3 and 7), and the majority of the failed predictions were the
result of having no positive class predicted for the tested plasmid due to no predic-
tions being above or equal to the class probability threshold of 0.5. Therefore, adjust-
ing the class probability threshold could be a way to improve the model.

False positives or unknown hosts. The machine learning models have the potential
for discovery of unknown correlations between the input features and predicted pheno-
types. For example, in previous studies, novel AMR genes were reported using the
machine learning models (18, 19). In our case, machine learning might be useful for dis-
covering unknown plasmid hosts by learning the similar genetic patterns assigned to dif-
ferent phenotypes, such as in 99% k-mer similar plasmids with different hosts (Table S1H).
We explored these potential discoveries (in other words false positives), as in cases where
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(i) the model was not able to predict the actual hosts, but predicted false positives
(Fig. S3), and (ii) the model predicted multiple hosts, including the actual hosts and false
positives (Fig. S4). These cases should be investigated further as these could happen due
to two reasons: the model might pick up noise, or the falsely predicted host might
actually be a host in nature. Thus, a portion of the false positives might be the actual
hosts, which were not discovered before, but machine learning gives the opportunity for
discovery in silico. To prove that they are potential hosts would require in vitro experi-
ments to test the stability of the plasmid in these bacteria.

Fragments. The fragment-based model performances vary based on the fragment
and k-mer sizes. We obtained the best performances for the hold-out data set with the
1,500-nucleotide fragments using 8-mers. The fragment size and model performances
changed proportionally because the longer fragments provide more information to
the models. This might be the consequence of the mosaic nature of plasmids. Genes
located on plasmids could originate from different organisms, and random sampling of
these acquired genes might cause false predictions. Moreover, as the plasmids were
not aligned prior to the fragmentation, the genetic content of fragments subsampled
from different plasmids did not match. Therefore, the model might be learning the
fragment structures in most of the cases.

Conclusion. We built random forest models and incorporated them in the
PlasmidHostFinder tool to detect plasmid hosts and host ranges at various taxo-
nomic levels, from species to order, with MCC performance of 0.662 to 0.867.
PlasmidHostFinder can detect a diverse range of hosts for 359 species, 174 genera,
93 families, and 50 orders with high accuracy in spite of the mosaic and diverse na-
ture and genetic plasticity of plasmids. The approach described in this study helps
to fill a gap in our ability to predict plasmid hosts, particularly in understudied taxa
or when plasmid sequences are fragmented.

MATERIALS ANDMETHODS
Data set. We downloaded all of the available (10,863) plasmids and corresponding metadata from

the Pathosystems Resource Integration Center (PATRIC) (24) in September of 2020. Metadata for each
plasmid included the origin of the plasmid and other relevant information, such as different database
accession numbers, collection dates and places, and genomic lengths and features. Four plasmids did
not have host information and were removed. The remaining plasmid host information was reported
from genus to strain level by the PATRIC database. In total, 1,662 different genus- and species-level hosts
were detected in the plasmid metadata. When less than five plasmids had a host at a given taxonomic
level, they were removed. In total, 1,296 underrepresented hosts and corresponding plasmids were
removed from the data set to improve the robustness of the models. From the remaining 366 hosts,
seven were removed for lacking species annotations. Therefore, we ended up with 8,658 plasmids and
359 corresponding hosts with species-level taxonomy information. The species-level plasmid hosts were
assigned to the higher taxonomy levels, such as genus, family, and order, using the NCBI Taxonomy in-
formation by the Python ete2 package (version 2.3.10) (25, 26).

Distance tree. The diversity of the plasmids was measured using an oligonucleotide k-mer-based
distance tree. The plasmid sequences were indexed using the KMA tool (version 1.3.9) (27) with the fol-
lowing parameters: -NI and -Sparse TG. Next, the 16-mer Hamming distances were calculated. The dis-
tance tree was generated using the CCPhylo tool (version 0.2.2) by the neighbor-joining method (28).
The distance tree was visualized using iTOL (version 4) (29).

k-mer counts. The plasmid genomes were subsampled using overlapping k-length nucleotides, and
the occurrence of every k-mer was counted. k-mer counting is a well-studied method for analyzing
sequence data (30). The subsequence size k is a critical parameter as the subsequences yield various
pieces of information, depending on the size. While short k-mers provide information regarding the
sequence content, long k-mers are informative in detection of unique sequence patterns. We analyzed
plasmid genomes using three different k-mer sizes: 5, 8, and 10 nucleotides. Counts were calculated
using KMC (version 3.0.0) (31) with the following parameters -fm, -ci1, -cs1677215. These parameters
inform the tool regarding the input data format and the minimum and maximum thresholds for the k-
mer occurrences, respectively.

Detection of duplicates. To eliminate possible duplicates from the plasmid collections, we compared
the 8-mer counts of the plasmids to each other. Plasmid pairs with identical 8-mer counts were treated as
duplicates and merged in the data set. When the pairs had different host information, the additional hosts
were incorporated in the metadata. In the 3,658 plasmids, 139 duplicates were detected and excluded
from the collection. The remaining 3,519 plasmids were used for generation of machine learning models.

Sequence length, GC content, and codon usage calculation. To capture the plasmid genome char-
acteristics, we calculated the total length of the sequence, GC content, and codon usage. Sequence
length was calculated by taking all nucleotides into consideration, including ambiguous bases. GC
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content was calculated by taking the ratio of the total number of cytosine and guanine nucleotides to
all nucleotides. Codon usage was determined as the relative frequencies of amino acids in a coding
region, which was detected using Prodigal (version 2.6.3) with default parameters (32).

Model generation and cross-validation. For each k-mer size, a matrix was generated from k-mer
counts where the rows represent each plasmid, the columns represent each k-mer, and the entries rep-
resent the k-mer count. Additionally, a merged matrix was generated by combining the 8-mer count ma-
trix with the genome length, GC content, and codon usage information.

In this study, we generated multilabel models that are able to predict multiple hosts per plasmid.
Each label corresponds to a plasmid host and encodes a binary value, with “1” corresponding to being a
host. These plasmid hosts were predicted at different taxonomy levels, such as species, genus, family,
and order, where we built separate models per taxonomic level. We used random forest to build the
classifiers, which provides robust and interpretable predictions based on decision trees and has been
explored in many other classification studies (18, 33–35).

Model parameter tuning and validation were performed using the plasmid data where the data were
split into training, testing, and hold-out data sets. The training and testing data sets were used for parame-
ter tuning, and the hold-out data set was used for monitoring possible overfitting. Random forest was
implemented using ensemble.RandomForestClassifier from the Python Scikit-learn package (version 0.20.4)
(36). The model parameters were tuned in a 5-fold cross-validation using the random grid search method
from Scikit-learn, which iterated 100 times; n_estimators, max_features, max_depth, min_samples_split,
min_samples_leaf, and bootstrap were the parameters tuned (Table S1A). These parameters were responsi-
ble for the number of trees in the forest, the number of features used for each split, the maximum depth of
the decision tree, the minimum number of samples for splitting a node, the minimum number of samples
required for the leaf, and bootstrapping of samples, respectively. Tuning was conducted using an 8-mer
matrix at the genus level and then applied to the other taxonomic levels and k-mer sizes. The detected opti-
mal parameters were n_estimators = 1,000, max_features = “auto” (which is the square root of the number
of features), max_depth = 50, min_samples_split = 2, min_samples_leaf = 1, and bootstrap = False. The
class_weight parameter was set to “balanced” to weight the inputs based on the class frequencies to pre-
vent the biased predictions due to the imbalanced classes. The random forest model was utilized with the
multiclass.OneVsRestClassifier from the Python Scikit-learn (version 0.20.4) package (36), which trains one
model per label and improves the interpretability of the models.

Using the tuned parameters, the random forest model was trained and tested five times using the k-
fold cross-validation method, where different data sets were tested each time. The ensembled cross-vali-
dation model was applied on the hold-out data set, which was not part of the training or testing. Model
performances were measured with the area under curve (AUC), macro F1 score, Matthews correlation
coefficient (MCC), and the confusion matrix by using Scikit-learn (36). Sensitivity and specificity were
also calculated from the confusion matrices to measure the ability of model to identify hosts. The class
probability threshold of 0.5 was applied to calculate the performances of macro F1, MCC, and the confu-
sion matrix. Since it is a multilabel problem, all of the predictions for all possible labels were collected
into one data container, and one prediction performance was calculated per model instead of the num-
ber of labels. The test and hold-out data set performances were reported where the test performances
were calculated by averaging five model performances and reported with standard deviations, and the
hold-out performances were calculated on the average of the five model probabilities.

To test whether the plasmid host model predictions were significantly different, a t test was per-
formed using stats.ttest_ind from SciPy (version 1.2.2) (37). Moreover, possible correlations were
detected with Spearman’s correlation coefficient using stats.spearmanr from SciPy (version 1.2.2).

Clustering plasmids. Since similar plasmids are likely to be hosted by the same organisms, we clus-
tered the plasmids based on k-mer sequence similarity using KMA index (version: 1.3.9) with the follow-
ing parameters: -k16, -Sparse, and -NI (27). KMA clusters the sequence for a given similarity threshold
using 16-mers and the Hobohm-1 algorithm (38). We clustered the plasmids using three different k-mer
query and template similarity thresholds at 90%, 80%, and 50%. By dividing the clusters into training,
testing, and hold-out sets, similar plasmids were kept in the same partitions. This allowed us to see how
the models generalized with a set of new, genetically distant plasmids.

Random fragments. Partial sequences might be informative for predicting hosts and better reflect
actual data in incomplete plasmid assemblies. Therefore, random fragments of 500, 1,000, and 1,500 nu-
cleotides were subsampled from each plasmid sequence to build prediction models from the partial
sequences. The subsampling process was randomly replicated 10 times for each plasmid. Plasmids
shorter than the given fragment size were excluded from the study, and separate models were built per
fragment size. Matrix files and models were constructed as described above, using k-mers that were 5
and 8 nucleotides in length. 10-mers were not utilized due to the heavy computational requirements.

External validation of the plasmid host prediction models. The plasmid host models that were
trained with the PATRIC plasmids at four different taxonomic levels were further validated using plas-
mids from the NCBI RefSeq database (39). A total set of 30,349 NCBI plasmids were downloaded from
the NCBI RefSeq database and filtered. NCBI offers a larger plasmid collection than PATRIC, yet some of
the plasmids are identical. Therefore, only the plasmids that had not yet been integrated into PATRIC as
of January 2021 (i.e., plasmids that only exist in the NCBI RefSeq database) were included. Further, we
eliminated duplicates from the NCBI validation data set by comparing k-mer counts and filtered based
on the source organism, completeness, and NCBI’s automatic taxonomy check. Moreover, plasmids with
labels that are not included in the PATRIC training data were further removed from the NCBI validation
data. The remaining plasmids with species-level host information recognized by NCBI Taxonomy were
tested against the plasmid host models that were computed from the PATRIC collection. The validation
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performances were reported in AUC, macro F1, MCC, and the confusion matrix. The class probability
threshold of 0.5 was applied to calculate the performances of macro F1, MCC, and the confusion matrix.

Feature importance. To explore the feature contributions to the random forest models, the model
features (8-mers or 10-mers) were sorted based on their impacts on the final predictions by the featur-
e_importances_ attribute of Scikit-learn. For each host, the top 10 important features were detected and
considered important if they ranked in the top 10 in three out of five cross-validation models. Exact
coordinates of these selected k-mers were found by mapping the forward and reverse complements of
the k-mers against the plasmid sequences in the training set, using the custom Python scripts. The corre-
sponding genes to these k-mer hits were identified using the PATRIC annotation service (40).

Comparison to PlasmidFinder and COPLA.We compared our model performance to PlasmidFinder
and COPLA for the Enterobacteriaceae species that are present in the PATRIC hold-out data set (3, 16, 21,
41). Moreover, the hold-out plasmids that present in the PlasmidFinder database were excluded from
this comparison. The PlasmidFinder (version 2.1.1) and COPLA (version 1.0) tools were run with the
default parameters, except the minimum identity threshold parameter of PlasmidFinder, which was set
to 0.8. The database for PlasmidFinder was downloaded in July 2021.

Data availability. The Python 2.7.15 scripts that used in this study are available on Bitbucket (https://
bitbucket.org/deaytan/plasmid-host-prediction/src/master/). The web server is available on Center for
Genomic Epidemiology (https://cge.cbs.dtu.dk/services/PlasmidHostFinder-1.0/). All the PATRIC and the
NCBI RefSeq sequences and corresponding metadata can be accessed through the PATRIC (https://www
.patricbrc.org) and NCBI (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/) resources, respectively.
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