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Background: The tumor immune microenvironment (TIME) has been recognized to be an
imperative factor facilitating the acquisition of many cancer-related hallmarks and is a
critical target for targeted biological therapy. This research intended to construct a risk
score model premised on TIME-associated genes for prediction of survival and
identification of potential drugs for ovarian cancer (OC) patients.

Methods and Results: The stromal and immune scores were computed utilizing the
ESTIMATE algorithm in OC patient samples from The Cancer Genome Atlas (TCGA)
database. Weighted gene co-expression network and differentially expressed genes
analyses were utilized to detect stromal-and immune-related genes. The Least
Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was utilized for
additional gene selection. The genes that were selected were utilized as the input for a
stepwise regression to construct a TIME-related risk score (TIMErisk), which was then
validated in Gene Expression Omnibus (GEO) database. For the evaluation of the protein
expression levels of TIME regulators, the Human Protein Atlas (HPA) dataset was utilized,
and for their biological functions, the TIMER and CIBERSORT algorithm,
immunoreactivity, and Immune Cell Abundance Identifier (ImmuCellAI) were used.
Possible OC medications were forecasted utilizing the Genomics of Drug Sensitivity in
Cancer (GDSC) database and connectivity map (CMap). TIMErisk was developed based
on ALPK2, CPA3, PTGER3, CTHRC1, PLA2G2D, CXCL11, and ZNF683. High TIMErisk
was recognized as a poor factor for survival in the GEO and TCGA databases; subgroup
analysis with FIGO stage, grade, lymphatic and venous invasion, debulking, and tumor
site also indicated similar results. Functional immune cells corresponded to more incisive
immune reactions, including secretion of chemokines and interleukins, natural killer cell
cytotoxicity, TNF signaling pathway, and infiltration of activated NK cells, eosinophils, and
neutrophils in patients with low TIMErisk. Several small molecular medications which may
enhance the prognosis of patients in the TIMErisk subgroup were identified. Lastly, an
enhanced predictive performance nomogramwas constructed by compounding TIMErisk
with the FIGO stage and debulking.
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Conclusion: These findings may offer a valuable indicator for clinical stratification
management and personalized therapeutic options for OC patients and may be a
foundation for future mechanistic research of their association.
Keywords: the tumor immune microenvironment, TIMErisk, prognosis, potential compound, ovarian cancer
INTRODUCTION

Globally, human ovarian cancer (OC) is associated with the highest
lethality among the gynecological malignancies; the mortality
accounts for approximately 5% of all female cancer-related deaths
(1). Patients with epithelial OC (EOC), the main histological type,
are commonly diagnosed at the late clinical stage due to the lack of
symptoms at an early stage associated with the lack of an effectual
diagnostic marker. While great progress in EOC treatment has been
made due to the advances in surgery, chemotherapy, radiotherapy,
immunotherapy, and targeted therapy, progression-free survival
(PFS) and overall survival (OS) show modest improvements
among patients. One of the primary explanations is the absence
of effectual predictive markers for prognosis. Recently, an increasing
body of evidence shows gene expression signature assays to estimate
survival among tumor patients (2–4). Thus, the identification and
development of new immune-related predictive markers which can
predict patient prognosis more accurately and outline individualized
treatment plans may have high clinical value.

The tumor immunemicroenvironment (TIME)hasbeenknown
tobe an important factor facilitating the acquisitionofmanycancer-
related hallmarks. Successful peritonealmetastasis which entails the
co-evolution of stromal and cancer cells has been recognized as the
key cause for high risk of recurrence and mortality (5–7). In OC,
several studies have shown the importance of TIME-related
dysregulated and molecular signaling pathways as compared to
the genomic factors; these can influence the patient’s survival
probability, for example, there was a significant correlation
between high lymphocyte infiltration and the survival time (8),
the high immune scoring subtype with the upregulated tumor-
infiltrating immune cells had a high BRCA1 mutation, high
expression of immune checkpoints, and optimal survival
prognosis (9, 10). In addition, mature DCs, M1 macrophages,
natural killer (NK) cells, ab T cells and gd T cells can directly
inhibit tumor growth or increase the susceptibility to checkpoint
inhibitor therapies for OC (11, 12). Importantly, infiltration of
CD4+ and CD8+ T cells into the tumor has been associated with
improved overall and progression-free survival in OC patients
(13).The TIME necessary for primary and metastatic outgrowth
produces a target-rich niche for the development of auspicious
anti-cancer agents. Although immune checkpoint inhibitors such
as anti-PD-ligand 1 (anti-PD-L1), and anti-programmed death-1
(anti-PD-1) have been examined in phase III randomized controlled
trials in OC patients (14), a perfect TIME related molecular
biomarker to assess the susceptibility of drugs and prognosis of
EOC, remains unknown. In this research, seven TIME-related genes
were identified and a TIME-related risk model for prediction of
survival and therapeutic responses in OC patients was constructed.
The analysis workflow was shown in Figure 1.
2

MATERIALS AND METHODS

Data Source and Evaluation of Stromal
and Immune Scores
Gene expression data for patients with normal ovary and OC
patients and their corresponding follow-up data were downloaded
from GTEx (https://www.gtexportal.org/) and TCGA databases
(https://portal.gdc.cancer.gov/). TCGA database was utilized to
examine the possible TIME- and prognosis-related genes and
premised on it the TIMErisk was then evaluated. An aggregate of
375 OC patients from TCGA, median age was 59 years (30 to 87),
were randomly categorized into two cohorts in the ratio of 7:3
utilizing the “caret” package in R software; these were considered to
be the training and testing cohorts, in that order. The training
cohort consisting of 263 samples was utilized to detect the TIME
regulators and build a prognostic model. The testing set with 112
samples was utilized to evaluate the model’s performance.
GSE53963 and GSE140082 cohorts were accessed from the GEO
dataset (https://www.ncbi.nlm.nih.gov/geo/) and utilized for
independent external validation of the model. Stromal and
immune scores were computed utilizing the “estimate” package in
R software premised on the ESTIMATE algorithm (15).

Analyses of Differentially Expressed Genes
(DEG) and Weighted Gene Co-Expression
Network (WGCNA) Based on
RNA-Seq Data
The analysis of DEGs between low and high stromal and immune
scores was carried out utilizing the “limma” package in R. The genes
that had a false discovery rate (FDR) value (the adjusted P-value
computed utilizing Benjamin–Hochberg method) <0.05 and | Log2
[Fold Change (FC)] | >2 were considered to be DEGs.WGCNAwas
utilized to detect the co-expressed gene modules strongly related to
the stromal and immune scores. The gene modules of maximal |
correlation coefficient were regarded as strong stromal and
immune correlated modules. The intersection of stromal and
immune correlated DEGs and strong stromal and immune-
correlated gene modules was utilized as the input in the Least
Absolute Shrinkage and Selection Operator (LASSO)
regression analysis.

LASSO Regularization and Construction of
TIMErisk Model
LASSO is a descending dimension technique for regularization
which could be utilized for examining biomarkers for survival
analysis in combination with the Cox model (16). The stromal-
and immune-related genes obtained from both the WGCNA and
DEG analyses were employed as the input for the LASSO-Cox
regression to detect the hub genes. Subsequently, a stepwise
December 2021 | Volume 11 | Article 807410
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multivariate Cox proportional hazard regression analysis was
conducted for these genes to obtain the ideal candidates and
construct a prognostic model of TIMErisk using the TCGA
training set. The genes with multivariate Cox P-value <0.05 were
recognized as TIME regulators in the TIMErisk model. The model
was calculated by the following formula: TIMErisk = Sn

i=1   coefi�
Xi, where “coefi” and “Xi” denote the coefficient and expression
levels of each TIME regulator, in that order. Patients with EOCwere
categorized into low- and high-risk groups premised on the median
TIMErisk score set as the risk threshold point. ROC (receiver
operating characteristic) curve analysis was utilized to examine
the distinctive performance of the TIMErisk model.

Analysis of Tumor Immune Characteristics
and Functional Enrichment for TIMErisk
The levels of infiltrating stromal and immune cells were
computed utilizing the CIBERSORT algorithm (17). Single-
Frontiers in Oncology | www.frontiersin.org 3
sample gene-set enrichment analysis (ssGSEA) was utilized to
estimate the activity of particular immune reactions, which in
turn was utilized to delineate the enrichment score to represent
the extent of absolute enrichment in the gene set for each of the
samples within a specified data set (18). The gene sets for
immune reactions were gotten from the ImmPort database
(http://www.immport.org). The possible enriched biological
functions associated with TIMErisk were detected utilizing the
gene set enrichment analysis (GSEA) technique and annotated
via Kyoto encyclopedia of genes and genomes (KEGG) and gene
ontology (GO) datasets. In GSEA, the FDR value < 0.05 was
judged to be a statistically significant enrichment.

Construction and Validation of Nomogram
Score System
To assess the independent prognostic significance, multivariate
and univariate Cox regression analyses for TIMErisk and clinical
FIGURE 1 | The workflow of the study.
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variables were performed. Based on the independent prognostic
significance a nomogram was built for the training set to forecast
the survival of EOC patients. In the nomogram score system,
each of the variables was allotted a point; total points were
calculated by summation of points for each sample to predict
survival. Using calibration plot, and decision curve analysis
(DCA) the discriminating ability, and predictive performance
of the nomogram score system were assessed. The nomogram
was also employed in the testing set and the whole set to validate
the results.

Prediction of Chemotherapeutic Response
and Small Molecule Drugs
The chemotherapeutic response in OC patients was evaluated
utilizing a public dataset, Genomics of Drug Sensitivity in Cancer
(https://www.cancerrxgene.org). Estimation of the drug response
was done by computing the half-maximum inhibitory
concentration (IC50). Possible small molecule drugs for UCEC
were forecasted utilizing the Connectivity map (CMap, https://
www.broadinstitute.org/connectivity-map-cmap) comprising of
genome-wide transcriptional expression data from small
molecule drugs; premised on the links between genes, drugs,
and diseases via the variation in gene-expression profiles
potential candidates were predicted. This was premised on
DEGs between low- and high-risk cohorts with | log2fold
change (FC) | > 2 and FDR < 0.05.

Survival and Other Statistical Analyses
With regards to the categorical variables, Cox and KM regression
analyses were utilized to compute the significant differences in the
OS, which were then contrasted utilizing the log-rank test. With
regards to continuous variables, Cox regression was utilized to
compute the hazard ratio and significant differences in the OS.
Stratified analysis was conducted to examine the survival differences
among the subcategories, for instance, FIGO stage, age, grade,
lymphatic and venous invasion, debulking, and tumor site.
Spearman’s correlation analysis was conducted to determine the
relationship between TIME regulators and immunocyte fractions
and immune reaction activities. Two-tailed P-values were computed
and P < 0.05 was judged to be statistically significant.
RESULTS

Calculation of Stromal/Immune Scores
and Their Relationship With Patients’
Clinical Characteristics
To evaluate the role of immune infiltration in OC oncogenesis,
an aggregate of 379 OC tissues from the TCGA dataset and 188
normal ovary tissues from the GTEx dataset were included in this
research and the stromal and immune scores were computed. In
OC patients, the range of the stromal span from −2098.5 to
1514.7 while the range of immune scores spans from −2153.5 to
2015.3. In normal tissues, the range of immune and stromal
scores span from −1714.2 to 389.1 and −698.0 to 1171.5, in that
order. As shown in Figure 2A, the stromal scores were
Frontiers in Oncology | www.frontiersin.org 4
considerably elevated in the normal as opposed to the tumor
tissues, whereas the immune scores were higher in tumor tissues.
This indicated that stromal and immune cells played opposite
roles in oncogenesis. Furthermore, the stromal and immune
scores in OC tissues were evaluated. We discovered that the
stromal and immune scores were higher in patients with venous
and lymphatic invasion as compared to those without tumor
invasion (Figure 2A). In the FIGO stage, pathological grade, and
different ages, the outcomes did not indicate any statistically
significant differences between the cohorts, which indicated that
stromal and immune cells could have an imperative function in
tumor invasion and metastases (Figures S1A–D). KM analyses
illustrated that the patients who had an elevated immune and
reduced stromal scores exhibited better OS as opposed to those
with reduced immune and elevated stromal scores (Figures 2B,
C). Moreover, the stromal and immune scores of OC patients
were determined in GSE53963 and GSE140082 cohorts, and the
results of survival analysis were similar to those in the TCGA
database (Figures 2B, C). The heatmap of immune and stromal
scores for TCGA and GEO datasets are presented in Figure 2D.
The above results suggested that the stromal and immune cells
have a crucial influence on the tumorigenesis and prognosis
in OC.

Tumor Microenvironment Regulators
Are Involved in OC
To identify the genes involved in the regulation of tumor
microenvironment, the limma package in R software was
utilized and a WGCNA network was constructed to identify
DEGs between the high- and low-risk cohorts premised on
stromal and immune scores for OC in the TCGA database.
The volcano plot depicted 232 DEGs in accordance with the
immune scores and 246 DEGs in accordance with the stromal
scores (Figures 3A, B). In WGCNA, the soft-thresholding power
was adjusted at 3 with scale independence at adjusted to 0.9 to
guarantee a scale-free network (Figure S1E). An aggregate of
24584 genes was assigned to 11 modules in the immune score
groups, among which 771 genes belonged to the brown module.
There were also 11 modules assigned in the stromal score groups;
among them, 782 genes were assigned to the blue module
(Figures 3C–G). Both the blue and brown modules were
significantly linked to high stromal and immune scores,
respectively (blue: correlation coefficient =0.93, P < 0:001;
brown: correlation coefficient =0.92, P < 0:001; Figures S1F,
G). The Venn plot was constructed and it displayed the number
of DEGs as well as their intersection with strong TIME-
correlated gene modules in immune and stromal score cohorts.
These overlapping genes were further used as the input for
LASSO-Cox regression analysis (Figures 3H–L and Figures
S1H, I). Five genes (PLA2G2D, CXCL11, ZNF683, TIFAB, and
OLR1) were selected from among the immune-related genes
(Figure 3J); 19 genes (SFRP2, CCL21, GREM1, BCHE, IGFL2,
COMP, SLC35D3, ALPK2, C5orf46, CPA3, SVEP1, PTGER3,
MAB21L2, CTHRC1, XIRP1, LPPR4, PTGIS, and VCAM1) were
selected from among the stromal-related genes (Figure 3M). To
evaluated the prognostic precision of the gene set, the ROC curve
December 2021 | Volume 11 | Article 807410
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analyses for OS was performed. The OS AUC values for the 19
risk signatures from the stromal score cohort and 5 risk
signatures from the immune score cohort were 0.748 and
0.682, respectively (Figures S2A, B). Therefore, these 24 genes
were identified as the critical regulators involved in
TIME (Figure 3N).
Frontiers in Oncology | www.frontiersin.org 5
Establishment and Validation of
Prognostic Signatures for Regulators
of TIME
Further, the prognostic function of TIME regulators in OC
patients was evaluated. An aggregate of 375 patients were
categorized randomly into the TCGA training cohort (263
A

B

C

D

FIGURE 2 | Stromal and immune scores and their relationship with patients’ clinical characteristics. (A) Differential analysis for the distribution of stromal and immune
scores in tumor and normal tissues; in venous/lymphatic invasion and non- venous/lymphatic invasion in the tumor. (B) Survival analysis premised on the high- and
low-immune scores in the TCGA, GSE53963, and GSE140082 databases. (C) Survival analysis premised on the high- and low-stromal scores in the TCGA,
GSE53963, and GSE140082 databases. (D) Heatmap of immune, stromal, and ESTIMATE scores in TCGA, GSE53963, and GSE140082 databases.
December 2021 | Volume 11 | Article 807410
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FIGURE 3 | TME regulators are involved in the periodontitis process. (A, B) DEGs between the high- and low-stromal and immune score groups. (C) Clustering
dendrograms of genes premised on dissimilarity topological overlap and module colors. (D, F) Scatter plots of immune and stromal genes significantly related to
module membership. (E, G) Dendrogram of consensus module eigengenes and heatmap plot of the contiguities of modules for immune- and stroma-related genes.
(H, K) Venn plot shows the number of intersecting immune- and stroma-related genes from DEG analysis and WGCNA. (I, L) LASSO analysis for choosing alternate
genes associated with stromal and immune scores. (J, M) The significant genes are selected from immune-related genes and immune-related genes. (N) The genes
are identified as the critical regulators in TIME.
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participants) and validation cohort (112 participants) in a ratio
of 7:3 ratio. The basic features for the TCGA training and
validation cohorts, such as FIGO stage, age, grade, lymphatic
and venous invasion, days to the new tumor, and debulking, were
not significantly different (all p > 0.05; Table S1).

To accurately identify the significant genes for predicting
clinical outcome in OC patients, multivariate Cox proportional
hazard regression analysis was conducted in the TCGA training
cohort; seven TME regulators, ALPK2, CPA3, PTGER3,
CTHRC1, PLA2G2D, CXCL11, and ZNF683, were identified
(Figure 4A). Subsequently, a prognostic signature built premised
on the expression levels of these TME regulators and their
coefficients in the multivariate Cox proportional hazard model
were computed as follows: TIMErisk= 0.145×ZNF683 expression
– 0.146× ALPK2 expression – 0.146× CPA3 expression +0.174 ×
PTGER3 expression +0.209 × CTHRC1 expression – 0.146×
PLA2G2D expression – 0.146× CXCL11 expression. In the
TIMErisk equation, three TIME regulators (ZNF683, PTGER3,
and CTHRC1) had a positive coefficient which suggested that
they were potential risk factors and the upregulation of their
expression was linked to dismal prognosis. Four TIME regulators
(ALPK2, CPA3, PLA2G2D, and CXCL11) with a negative
coefficient were recognized to be protective factors that
indicated an improved survival owing to the upregulation of
their expression. Premised on the median TIMErisk score
threshold of 0.83, patients whose scores were greater compared
to the median in the training cluster were categorized as the
high-risk cohort, while those whose scores were equivalent to or
lower compared to the median were categorized as the low-risk
cohort (Table S2). OC patients in the low TIMErisk cohort
exhibited improved survival results contrasted with those in the
high TIMErisk cohort (P < 0.001, log-rank test; Figure 4C). For
the OS survival prediction of TIMErisk, the AUC of the ROC
curves in the training set was 0.747 (Figure 4B).

To confirm the performance of the TIMErisk in predicting
survival, we computed the TIMErisk scores for the testing cluster
and the GSE53963 set; The outcomes indicated that their median
TIMErisk scores were 0.941 and 0.017, respectively. Premised on
the ROC curve and KM analyses (Figure 4B), patients in the
low-risk cohort displayed prolonged survival as opposed to those
in the high-risk cohort; AUC values were 0.702 and 0.736 in the
testing and GSE53963 sets, respectively (Figure 4C).
Furthermore, a set of risk plots for 3 databases, such as
heatmap of TIME regulators’ expression and the spread of
patients’ survival status were plotted. As depicted in
Figure 4D, the expression levels of PTGER3 and CTHRC1 in
the training, testing, and GSE53963 clusters increased as the
TIMErisk scores increased, while the expression of CPA3,
PLA2G2D, and CXCL11 reduced as the TIMErisk scores
increased. Taken together, these results indicated that
TIMErisk had a good efficacy for survival prediction.

Association of TIME Regulators With
EOC Clinical Characteristics
To identify the role of the seven TIME regulators in OC
tumorigenesis, we analyzed their expression in normal ovary
Frontiers in Oncology | www.frontiersin.org 7
and OC tissues from the GTEx and TCGA databases. As shown
in Figure 5A, all TIME regulators except CPA3 and PTGER3
were overexpressed in the OC. Furthermore, the protein
expression of TIME regulators was analyzed using the Human
Protein Atlas (HPA) database; six of the seven TIME regulators
(ALPK2, CPA3, PTGER3, CTHRC1, CXCL11, and ZNF683)
were analyzed and all except CPA3 had enhanced expression
in OC (Figure 5B). Interesting, it appears that PTGER3
expression is non-significant at mRNA level, while the protein
expression appears significant in the tumor sections, which may
be caused by the regulation of epigenetics. So, the results above
suggested that the TIME regulators might have a vital function in
the oncogenesis of OC.

To elucidate the underlying role of the TIME regulators in the
development of OC, the mRNA expression levels for different
clinical characteristics were analyzed in the TCGA database. As
shown in Figure S3A , PTGER3 and PLA2G2D were
overexpressed and thus, contributed to lymphatic and venous
invasion; the aberrant expression of ALPK2, CPA, PTGER3, and
PLA2G2D were closely associated with FIGO stage; PLA2G2D
was related to the pathological grade, and lower expression of
PLA2G2D and CXCL11 was found in patients with bilateral as
compared to unilateral ovarian cancer; high expression of
PTGER3 and CTHRC1 increased the difficulty in debulking,
and the expression of seven TME regulators did not show any
significant differences with age Furthermore, the correlation
between the expression of TIME regulators and OS in OC
patients was determined. As depicted in Figure S3B, patients
that had an elevated expression of PLA2G2D and CXCL11
displayed longer survival, while the expression of the other five
TIME regulators had no significant association with OS. The
above results indicated that OC oncogenesis and development
involved the participation of multiple genes; studies based on
single genes may lead to bias in results. Therefore, using the
significant gene set is relevant to the evaluation of the clinical
prognosis of OC.

Association of TIMErisk With EOC
Immune Signature
To assess the differences in features of the immune
microenvironment between the high- and low-TIMErisk
cohorts, infiltrating immunocytes and immune reaction gene-
sets were evaluated. Infiltration of several immunocytes differed
between the two groups (Figure 6A). High-TIMErisk group had
higher levels of CD4 memory-activated T cells, CD4 naive T
cells, M1 macrophages, resting NK cells, and resting dendritic
cells; memory-activated B cells, eosinophils, activated NK cells,
and neutrophils were enriched in low-TIMErisk groups. This
suggested that the high TIMErisk group had a relatively different
infiltration of immunocytes. Active immune reactions were
higher in the low TIMErisk group. For example, antigen
processing and presentation, chemokines, natural killer cell
cytotoxicity, TNF family members, interleukins, and BCR
signaling pathways were active in the low TIMErisk group
(Figure 6B). These results suggested that the low TIMErisk
group mediated an active immune response, while those in the
December 2021 | Volume 11 | Article 807410
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high TIMErisk group involved active immunosuppression
of OC.

Furthermore, to investigate the biological behavior of TIME
regulators in the immune microenvironment, we analyzed the
correlation of TIME regulators with immune reaction gene-sets
and infiltrating immunocytes. As shown in Figure 6C, the
expression of TIME regulators, especially PLA2G2D, CXCL11,
and ZNF683, exhibited a positive correlation with memory B
Frontiers in Oncology | www.frontiersin.org 8
cells and monocytes, and a negative correlation with M2
macrophages, CD4 memory activated T cells, CD4 naive T
cells, M1 macrophages, and activated mast cells. Remarkably,
the expression of TIME regulators exhibited a negative
relationship with the immune reactions mediated by the
members of the TNF family and positively correlated with
most other immune reactions, including antigen processing
and presentation, chemokines, natural killer cell cytotoxicity,
A

B

C

D

FIGURE 4 | Construction and Validation of Prognostic Signatures for TIME regulators. (A) Forest plot presents the seven genes related to TIME. (B) ROC curves
analysis of TIMErisk with OS in OC patients of TCGA training, testing, and GSE53963 cohorts. (C) Kaplan-Meier curve analysis of TIMErisk with OS in OC patients of
TCGA training, testing, and GSE53963 cohorts. (D) A group of risk plots for TCGA training, testing, and GSE53963 cohorts, including the heatmap of TIME
regulators’ expression and the distribution of patients’ survival status.
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and BCR signaling pathways (Figure 6D). This indicated that
TIME regulators, in particular, the aberrant expression of
PLA2G2D, CXCL11, and ZNF683 may play different roles in
the process of immune infiltration and could lead to strong
immune reactions in OC,

Assessment of Independent Prognostic
Significance of TIMErisk and Clinical
Stratification
To examine if TIMErisk was an independent prognostic factor of
clinicopathological characteristics, we conducted multivariate
and univariate Cox regression analyses utilizing the TCGA
datasets for variables such as Immunescore, age, FIGO stage,
grade, and debulking. The outcomes of univariate Cox regression
illustrated that Immunescore, age, FIGO stage, and debulking
had a significant correlation with the patients’ OS (P <0.05).
Through multivariate Cox regression analysis, Immunescore,
FIGO stage, and debulking were identified as the prognostic
significances (P < 0.1, Figures 7A, B). Furthermore, clinical
stratification for the analysis of TIMErisk prognostic
performance was conducted in the TCGA database after
adjusting for other clinical features such as age, FIGO stage,
Frontiers in Oncology | www.frontiersin.org 9
grade G3, lymphatic invasion, debulking, and tumor site. The
outcomes illustrated that patients in the low-risk cohorts had
improved survival outcomes as opposed to those in the high-risk
cohorts among all clinically stratified subcategories (P < 0.05,
Figure 7C). To surmise, these findings indicated that the
prognostic value of TIMErisk in OC patients was independent
of other clinicopathological characteristics.

Construction and Validation of Nomogram
for Survival Prediction of EOC Patients
To enhance the applicability of the model in clinical practice, we
constructed a statistical nomogram model in the training cohort
by combining the prognostic significances (Immunescore, FIGO
stage, and debulking) using “rms” and “survival” packages in R
(Figure 8A). The calibration plots depicted in Figures 8B–D
displayed that the nomogram had better performance as opposed
to that of an ideal model based on the training, test, and
GSE53963 cohorts. Similarly, according to the decision curve
(Figures 8B–D), the nomogram also showed a higher net benefit
and better predictive accuracy than the FIGO stage system and
FIGO stage & debulking system. Thus, these outcomes illustrated
that the nomogram had improved prediction ability.
A

B

FIGURE 5 | TME regulators are associated with EOC clinical characteristics. (A) Differential analysis of the mRNA expression of the seven TIME regulators between
the normal ovary and OC tissues. (B) The protein expression of the seven TIME regulators in normal ovary and OC tissues using the HPA database.
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New Therapeutic Regimens for OC
To further identify the relevant drugs for high- and low-TIMErisk
patients, the GDSC database consisting of cancer cell responses to
various drugs was downloaded. the IC50 of 79 drugs in 33 ovarian
Frontiers in Oncology | www.frontiersin.org 10
cancer cellswas estimated. Surprisingly,we found that high- and low-
TIMErisk clusters exhibited similar cytotoxicity to all drugs,
including the chemotherapeutic drugs cisplatin, docetaxel, gefitinib,
and the bio-targeted drug olaparib (Figure 9A). To explore new
A B

C

D

FIGURE 6 | TIMErisk is associated with EOC immune signature. (A) The differences in abundances of each immune microenvironment infiltrating immunocyte
for TIMErisk subgroup in TCGA training cohort. (B) The activity differences for each immune reaction gene-set of TIMErisk subgroup in TCGA training cohort.
(C) Dot-plot demonstrates the correlation between each dysregulated immune microenvironment infiltration cell type and TIME regulators in the TCGA training
cohort. (D) Dot-plot demonstrates the correlation between dysregulated immune reaction gene-set and the TIME regulators in TCGA training cohort. Data are
presented as mean ± SD, ns p > 0.5. *p < 0.5; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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therapeutic regimens for OC, the DEGs between the high- and low-
TIMEriskcohortswere identified;GOenrichmentanalysis illustrated
that the DEGs primarily participated in the regulation of humoral
immune response, immune response activating signal transduction,
and adaptive immune response premised on somatic recombination
of immune receptors constructed from immunoglobulin superfamily
domains (Figure S4A andTable S3). In addition, GSVAenrichment
analysiswasutilized toassess theactivationstatusofKEGGpathways.
As opposed to the low TIMErisk cohort, patients in the elevated
TIMErisk cohort exhibited a greater pathway enrichment in primary
immunodeficiency, chemokine signaling, and natural killer cell-
mediated cytotoxicity (Figure S4B and Table S4). Furthermore, we
sought to examine potential drugs targeting the pathways of the
Frontiers in Oncology | www.frontiersin.org 11
DEGsbetween low- andhighTIMErisk cohorts in theCMapdataset.
The CMAP mode-of-action (MoA) analysis of 21 compounds
illustrated that 20 MoAs were shared between these drugs
(Figure 9B and Table S5). CMap database analyses showed that
two drugs (vinburnine and pindolol) shared the MoA with the
adrenergic receptor antagonist, Isoxicam and Sc-560 shared the
MoA with cyclooxygenase inhibitor, and mianserin and pindolol
shared their MoA with serotonin receptor antagonist. Patients with
low TIMErisk showed greater sensitivity for protein synthesis
inhibitor (puromycin) and PPAR receptor agonist (clofibrate);
cyclooxygenase inhibitor (Isoxicam and Sc-560) and leukotriene
receptor antagonist (tomelukast) may offer possible advantages to
patients in the high TIMErisk cohort. Thus, drugs targeting the
A B

C

FIGURE 7 | Independent Prognostic Significance of TIMErisk and Clinical Stratification Analysis. (A) Univariate Cox regression analysis of the TIMErisk and clinical
characteristics for the independent prognostic significance in the TCGA cohort. (B) Multivariate Cox regression analysis of the TIMErisk and clinical characteristics for
the independent prognostic significance in the TCGA cohort. (C) Kaplan–Meier survival curves of patients in the low- and high-risk groups within clinically stratified
subcategories.
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TIMErisk signature were identified and these may provide
therapeutic targets for future experiments.
DISCUSSION

TIME has an intensive interplay between tumor, stromal, and
immune cells, and these interactions are critical for tumorigenesis
Frontiers in Oncology | www.frontiersin.org 12
and cell proliferation. Aberrant infiltration of immune and stromal
cells in human tumors not only fails to restrain tumor growth but
also promotes tumor escape from the host and thereby influences
the patient’s prognosis (19, 20). Low-level infiltration of cytotoxic
immune cells could contribute to the escape of the tumor cells
from immune attack. It can increase tumor-infiltrating T cells and
clear tumor cells efficiently due to their immune-active nature
(21). The stroma can regulate tumor immune phenotypes,
A

B

C

D

FIGURE 8 | Construction and Validation of a Nomogram for Survival Prediction of EOC Patients. (A) The nomogram was constructed in the training cohort for
forecasting 1-, 3-, and 5-year survival of patients. (B) Calibration plots and decision curves for 3-, and 5-year survival prediction premised on the nomogram in the
TCGA training cohort. (C) Calibration plots and decision curves for 3-, and 5-year survival prediction premised on the nomogram in the TCGA test cohort. (D)
Calibration plots and decision curves for 3-, and 5-year survival prediction premised on the nomogram in the GSE53963 cohort.
December 2021 | Volume 11 | Article 807410

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Prognosis Model of Ovarian Cancer
including cancer-related fibroblasts (CAFs) which suppress the
antitumoral immune response due to the entry of T cells (22). OC
is capable of create a highly complex and heterogenous ecosystem
where anti-tumor immune cells may be hijacked to evade human
immune attack (23). In this research, the stromal and immune
scores for normal ovary and OC tissues were computed utilizing
the ESTIMATE algorithm. We found that the normal tissues had
increased stromal and reduced immune scores as opposed to the
OC tissues, which suggested that the remodeled ECM and
alternate immune cells could have a crucial function in OC
tumorigenesis. Previous studies show that high stromal and
immune scores are linked to dismal survival in gastric cancer
(24), and better survival in lung adenocarcinoma (3). However, we
discovered that an elevated immune score was a significant factor
for dismal prognosis and an elevated stromal score was linked to
good OS in OC patients. These were also validated in the
GSE53963 and GSE140082 datasets. Together, this indicated
that the prognostic value of stromal and immune scores may
Frontiers in Oncology | www.frontiersin.org 13
exhibit distinct values in solid tumors. Interestingly, we discovered
that the elevated stromal and immune scores were correlated with
the venous and lymphatic invasion, unlike previous findings where
a low stromal score was a factor for dismal prognosis in OC.
Venous and lymphatic invasion are independent high-risk risk
factors for poor prognosis (25, 26). This suggested that the stromal
and immune cells had distinct roles at different stages of OC, and
thus, a more detailed study is necessary to elucidate the
TIME mechanisms.

Because of the poor prognosis and high recurrence in OC,
clinically useful molecular prognostic biomarkers and
intensification of individualized therapy are needed for high-
risk patients. Therefore, we constructed a TIMErisk signature
premised on immune and stromal scores which could accurately
predict OC patient prognosis using only seven genes. The genes
participating in the TIMErisk model embodied a negative or
positive correlation with OS. The overexpression of PTGER3,
ZNF683, and CTHRC1 could increase the TIMErisk score and
A

B

FIGURE 9 | New therapeutic regimens for OC. (A) The IC50 differences for 79 drugs between high- and low-TIMErisk clusters in TCGA database. (B) Novel candidate
drugs targeting the TIME-related signature identified by CMap database analysis.
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lead to poor prognosis, whereas high expression of ALPK2,
CPA3, PLA2G2D, and CXCL11 decreased TIMErisk score and
contributed to better survival. The prostaglandin E2 (PGE2)
receptor, PTGER3, exerts multiple effects including invasion,
epithelial cell growth, and immune regulation (27). Our findings
were similar to previous results which show that abnormal
PTGER3 expression is linked to the biological hallmarks of
malignancies exhibiting negative clinical prognosis (27–29).
The elevated PTGER3 expression was correlated with dismal
survival and high-risk factors of stage, lymphatic and venous
invasion, and suboptimal debulking in OC patients. ZNF683,
originally Hobit for Homolog of Blimp-1 in T cells discovered in
2010, is nearly entirely expressed in effector T cells (30). A few
researchers have investigated its role in tumorigenesis and tumor
progression. Although ZNF683 expression was exhibited no
significant relationship with the prognosis of EOC, we found
overexpression of ZNF683 in the patients with lymphatic
invasion, late-stage, and high grade. This suggested that
ZNF683 could target the TIME signaling cascade. Increasing
evidence shows the important function of ZNF683 in long-lived
and quiescent effector-type CD8+ T cells and differentiation of
the human NK-cell lineage (31, 32). PLA2G2D is an immune
regulator that participates in the transformation of lipid balance
to an anti-inflammation status and can either have a beneficial or
detrimental function, contingent on the inflammation and tumor
context (33, 34). CXCL11 exhibits multiple effects such as
modulation of angiostatic effects, cell adhesion, regulation of
cell proliferation and self-renewal, and chemotactic migration. It
is a biomarker for predicting prognosis and targeted therapeutic
effects (35, 36). Similar to the above studies, PLA2G2D and
CXCL11 which were overexpressed in the patients at an early
stage, correlated with better survival. ALPK2 is essential in
cancer as it regulates the cell cycle and DNA repair genes (37).
CPA3 is involved in the transactivation of the p21WAF1/CIP1 gene
and histone deacetylase (38). CTHRC1 modulates macrophage
polarization to M2 phenotypes by directly binding to the TGF-b
receptor II and TGF-b receptor III and activating TGF-b
signaling (39). Aberrant expression of ALPK2 and CTHRC1
are independent high-risk factors for poor survival in multiple
tumors (40, 41). In this study, ALPK2, CPA3, and CTHRC1 were
overexpressed in the patients at a late stage and associated with
the debulking difficulty. Therefore, tumorigenesis and
development of OC involved the participation of multiple
TIME genes and the TIMErisk signature was had better
relevance for the evaluation of the clinical prognosis of OC.

Interestingly, resting or naïve immune cells such as CD4 naive
T cells, resting dendritic cells and resting NK cells were elevated
in the patients with higher TIMErisk, whereas a large number of
functional immune cells, including activated NK cells,
eosinophils, and neutrophils, corresponding to more incisive
immune reactions, including antigen processing and
presentation, chemokines, interleukins, natural killer cell
cytotoxicity, and BCR and TNF signaling pathways showed
higher infiltration in the low TIMErisk patients. The findings
were consistent with the conclusion that immunosuppression
was the primary cause for the greater risk of malignant
Frontiers in Oncology | www.frontiersin.org 14
progression and death. Based on the above results, we
speculated that the predictive model based on TIMErisk may
be a reliable biomarker for cancer therapy.

Fortunately, we identified 21 compounds with 20 MoAs,
including adrenergic receptor antagonists, a cyclooxygenase
inhibitor, and a serotonin receptor antagonist. The PPAR
receptor agonist (clofibrate) and chloride channel blocker
(benzbromarone), in particular, could offer possible advantages
for high-risk cohort patients. Cyclooxygenase inhibitor (Sc-560)
and leukotriene receptor antagonist (tomelukast) showed greater
sensitivity for patients with low TIMErisk. Clofibrate is widely
used in the treatment of tumors including pancreatic cancer (42),
colon cancer (43), and acute myeloid leukemia (44). For
approximately 30 years, benzbromarone has been used
therapeutically for chronic gout and possesses cytotoxicity for
hepatocellular carcinoma, which could be suppressed by CYP3A
inhibitors, Nrf2 activator, and GSH precursor (45). Wei et al (46)
show that SC-560 can exert significant cytotoxicity and cisplatin
or taxol supplementation in human ovarian cancer xenografts
enhances the inhibition effect on angiogenesis as compared to
cisplatin or taxol alone. Tomelukast is commonly used to treat
asthma and related respiratory disorders (47). Although its effect
on the tumor is unknown, tomelukast could target the PPARa
and PPARg to regulate carbohydrate and lipid metabolism, and
exert an anti-inflammatory action (48). The aforementioned
medications are untraditional anti-tumor compounds and the
existing evidence about their influence on tumors particularly in
OC is limited. Nevertheless, among patients in the various
TIMErisk subcategories, all medications with potential
advantages ought to be evaluated. In patients who might not
gain any improvement from the traditional medicine alone,
adjuvants can be administered.

Currently, FIGO staging is the most extensively utilized
technique to examine the malignancy potential as well as the
disease progression in OC. However, this technique has its
drawbacks since it is mainly contingent on the distant
metastasis, lymph node invasion, size, and location of the
tumor. It does not consider the heterogeneity of tumor, age,
and other clinical characteristics. Therefore, it is costly to
construct an integrated prognostic model consisting of clinical
properties and high-risk gene signatures. Our results showed that
FIGO stage, debulking, and TIMErisk of the analyzed EOC
samples in the TCGA training cluster were independent high-
risk factors associated with poor survival. In addition, the
nomogram based on the prognostic signature showed a higher
net benefit and better predictive accuracy than the FIGO stage
system and FIGO stage & debulking system. These results may
guide the individualized treatment for OC patients.

While our model was valuable in examining prognosis and
carrying out therapies for OC patients, it ought to be
prospectively confirmed by large-sample clinical studies. The
context of TIME, such as remodeling stroma, the status of
immune cells infiltration, immunoreaction, and the molecular
mechanisms mediated by TIMErisk was explored through
bioinformatic analysis only. Thus, additional experimental
validations are required to corroborate these findings.
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Additionally, we have identified several potential drug
compounds for TIMErisk subgroups. Unfortunately, there is a
lack of available research to confirm their efficacy in ovarian
cancer. Further investigations are needed to contrast the
TIMErisk scores with present biomarkers and examine the
relationship between TIMErisk and the potential drugs in
OC patients.
CONCLUSION

To summarize, our research detected a risk prognostic signature
encompassing 7 genes related to TIME. The TIMErisk can
forecast the OS of OC patients and indicated the situation of
stroma remodeling and immune response. Candidate drugs for
TIMErisk subgroups were identified. Lastly, an enhanced
predictive performance nomogram by compounding TIMErisk
with the FIGO stage and debulking was constructed. Ultimately,
these findings could offer a valuable indicator for clinical
stratification management and personalized therapeutic
options for OC patients and may be a foundation for
forthcoming mechanistic research projects of their association.
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