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Summary

Myeloid malignancies, including acute myeloid leukemia (AML), arise from the expansion of 

hematopoietic stem/progenitor cells which acquire somatic mutations. Bulk molecular profiling 

suggests step-wise mutation acquisition, where mutant genes with high variant allele frequencies 

(VAFs) occur early in leukemogenesis and mutations with lower VAFs are thought to be acquired 

later1–3. Although bulk sequencing informs leukemia biology and prognostication, it cannot 

distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or 

definitively elucidate mutational order. To delineate the clonal framework of myeloid 

malignancies, we performed single cell mutational profiling on 146 samples from 123 patients. We 

found AML is dominated by a small number of clones, which frequently harbor co-occurring 

mutations in epigenetic regulators. Conversely, mutations in signaling genes often occur more than 

once in distinct subclones consistent with increasing clonal diversity. We next mapped clonal 

trajectories for each sample and uncovered mutation combinations that synergized to promote 

clonal expansion and dominance. Finally, we combined protein expression with mutational 

analysis to map somatic genotype and clonal architecture with immunophenotype. Our studies of 

single cell clonal architecture provides novel insights into the pathogenesis of myeloid 

transformation and how clonal complexity evolves with disease progression.

Results

The genomic landscape of myeloid malignancies (MM) has been well described, with a near 

complete catalogue of putative driver mutations3–7. While specific mutation combinations 

have been investigated in preclinical models, there remains uncertainty about the co-

occurrence and functional relevance of mutations at a clonal level. To analyze the clonal 

architecture of MM, we used a custom amplicon panel covering 31 frequently mutated genes 

to perform single cell DNA sequencing (scDNA-seq) (Supplementary Table 1)8. We 

sequenced 740,529 cells from 146 samples from 123 MM patients with clonal hematopoiesis 

(CH), myeloproliferative neoplasms (MPN), or AML (Extended Figure 1A). We queried 

samples from patients at diagnosis and relapse; the majority being from patients with 

relapsed/refractory disease (Extended Figure 1B; Supplementary Table 2). The most 

common mutations identified with scDNA-seq were in DNMT3A (n=62 patients), TET2 
(n=58 patients), NPM1 (n=37 patients) and FLT3 (n=32 patients), consistent with previous 

bulk sequencing studies3–5 (Extended Figure 1C–D). Eighty percent of patients had ≥3 

mutations in or near exons (Extended Figure 1E–F). Reconstructed VAF from single cell 

data significantly correlated with bulk sequencing (Pearson ρ = 0.84; p ≤ 2.2 × 10−16 ; 

Extended Figure 1G). ScDNA-seq further identified rare mutations not present in bulk 
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sequencing, which had significantly lower VAF than mutations found in bulk sequencing 

(Extended Figure 1H; p < 2.2×10−16).

Clonal architecture in MM

We next investigated disease subtypes, subdividing AML into samples with epigenetic 

mutations (DTAI; DNMT3A, TET2, ASXL1 and/or IDH1/2), signaling mutations 

(JAK2/RAS/FLT3) without DTAI mutations and AML with DTAI and co-mutated signaling 

effectors. The number of mutations per sample increased significantly from CH to MPN and 

then AML (Figure 1A; FDR p ≤ 7.15×10−6 - 0.067 for all indicated comparisons). This was 

more pronounced in AML cases with signaling effector mutations, specifically RAS and 

FLT3 (FDR p ≤ 0.075). We next explored clonal repertoire, where clones were defined by 

cells that had identical protein encoding SNVs, and a bootstrapping approach was applied to 

identify clones that were observed in at least 10 cells (Figure 1B, Extended Figure 2A). We 

observed a significant increase in clone number in AML compared to MPN or CH (Figure 

1C; FDR p ≤ 1.37×10−4 - 0.026 for all indicated comparisons) with the highest number of 

clones in FLT3-mutant AML samples (FDR p ≤ 1.37×10−4). We assessed the diversity of 

clone size on a per sample basis and observed a significant increase from CH or MPN to 

AML (FDR p ≤ 0.008; Figure 1D). We observed significantly higher clonal diversity in RAS 
and FLT3 mutant samples compared to both CH/MPN samples and RAS/FLT3-wildtype 

AML samples (FDR p ≤ 0.039). Despite increased complexity, most AML patients had one 

(75.6%; 65/86) or two (10.5%; 9/86) clones that accounted ≥30% of cells. We found a 

significant decrease in the relative size of the largest clone in different AML subtypes 

consistent with the presence of multiple clones with increased fitness (Figure 1E; FDR p ≤ 

0.0102 – 0.074). This increased clonal diversity in AML did not coincide with difference in 

the number of mutations within the largest clone (Extended Figure 2B–C). These data 

suggest that increased mutational burden within a clone is not the primary driver of clonal 

dominance.

Mutation patterns in clonal architecture

We next investigated if specific genes were more likely to be mutated in the dominant clone 

(Figure 2A, Extended Figure 2D). This revealed gene-specific contributions to clonal 

expansion, with IDH2, NPM1 and JAK2 mutations nearly always in the dominant clone, 

while FLT3 or RAS mutations were found only in minor subclones in some patients, and 

dominant clones in others. The presence of a mutation in the dominant clone could be 

inferred from VAF in some cases (Extended Figure 2E), especially JAK2 which has a known 

relationship between VAF and clonal dominance in MPN9–11. Mutational inclusivity and 

exclusivity patterns on a per sample basis were consistent with previously reported 

associations3 (Extended Figure 2F). Amongst the 80 AML samples with DTAI mutations, 

52.5% of these samples harbored mutations in more than one epigenetic modifier (Figure 

2B). In nearly all cases epigenetic regulator mutations were in the same clone, and in 81% of 

cases the co-occurring mutations were within the dominant clone suggesting cooperativity 

between DTAI mutations (Figure 2C). DTAI mutations did not occur in the same clone in 

CH samples, suggesting that early clonal expansion is commonly mediated by individual 

mutations in epigenetic regulators (Extended Figure 3A). By contrast, co-occurring 
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signaling mutations such as RAS and FLT3 very rarely occurred within the same clone, and 

almost never within the dominant clone (Figure 2D).

We further identified distinct mutational cooperativity patterns in AML samples with 

DNMT3A and/or IDH1/2 mutations (Figure 2E). Similar patterns of co-occurring signaling 

effector mutations were observed in IDH1 mutant clones and in DNMT3A/IDH1 co-mutant 

clones, with fewer signaling mutations in single mutant DNMT3A clones. DNMT3A/IDH2 
co-mutant clones showed similar signaling co-mutation burdens and patterns as single 

mutant DNMT3A clones, distinct from IDH2- single mutant clones. IDH2 mutant clones 

had an increased frequency of JAK2 and NRAS co-mutations and fewer FLT3 co-mutations. 

We focused on 6 patients that harbored both DNMT3A and IDH1/2 mutations and 

concurrent signaling effector mutations (Extended Figure 3B). In these cases, a high fraction 

of cells had concurrent DNMT3A and IDH mutations, whereas few clones possessed >1 

mutation in a signaling effector (p ≤ 0.00326). These trends suggest that the presence of 

additional mutations with epigenetic modifiers may influence subsequent mutational 

trajectories.

Initiating mutations and clonal dominance

These data provided an opportunity to delineate the sequence of somatic genetic events 

during myeloid transformation, and to map these events on clonal expansion. We adapted a 

zygosity sensitive (Extended Figure 3C) Markov decision process with reinforcement 

learning to generate evolutionary trajectories. We identified optimal trajectories starting with 

non-mutant wildtype (WT) cells that progressed through observed and unobserved states 

maximizing the fraction of cells represented in each trajectory (Figure 3A–B). CH samples 

displayed oligoclonality and clonal outgrowth of distinct clones with 1–2 mutations (Figure 

3A). In AML we observed complex evolutionary trajectories, with progressive clonal 

dominance and subsequent subclonal propagation (Figure 3B).

We next assessed the fraction of the clonal architecture explained by a particular genetic 

trajectory to predict disease-initiating mutation in DTAI samples (Figure 3C). The majority 

of states were reconstructed when epigenetic modifers such as DNMT3A and/or IDH1/2 
were the initiating mutation(s). Conversely, very little of the clonal trajectory could be 

formed if the first mutation occurred in signaling genes such as NRAS or FLT3. This 

observation was highly correlated to the computed VAF from scDNA sequencing 

(Spearman’s ρ=0.93; p ≤ 2.2 × 10−16; Extended Figure 3D). The notable exception was 

TET2, which could serve as the disease initiating mutation or as an acquired mutation during 

clonal progression, consistent with studies in MPN/post-MPN AML suggesting a context-

specific effect of TET2 loss-of-function during myeloid transformation and clonal 

evolution12,13. We next examined which gene mutations were observed as initiating, single-

mutant clones and found that single-mutant clones with a DTAI mutation were commonly 

identified, confirming these as likely clone-initiating mutations (Extended Figure 3E). 

However, DNMT3AR882 missense mutant-only clones (15.79%; 3/19 mutant samples) were 

less frequently detected (p < 0.04) than non-R882 DNMT3A missense mutant initating 

clones (50.0%; 10/20 mutant samples; Extended Figure 3F). This suggests DNMT3AR882 

mutations are either less commonly observed as disease initiating mutations and/or more 
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likely acquire additional mutations and undergo rapid clonal evolution. These data are 

consonant with the relative paucity of DNMT3AR882 mutations in CH relative to overt 

AML14,15. In contrast, we did observe increased subclone size for clones with DNMT3A-

missense mutations compared to DNMT3A-nonsense mutations further suggesting distinct 

consequences and fates for cells harboring different DNMT3A alleles (Extended Figure 3G).

We next focused on discerning the order of subsequent mutations during clonal evolution 

and their contribution to clonal expansion and dominance. For the majority of samples with 

co-occurring DNMT3A/IDH1 and DNMT3A/IDH2 mutations (n=19/23), we observed a 

significant increase in relative clone size compared to either single mutant DNMT3A clones 

(IDH1 p ≤ 0.00023; IDH2 p ≤ 2.16 × 10−6; Figure 3D; Extended Figure 3H) or IDH1/IDH2 
clones (p ≤ 0.0016; p ≤ 1.37 × 10−5 respectively). In NPM1c mutant samples with co-

occurring FLT3 mutations, the clone size of FLT3/NPM1c double-mutant clones was 

significantly greater than FLT3 (p ≤ 0.0097) or NPM1c (p ≤ 0.0089) single-mutant clones 

(Figure 3D). By contrast, for RAS/NPM1c co-mutant clones we observed significant 

variability in clone size and less evidence of cooperativity compared to single mutant 

NPM1c (p ≤ 0.462), whereas the double mutant clone was significantly larger than RAS 
mutant-only clones (p ≤ 0.0009). This finding suggests differential capacity for mutation co-

occurrences to promote clonal dominance in AML, even for commonly observed genotypes 

seen in bulk sequencing.

Clonal evolution in MM

We next sought to determine if clonal architecture is altered in disease transformation and 

response to therapy. In 4/6 patients that transformed from MPN to AML, we observed a 

significant alteration in clonal architecture, or a “clonal sweep” with emergence of new 

dominant clone(s) (Extended Figure 4A). In MSK75/76 the dominant CALR/ASXL1 clone 

in the MPN (Sample A) was replaced by a CALR/ASXL1/IDH1 dominant clone at 

transformation (Sample B), which was a minor clone in the MPN phase (Figure 3E). We 

next queried pre/post therapy samples from FLT3-mutant patients (n=3) who were treated 

with the FLT3 inhibitor, gilteritinib. All patients (3/3) showed a decrease in FLT3-mutant 

clones in response to gilteritinib with significant “clonal sweeps” (Extended Figure 4B–C). 

In 2/3 patients, we observed outgrowth of RAS-mutant clones, previously observed as a 

potential resistance mechanism to FLT3 inhibitor therapy often with RAS mutations 

acquired in the FLT3-mutant clone16. In MSK82/83, we observed diminution of FLT3-ITD 
mutant clones with expansion of FLT3-wildtype RAS mutant clones (Extended 4B). In a 

second patient (MSK95/96), two FLT3-wildtype U2AF1/RAS mutant clones (KRASG13D 

and NRASG12D) achieved clonal dominance during FLT3 inhibitor therapy (Extended Figure 

4C). Meanwhile, a FLT3/KRAS mutant clone was suppressed following therapy. These 

results indicate that transformation and therapeutic perturbations can alter clonal architecture 

in both a linear and branched manner.

Simultaneous scDNA-seq/immunophenotyping

We next investigated if specific mutations or combinations influenced immunophenotypes. 

We performed simultaneous scDNA-seq and cell surface protein expression analysis17 on 

CH patients with ≥1 mutation(s) to investigate the contribution of CH mutations to mature 
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hematopoietic lineages. We observed differential B- and T-cell lineage contribution 

depending on the mutated CH allele. DNMT3AR882 mutations (4/4) showed minimal 

contribution to the B- (CD19 high) and T-cell (CD3 high) lineages, consistent with restricted 

myeloid (CD11b high) bias (Figure 4A; Extended Figure 5). Conversely, non-R882 

DNMT3A mutations (e.g. DNMT3AR635Q) had greater representation in T-cell lineage with 

lesser contributions to the myeloid and B-cell lineages. Allele-specific lineage skew was 

even observed in patients harboring >1 CH clone, such that we observed differential lineage 

contribution of DNMT3A R882 and R635Q within the same patient. By contrast, TET2 
mutations offered less consistent results, with some mutants (2/4) showing myeloid lineage 

bias and others (2/4) showing balanced contribution to all mature lineages (Extended Figure 

5).

Recent single cell RNA-sequencing work has highlighted a continuum of differentiation 

states in AML18,19. To assess clonal architecture and differentiation state, we analyzed 

simultaneous scDNA-seq and immunophenotype in AML samples (n = 17). We observed 

significant differences in protein expression between WT and mutant cells, with WT cells 

expressing high levels of CD3 (p ≤ 2.2 × 10−16) and low levels of CD34 (p ≤ 2.2 × 10−16) 

compared to mutant cells (Extended Figure 6A–B). With respect to different mutations, 

TET2 (p ≤ 1.38 × 10−8), RUNX1 (p ≤ 9.48 × 10 −13), IDH1 (p ≤ 2.2 × 10−16), and JAK2 (p ≤ 

2.2 × 10−16) mutant cells were enriched for high CD34 surface expression (Figure 4B), 

whereas mutations in the MAPK/ERK signaling pathway (NRAS p ≤ 0.04; KRAS p ≤ 2.2 × 

10−16 and PTPN11; p ≤ 2.2 × 10−16) had higher expression of CD11b compared to other 

mutant genes. Moreover, NPM1c mutant cells harbored lower expression of CD34 compared 

to all other mutant cells (p ≤ 2.2 × 10−16), consistent with previous flow cytometric data20. 

Given the complex multigenic clonal architecture, we next queried immunophenotypic 

differences across cells harboring pairwise combinations of mutations in DNMT3A, IDH1, 

IDH2, FLT3, NRAS and KRAS (Extended Figure 6C). We observed that the high CD34 

expression seen in IDH1 mutant cells decreased in cells with co-mutations in signaling 

effectors (p ≤ 2.2 × 10−16) and CD11b expression was increased in IDH1/RAS co-mutant 

subclones (p ≤ 2.2 × 10−16).

We expanded this analysis to assess how immunophenotype differed across distinct genetic 

clones. We observed co-occurring mutation-specific expression changes, including increased 

CD11b expression in RAS mutant subclones compared to RAS wildtype subclones (Figure 

4C; Extended Figure 7; MSK71). We also observed reduced CD34 expression of DNMT3A/

FLT3 co-mutant clones compared to DNMT3A single-mutant clones with a concomitant 

increase in CD38 and CD45RA expression, consistent with a myeloid progenitor 

phenotype21,22 (Extended Figure 7; MSK71). To summarize combinatorial differences in 

immunophenotype, we clustered cells into communities and queried their change in 

representation on a clonal level23 (Figure 4D–F). Significant differences in subclone-specific 

community representation were observed in MSK71, which harbored an initiating DNMT3A 
mutation with NRAS, KRAS, and FLT3-mutant subclones (Figure 4D–E). Specifically, 

Community 8 was expanded while Community 2 was reduced concurrent with acquisition of 

a FLT3 mutation in the DNMT3A mutant clone. This was associated with an increased 

CD11b expression and decreased CD45RA and CD90 surface expression in FLT3 mutant 

cells (Figure 4E–F; Extended Figure 8A). We also observed different community enrichment 
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patterns in RAS-mutant clones, with differences between NRAS vs. KRAS mutant cells. An 

NRAS mutant clone showed a specific increase in Community 7, which was marked by the 

highest level of CD11b expression. Meanwhile a KRAS mutant clone showed increased 

representation in Community 4, associated with high CD19 expression (Extended Figure 

8A).

To determine if patterns of immunophenotype changes existed across multiple samples, we 

merged all samples, clustered cells based on cell surface protein expression, then identified 

communities of cells (Extended Figure 8B–C). We found that multiple overlapping 

immunophenotypic states occur across samples with divergent genotypes; no community 

was exclusive to an individual sample and 6 communities were observed in every sample 

(Community 7, 8, 9, 18, 32, and 42) which were intercorrelated with high expression of 

either CD90 or CD38 (Extended Figure 9A). We observed significant shifts in community 

representation between the dominant clone and subclones in 8/14 samples with more than 

one leukemic clone, (Extended Figure 9B). In contrast to NRAS-mutant clone specific 

increases in CD11b expression, we observed in MSK130 that a FLT3 mutant dominant clone 

had expansion of a community with high CD34 (p ≤ 2.2 × 10−16) and low CD11b expression 

(p ≤ 2.2 × 10−16) (Extended Figure 9C). Furthermore, a JAK2 mutant sample (MSK94) had 

expanded communities with high CD38 and low CD11b expression in the dominant clone 

compared to subclones (CD38; p ≤ 2.2 × 10−16; CD11b; p ≤ 2.2 × 10−16). These findings 

suggest divergent clone-specific changes in immunophenotype upon the acquisition of 

signaling effector mutations.

Discussion

The identification of frequent, recurrent mutations in epigenetic regulators in CH, and the 

lower incidence of overt MM relative to CH suggests that the rate-limiting step in myeloid 

transformation is clonal evolution from disease-initiating clones to leukemic clones. 

Previous studies have used bulk sequencing analyses to predict important features of clonal 

evolution3,24–26; however, the molecular sequence of events which drive myeloid 

transformation have not been dissected at a single cell, clonal level. Here we use scDNA-seq 

to map clonal evolution in MM, and to make important insights into the pathogenesis of 

myeloid transformation previously not discernible by bulk sequencing.

First, we found that the clonal complexity increases from CH or MPN to AML and 

continues to evolve as AML clones acquire mutations in signaling effectors. By contrast, 

signaling effector mutations were often subclonal, and very rarely co-occurring in the same 

clone. Second, we observed significant differences in how mutational combinations 

contributed to clonal dominance such that specific co-occurring disease alleles (e.g. NPM1c 

+ FLT3-ITD or DNMT3A + IDH2) were associated with clonal dominance and other 

mutational combinations (NPM1c + RAS) did not promote clonal expansion. Analysis of 

paired samples in the context of disease evolution from MPN to AML and in the setting of 

therapeutic perturbation show that MM are characterized by “clonal sweeps” in the setting 

of specific stressors, and that the changes in clonal architecture largely occur due to 

expansion of pre-existing minor clones. These data have biologic and therapeutic insight, as 

the clones which emerge with transformation (e.g. expanding IDH2-mutant clones) or with 
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therapeutic selection (FLT3-wildtype, RAS mutant) can be detected with scDNA-seq and 

may inform the use of therapies which target these clones before they achieve clonal 

dominance. Lastly, we identified significant changes in cell surface protein expression driven 

by genotypes using simultaneous single cell mutational profiling and immunophenotyping. 

Signaling effector mutations were particularly notable for altering cell surface protein 

expression, with MAPK/ERK pathway mutations leading to increased CD11b expression.

Taken together, these data suggest that patients with myeloid malignancies manifest as a 

complex ecosystem of clones which evolves over time, and that scDNA-seq gives a glimpse 

into this milieu not seen with conventional bulk sequencing. Our studies of clonal 

architecture at a single cell level give us new insights into how clonal complexity contributes 

to the pathogenesis of myeloid transformation (see Supplementary Discussion). Similar 

studies across different pre-malignant and malignant contexts will give new information into 

how malignancies initiate and progress and will lead to new therapeutic strategies aimed at 

intercepting clonal evolution and/or targeting cancer as a multi-clonal disease.

Online Methods

Reagents –

All antibodies for flow cytometry were purchased from Biolegend. These studies used the 

following antibodies: FITC-CD3 (clone UCHT1) FITC-CD19 (clone HIB19) and FITC-

CD56 (clone HCD56). Human TruStain FcX was also purchased from Biolegend. The DNA

+Protein oligo-conjugated antibodies were produced and provided by Biolegend as part of a 

collaboration with Mission Bio, Inc. The antibodies in the conjugate pool were the 

following: CD3 (clone SK7), CD11b (clone RCRF44), CD19 (clone HIB19), CD34 (clone 

581), CD38 (clone HIT2), CD45RA (clone HI100), and CD90 (clone 5E10). Antibody 

conjugates were pooled in equimolar ratios. All Tapestri related reagents were included as 

part of a Custom Single Cell DNA sequencing kit purchased from Mission Bio, Inc. The 

Custom amplicon panel used in these studies covers 109 amplicons over 31 genes previously 

found to be frequently mutated in human myelodysplastic syndromes (MDS), 

myeloproliferative neoplasms (MPN), and acute myeloid leukemia (AML) (Supplementary 

Table 1)27–29.

Patient Samples –

Patients with myeloid neoplasms or acute myeloid leukemia between 2014 and 2019 were 

studied. Informed consent was obtained from patients according to protocols approved by 

the institutional IRBs and in accordance with the Declaration of Helsinki. This study was 

approved by MSKCC Institutional Review Board (protocol #15–017) and Thomas Jefferson 

University (TJU) Institutional Review Board (protocol# 17D.083). Diagnosis and disease 

status was confirmed and assigned according to World Health Organization (WHO) 

classification criteria30. Patient characteristics are summarized in Supplementary Table 2 

and Extended Figure 1A–B. With the exception of four complex karyotype/TP53 mutant 

samples (denoted with *), all samples were confirmed normal karyotype. Bone marrow from 

healthy individuals was obtained with informed consent according to procedures approved 

by the institutional review boards Memorial Sloan Kettering Cancer Center and Hospital for 
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Special Surgery. Patient samples were collected and processed by the MSKCC Human 

Oncology Tissue Bank (HOTB) or TJU Heme Malignancy Repository. Mononuclear cells 

were obtained by centrifugation on Ficoll from peripheral blood or bone marrow and viably 

frozen. Patient samples from MSKCC underwent high-throughput genetic sequencing with a 

targeted deep sequencing assay of 685 genes (HemePACT) or by an NGS platform panel 

composed of 49 genes recurrently mutated in myeloid disorders (RainDance Technologies 

ThunderBolts Myeloid Panel). Single point variants were called using Mutect and short 

insertions and deletions using Pindel as described previously, comparing samples to a 

sample representing a pool of normal samples31. Mutations were excluded if found to be 

present in at least one database of known non-somatic variants (dbSNP and 1000 genomes) 

and absent from COSMIC. Samples with non-excluded mutations with variant allele 

frequency >2% were classified as clonal hematopoiesis. Samples were selected based on 

mutation coverage by the Mission Bio Custom amplicon panel, variant allele frequencies of 

all covered mutations (>5% VAF for each gene covered on panel), and number of cells 

collected (>5 × 106 cells) per frozen aliquot. Specifically, samples were prioritized if they 

harbored 1) more than one mutation in epigenetic modifier genes DNMT3A, TET2, ASXL1, 

or IDH1/2, 2) a NPM1 mutation, 3) mutations in NRAS, KRAS, and/or 4) mutations in 

FLT3 (either internal tandem duplication (ITD) or tyrosine kinase domain (TKD) 

mutations).

Single cell DNA sequencing library preparation and sequencing –

Patient samples were thawed and washed with PBS supplemented with 1% BSA (FACS 

buffer). Cells were incubated with TruStain FcX (Biolegend) for 15 min at 4°C then stained 

with FITC-conjugated antibodies against human CD3, CD19, and CD56 (NCAM) for 15 

min at 4°C. Cells were then washed and resuspended in FACS buffer with DAPI and sorted 

to isolate viable (DAPI−) CD3−/CD19−/CD56− (FITC−) cells using a Sony SH800 Cell 

Sorter. Cells were resuspended in Tapestri cell buffer and quantified using a Countess cell 

counter (Invitrogen). Single cells (3–4,000 cells/μL) were encapsulated using a Tapestri 

microfluidics cartridge, lysed, and barcoded32. Barcoded samples were then subjected to 

targeted PCR amplification of a custom 109 amplicons covering 31 genes known to be 

involved in hematologic malignancies (AML/MPN/MDS; Supplementary Table 1). PCR 

products were removed from individual droplets, purified with Ampure XP beads (Beckman 

Coulter), and used as a template for PCR to incorporate Illumina i5/i7 indices. PCR products 

were purified a second time, quantified via an Agilent Bioanalyzer and pooled to be 

sequenced. Library pools were sequenced on an Illumina NovaSeq by the MSKCC 

Integrated Genomics Core.

Single cell DNA & Protein sequencing library preparation and sequencing –

Patient samples were thawed, washed with FACS buffer, and quantified using a Countess 

cell counter. Cells (1.0–4.0 × 106 viable cells) were then resuspended in DPBS (Gibco) and 

incubated with TruStain FcX, Dextran Sulfate (100 μg/mL; Research Products 

International), and 1X Tapestri staining buffer for 3 minutes at room temperature. The pool 

of 7 oligo-conjugated antibodies (CD3, CD11b, CD19, CD34, CD38, CD45RA, CD90) was 

then added and incubated for 30 minutes at room temperature. Cells were then washed 

multiple times with DPBS supplemented with 5% fetal bovine serum (FBS; Gibco) followed 
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by resuspension of the cells in Tapestri cell buffer, requantification, and loading of the cells 

into a Tapestri microfluidics cartridge. Single cells were encapsulated, lysed, barcoded as 

above with the exception of adding an additional forward primer mix (30 μM each) for the 

antibody tags prior to barcoding. DNA PCR products were then isolated from individual 

droplets and purified with Ampure XP beads. The DNA PCR products were then used as a 

PCR template for library generation as above and repurified using Ampure XP beads. 

Protein PCR products (supernatant from Ampure XP bead incubation) were incubated with 

Tapestri pullout oligo (5 μM) at 96°C for 5 minutes followed by incubation on ice for 5 

minutes. Protein PCR products were then purified using Steptavidin C1 beads (Invitrogen) 

and beads were used as a PCR template for the incorporation of i5/i7 Illumina indices 

followed by purification using Ampure XP beads. All libraries, both DNA and Protein, were 

quantified using an Agilent Bioanalyzer and pooled for sequencing on an Illumina NovaSeq 

by the MSKCC Integrated Genomics Core.

Data Analysis

Data processing: FASTQ files for single cell DNA libraries were analyzed through the 

Tapestri Pipeline using Bluebee’s high performance genomics platform. Briefly, this pipeline 

trims adaptor sequences, aligns reads to the human genome (hg19), assigns sequence reads 

to cell barcodes, and performs genotype calling with GATKv3.7. Data is then consolidated 

into a multiple sample VCF file and output as a loom file for subsequent processing. Initial 

steps for filtering low quality genotypes or cells were performed in Tapestri Insights and R, 

where the minimum variant quality score was set to 30 with a minimum of 10 reads per 

variant per cell. We further removed variants present in <50% of cells and removed cells in 

which <50% of potential variants reported informative genotypes. Data was exported from 

Tapestri Insights and subsequent filtering was performed in R. For DNA analysis on the 

DNA+Protein platform, we used the Tapestri Pipeline on Bluebee as described above. For 

the protein analysis, custom scripts in R were used by Mission Bio to enumerate the number 

of reads per antibody per cell. Subsequent normalization was performed using the tapestri 

package in R. Variants were filtered through an empirically curated banned-list of panel-

specific mutations that were not identified in bulk sequencing nor present in COSMIC. We 

further removed variants constrained to one problematic hyper mutated amplicon 

(chr20;31,022,898–31,023,107) and focused all subsequent on protein encoding mutations, 

non-splicing mutations. Variants were included if there were at least 2 cells which were 

heterozygous or homozygous. Samples were included if they harbored 1 or more protein 

encoding, non-synonymous/insertion/deletion variants and more than 100 cells with 

definitive genotype for all protein coding variants within the sample. We next sought to 

define genetic clones, which we identified as cells that possessed identical genotype calls for 

the protein encoding variants of interest. In order to focus our analyses on reproducible 

clones, we performed a bootstrapping analysis over 10,000 samplings to calculate 95% 

confidence intervals for the presence of each clone. Clonal analyses in Figure 1B and 

onward focus on clones where the lower 95% confidence interval > 10 cells. We further 

excluded rare variants which were only identified in clones that did not pass this threshold. 

Samples were included in clonal analyses if they encoded >2 protein encoding variants and 

>2 clones. Flowchart of sample inclusion can be found in Extended Figure 2A, and patient 

characteristics can be found in Supplementary Table 2. Dominant clones as referred to in the 
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text were defined as the largest mutant clone in the sample, excluding cells which were wild 

type for all variants of interest.

Genetic trajectory analysis: For the genetic trajectory analysis constructed in Figure 3, 

we implemented a markov decision process with reinforcement learning. Generally, this 

allowed us to model the optimal track of mutation acquisition if a cell were to acquire one 

mutation at a time and not revert that mutation to a wild type state. Technically, for a given 

sample, we first constructed a reward matrix by enumerating all possible clones given the 

number of mutations present in a sample, and the maximum zygosity for a given mutant 

(i.e., if we did not observe a homozygous state for a mutant, it was not considered in the 

reward matrix). After construction of the reward matrix, we set permissible decision 

processes with a value of 0, and impermissible decision processes with a value of −1 (i.e. 

decisions where a mutant was reverted to wildtype or required more than one genetic 

alteration were penalized). Decisions were considered permissible if a clone was separated 

by a single genetic event, either a variant changing from wildtype to heterozygous or 

heterozygous to homozygous. For observed clones, the frequency of the clone (ranging from 

0–100% of cells) was used as the value in the reward matrix, while unobserved clones 

retained a value of 0. The matrix was then converted to long form and state transitions 

between clones were associated with the action/mutation causative to that state change. This 

was then used as input to the ReinforcmentLearning package in R to generate a Q matrix 

through the experience replay algorithm33. Custom scripts in R were used to navigate this Q 

matrix to determine optimal trajectory from the wildtype clone.

Statistical analysis: Statistical significance was evaluated using a two-sided Student’s T-

test and two-sided Fisher’s exact test where indicated. Multiple test correction was 

implemented using the Benjamini-Hochberg/FDR approach as indicated. Shannon diversity 

index was assessed using the diversity function in the vegan package in R34. Genetic co-

occurrence analysis was performed using the cooccur package in R. UMAP clustering was 

performed using the R package umap, with default paramaters35,36. Subsequent community 

analysis was performed using phenograph implemented with the Rphenograph package37,38. 

The perplexity factor K was set to 50. For multiple comparisons, a range of significant p 
values, or FDR values have been provided for clarity. Complete p values and measures of 

significance can be found with the publicly available code below.

Plotting and graphical representations: All barplots, boxplots, heatmaps and 

scatterplots were produced using the ggplot2 package in R39. Error bars depict standard 

error of measure. Boxplots are depicted in Tukey’s style with boxes representing the median 

and quartile range, with whiskers representing +/− 1.5x the IQR. The oncoprint presented in 

Extended Figure 1A was produced using the ComplexHeatmap package in R40. Upset plots 

shown in Figure 2B and Extended Figure 3A were produced using the UpsetR package41. 

Network plots in Figure 2C, D and Figure 3A–B were produced with the igraph package in 

R42. UMAP data was plotted using the ggplot2 package. Other packages used in data 

processing include tidyr, dplyr, RColorbrewer, pals, and cowplot.
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Rigor and Reproducibility: Samples inclusion criteria are described in detail above. 

Briefly: high quality variants were selected with a minimum GATK quality score of 30, and 

10 reads supporting each variant. Variants and cells were filtered if incomplete genotype 

information was present for all variants of interest as described above. Variants on a subset 

of samples visually inspected on IGV to ensure mutation caller fidelity. If less than 100 

informative cells were present in a sample, it was removed from the analysis to filter out low 

quality. Rigorous evaluation of clonal abundance was estimated with a bootstrapping 

approach to establish 95% confidence intervals. Clones with a lower confidence interval >10 

cells were retained for analysis. Duplicate aliquots from select samples were processed on 

different days to assess replicability of the tapestri platform. To enable reproducibility and 

transparency, all code and data are available as described below.

Data Availability: Raw data is available on dbGAP (accession number phs002049.v1.p1) 

in form of loom files and FASTQ files for each sample.

Code Availability: All scripts and processed data files are available at https://github.com/

bowmanr/scDNA_myeloid.
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Extended Data

Extended Figure 1. ScDNA sequencing patient cohort.
A) Oncoprint of patient samples analyzed by single cell DNA sequencing. B) Table 

describing patient cohort characteristics. Standard deviation calculated for mean age of 

patients at sample collection date. Absolute number of samples denoted with percent of total 

samples in parentheses. C) Number of individual mutations identified for each gene covered 

on our custom amplicon panel by single cell DNA sequencing (n =146 biologically 

independent samples for C-F). Genes are ranked by the number of identified protein coding 

mutations from highest to lowest. Genes with zero identified mutations are not listed. D) 
Number of patients with protein coding mutations in a given gene. Genes are ranked by 

decreasing number of patients identified with mutations. E) Number of patients with a given 

number of identified mutant genes via single cell sequencing. F) Number of patients with a 

given number of identified protein altering variants via single cell sequencing. G) 
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Correlation of bulk sequencing SNV data VAF versus single cell SNV data VAF from 

MSKCC samples. Statistical significance was calculated by Pearson correlation coefficient. 

H) Violin plot of computed VAF from single cell DNA sequencing for mutations found in 

both scDNA-seq and in bulk sequencing (identified; red), or mutations only identified in 

scDNA-seq (missed; blue) (top panel). Samples identified by single cell DNA sequencing 

only were found to be low VAF mutations (p < 2.2×10−16; two-sample Mann-Whitney test). 

Bar plot of the number of new mutations in each sample identified by single cell DNA 

sequencing only (bottom panel).

Extended Figure 2. Analysis of clonal architecture by disease type and gene mutation.
A) scDNA sequencing data processing and analysis workflow. FASTQ sequencing files for 

each sample were uploaded and processed through Mission Bio Tapestri Insights platform 

for variant calling and cell finding (Commercial Platform). Included samples for further 
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analysis harbored ≥1 variant which leads to a protein sequence change (non-synonymous/

insertion/deletion) and included 50 cells with definitive genotyping for all protein coding 

variants within the sample (n=146). This data was used for analysis in Figure 1. Clones 

present in each sample were identified and samples removed if they contained less than 2 

clones for clonal analysis studies. Samples were subjected to random resampling of cells 

using a bootstrapping approach to identify the stability of identified clones (n=132). 

Following bootstrapping, clones with lower 95% confidence intervals <10 were removed as 

were variants identified only within those clones. Samples which harbored only 1 variant or 

presented with <2 clones after bootstrapping analysis were removed (n=111). The number of 

samples at each step of processing is shown below the different steps of the workflow. B) 
Number of mutations in the most dominant clone identified in each sample (n =111 

biologically independent samples) stratified by cohort. Mean value for each cohort shown by 

height of bar with standard error of measurement (SEM) depicted with error bars. A two-

sided t-test with false discovery rate (FDR) correction was used to determine statistical 

significance pairwise between all groups. For clarity, only significant p-values referenced in 

text are shown. * P < 0.1; ** P < 0.01; ***P < 0.001. C) Association between clone size and 

the number of mutant alleles in the clone. Every clone (n = 111 biologically independent 

samples) identified in clinical cohort is depicted by black circle. Centerline: median; box: 

IQR; whiskers 1.5xIQR. D) Barplot depicting the prevalence of dominant clones for each 

DTAI gene across patient cohorts. Color of bar plot annotates if mutation occurs in the 

dominant clone (red) or subclone (grey). Absence of bar denotes no clones were identified 

with the indicated mutation in a given cohort. E) Association of VAF with presence of 

mutation in either the dominant clone (red) or subclone (grey) for select genes (n = 101 

biologically independent samples). Standard error of measurement depicted with error bars. 

A two-sided t-test with false discovery rate (FDR) correction was used to determine 

statistical significance pairwise between all groups. * P < 0.1; ** P < 0.01; ***P < 0.001. 

Absence of p value for IDH2 and JAK2 due to lack of samples with subclonal mutations. F) 
Pairwise interaction matrix of mutually exclusive (red square) and inclusive (blue square) on 

a per sample basis. Pairwise interactions with no color did not garner a significant p-value.
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Extended Figure 3. Clonal dominance, initiating mutation, and co-mutation patterns in MM 
patients.
A) Upset plot of co-occurring DTAI mutations in CH samples with more than 1 DTAI 

variant. Bar graph (top panel) depicts the number of samples with each mutant gene(s) and 

color of bar annotating whether mutation(s) occur in the dominant clone (red) or subclones 

(grey). Black circles and connecting line in bottom panel demark the combination of 

mutations in each corresponding bar plot. B) Divergent frequency of co-mutated cells for 

epigenetic modifier genes (red) and signaling genes (blue). Individual samples (n=6 

samples) shown with black square. Centerline: median; box: IQR; whiskers 1.5xIQR. A 

two-sided Student’s t-test was used to determine statistical significance * P < 0.1; ** P < 

0.01; ***P < 0.001. C) Fraction of mutant samples harboring a homozygous mutation for 

the indicated given gene (at least >10% of cells). Homozygous sample denoted in blue. D) 
Correlation of VAF computed by scDNA sequencing to fraction of a mutant sample 

explained by the genetic trajectory starting with an initiating mutation in a given gene. 
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Genes used as the initiating mutation for a given sample are denoted by colored squares 

(colors described in figure). Statistical significance calculated by Spearman’s rank 

correlation coefficient test (ρ = 0.93; p ≤ 2.2 × 10−16). E) Number of samples where a 

monoallelic clone for a given gene is observed. Dark blue denotes total number of mutant 

samples where single-mutant clone is present for a given gene and grey represents mutant 

samples where single-mutant clone is unobserved. F) Number of DNMT3A mutant samples 

where single-mutant clones are observed (red) or unobserved (grey) with samples 

categorized by DNMT3A R882 hotspot mutations, nonsense mutations, or missense 

mutations. A two-sided Fisher’s exact test was used to determine statistical significance (p ≤ 

0.04) between DNMT3AR882 and other missense mutations. G) Differences in dominant and 

subclone size in DNMT3A mutant samples (n=61 biologically independent clones). Fraction 

of sample in the dominant clone or subclone(s) for DNMT3A nonsense (red), R882-

missense (green), and non-R882 missense (blue) mutations shown. Centerline: median; box: 

IQR; whiskers 1.5xIQR. Each mutant clone denoted by black square. A two-sided t-test 

correction was used to determine statistical significance pairwise between all groups. For 

clarity, only significant p-values referenced in text are shown. * P < 0.1. H) As in Main 

Figure 3E, fraction of sample in single and double mutant clones in DNMT3A/IDH2 mutant 

samples. Each sample is indicated by a connecting line, absence of a line for single mutants 

indicates absence of clone.
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Extended Figure 4. Clonal evolution in MM patients.
A) Paired samples from patients (n=6) that underwent MPN to AML transformation were 

analyzed. Samples with significant changes in clonal architecture or “clonal sweeps” were 

evaluated using a two-sided two proportions z-test; ***P<0.001. Sample A (red) denotes the 

MPN sample and sample B (blue) denotes the AML sample. Clonotype plot depicts the 

frequency of a clone with given genotype in Sample A and B ranked by decreasing 

frequency based on Sample A (top panel). Heatmap (bottom panel) shows the genotype of 

each identified protein coding mutation in the given clone with zygosity (wildtype = light 

pink, heterozygous = orange, homozygous = red). Paired samples MSK75/76 are highlighted 

in Main Figure 3F. B) Clonal sweeps, or significant clonal architecture alterations, following 

gilteritinib therapy of FLT3-mutant patients (n=3). Line graphs for each pair of samples 

depict individual clones and the change in clone frequency between pre- (left) and post- 

(right) therapy samples. Clones harboring FLT3 mutations (red), RAS mutations (blue), or 

Miles et al. Page 18

Nature. Author manuscript; available in PMC 2021 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WT clones (light blue) are significantly altered after gilteritinib therapy in each patient. 

FLT3/RAS mutations (orange) and clones harboring additional mutations (Other; grey) are 

also included. Statistical significance was assessed using a two-sided two proportions z-test; 

***P<0.001 (A-B). C) As in (A), clonotype plot of paired sample (n=1 sample/timepoint) 

from AML patient (MSK95/96) that under gilteritinib therapy: sample A (red, pre-therapy) 

and sample B (blue, post-therapy).

Extended Figure 5. Contribution of clonal hematopoiesis (CH) mutations to mature cell lineages.
Bar graphs of the mutant cell percentage found in Myeloid (CD11b high; green), B-cell 

(CD19 high; orange), and T-cell (CD3 high; purple) cells in samples from patients with CH. 

DNMT3A and/or TET2 mutations found in each sample are listed above each graph. Double 

mutant samples are shown on the left and single mutant samples are depicted on the right.
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Extended Figure 6. Simultaneous molecular and immunophenotypic profiling of AML patient 
samples.
A) UMAP plot of MSK54 with cells clustered by immunophenotype. Genotype (WT= grey; 

DNMT3A = red; IDH2 = green; DNMT3A/IDH2 double mutant = blue) overlaid onto each 

cell. B) UMAP from A with protein expression (high expression = red; low expression = 

blue) for each of the 6 antibody targets (CD3, CD11b, CD34, CD38, CD45RA, CD90) 

overlaid onto each cell. Relative protein expression is normalized across individual sample 

by centered log transformation (CLR). C) Immunophenotype changes based on co-occurring 

mutations in clones. Heatmap of normalized protein expression of CD34 (top panel) and 

CD11b (bottom panel) in DNMT3A and IDH1/2 single-mutant clones vs. DNMT3A and 

IDH1/2 mutant clones with co-occurring NRAS or FLT3 mutations. High protein expression 

depicted in red and low protein expression depicted in blue.
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Extended Figure 7. Clonal architecture analysis using single cell DNA + Protein sequencing of 
select AML samples.
Samples shown have significant differences in community representation between the 

dominant clone and subclones further discussed in Extended Figure 8. MSK71 (depicted 

with ***) is highlighted in Main Figure 4C–F. Clonotype plot depicts the number of cells 

identified with a given genotype and ranked by decreasing frequency (top panel). Mean cell 

counts for each clone is depicted with 95% confidence intervals derived from random 

resampling analysis. Heatmap (middle panel) shows the genotype of each identified protein 

coding mutation in the given clone with zygosity (wildtype = light pink, heterozygous = 

orange, homozygous = red). Heatmap of the relative protein expression for each cell surface 

protein (n=7) in each identified clone (purple = high expression; green = low expression).
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Extended Figure 8. Neighborhood analysis of all single cell DNA+Protein AML samples.
A) Divergences in cell surface protein expression of CD34, CD38, CD11b, and CD45RA 

determined by presence of signaling effector mutation. Density plots of cells from MSK71 

(further detailed in Figure 4C–F and Extended Figure 7) of DNMT3A mutant cells (yellow 

= single-mutant) with co-occurring FLT3 (black), KRAS (orange), or NRAS (light blue) 

mutations. Concentration of cells with a given immunophenotype depicted by the density of 

lines. B) UMAP plot of samples (n=17) analyzed by DNA+Protein single cell sequencing 

with cells clustered by cell surface protein expression of 6 antibody targets (CD3, CD11b, 

CD34, CD38, CD45RA, CD90). Cells from the same sample are denoted with same color. 

C) Neighborhood analysis of all samples from UMAP from (B) with communities of cells 

identified by neighborhood analysis in overlaid colors.
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Extended Figure 9. Clone- and gene- specific alterations to cell surface protein expression and 
community representation in AML samples.
A) Column normalized heatmap of cell surface protein expression for each community 

identified in phenoGraph analysis on UMAP from Extended Figure 8B–C. Expression is 

depicted by color with blue being low expression and red annotating high expression. B) 

Community representation changes across all samples (n=14) in WT, the dominant clone, 

and all subclones. The fraction of each sample within each community is shown with 

communities depicted by corresponding color. Samples without communities shown for WT 

cells were found to not have any WT cells present in analysis. Changes in immunophenotype 

due to community representation changes for samples MSK94 (p ≤ 9.95 × 10−3) and 

MSK130 (p ≤ 2.45 × 10−8) are highlighted in C. A two proportions z-test for each sample 

was used to determine statistical significance between dominant clone communities and 

communities present in subclone ***P < 0.001. C) Cell surface protein expression of 

CD11b, CD34, and CD38 between dominant clone (red) and subclones (black) in a FLT3-
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ITD mutant sample (MSK130; right panel; n=2274 total cells) and JAK2 mutant sample 

(MSK94; left panel; n=6012 total cells). Each error bar represents a distinct community that 

is significantly expanded or contracted, (error bar indicates ± standard error of measure, 

from the mean expression of indicated protein in a given community). A Student’s t-test was 

used to determine statistical significance * P < 0.1; ** P < 0.01; ***P < 0.001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single cell DNA sequencing of patients with myeloid malignancies.
A) Bar plot of the number of identified mutations in each sample (n =111 biologically 

independent samples; A, C-E) with samples by cohort. Mean value indicated by height of 

bar with error bars depicting standard error measurement. A two-sided t-test with false 

discovery rate (FDR) correction was used to determine statistical significance pairwise 

between groups (A, C-E). For clarity, only significant p-values referenced in text are shown. 

* P < 0.1; ** P < 0.01; ***P < 0.001 (A, C-E). B) Bar plot depicts the number of cells 

identified with a given genotype and ranked by decreasing frequency (top panel). Mean cell 

counts for each clone depicted with 95% confidence intervals. Heatmap indicates mutation 

zygosity for each clone (wildtype = light pink, heterozygous = orange, homozygous = red). 

C-E) Boxplot depicting the number of unique clones per sample for each cohort (C), clonal 

diversity calculated by the Shannon diversity index (D), and the fraction of cells in the 

dominant clone (E) for each sample (center line: median; box: interquartile range (IQR); 

whiskers: 1.5xIQR; C-E).
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Figure 2. Elucidation of clonal dominance and co-mutation by single cell DNA sequencing.
A) Boxplot (center line, median; box, IQR; whiskers, 1.5xIQR) indicating the fraction of 

cells for a sample in the largest mutant clone (top panel). Dominant clones indicated in red 

dots and subclones in black dots. Barplot indicating the proportion of mutant clones where 

the indicated gene is mutated in the most dominant identified clone (red bar; bottom panel) 

(n=485 clones, n=111 samples). B) Upset plot of co-occurring mutations for AML samples 

with mutations in DTAI genes. Bar graph depicts number of samples with each mutant 

gene(s). Presence in dominant clone (red) or subclones (grey) is indicated. Grid (bottom 

panel) indicates combination of mutations in each corresponding barplot. C-D) Co-

occurrence spectrum of DTAI mutations (C) or signaling mutations (D). Size of vertex 

represents number of samples mutated for given gene. Edge color denotes dominant clones 

(red) and subclone (grey), with edge width representative of clone size. E) Within AML 

patients, barplot indicates fraction of clones with co-occurring signaling mutations in 

DNMT3A, IDH1, and IDH2 mutant clones. Different signaling mutations are colored as 

indicated.
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Figure 3. Identification of initiating mutations and clonal expansion through assessing optimal 
genetic trajectories.
A-B) Representative genetic trajectories from CH (A, MSK68) and DTAI samples. (B, 

MSK129). Size of circle denotes relative clone size with observed clones in red and 

unobserved clones in grey (with fixed size). C) Fraction of each sample explained by 

indicated putative initiating mutation (center line, median; box, IQR; whiskers, 1.5xIQR; n 

=80 biologically independent samples, n=383 clones) D) Fraction of sample in single and 

double mutant clones in DNMT3A/IDH1 (n=9), FLT3/NPM1c (n=9) and RAS/NPM1c (n=7) 

mutant samples. Each sample indicated by connecting line, absence of a line for single 

mutants indicates absence of clone. E) Clonotype plot of paired sample from a patient that 

underwent leukemic transformation (MSK75/76; n=1/timepoint): sample A (red, MPN) and 

sample B (blue, AML). Height of bar depicts frequency of a clone in each sample. Heatmap 

indicates mutation zygosity for each clone (wildtype = light pink, heterozygous = orange, 

homozygous = red).
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Figure 4. Simultaneous single cell DNA and cell surface protein expression sequencing.
A) UMAP plot of CH sample MSK15 (n=1) with cells clustered by immunophenotype. 

Genotype overlaid onto each cell (top left panel, WT-grey; DNMT3AR882C-red; 

DNMT3AR635Q-blue). Relative protein expression for CD11b and CD3 overlaid onto each 

cell (high = red; low = blue) in UMAP (middle panel). Protein expression of CD3 and 

CD11b with genotype indicated by color (lower left panel). Bar graph of mutant cell 

percentage found in Myeloid, B-cell, and T-cell communities (right panel). B) Histogram of 

CLR normalized protein expression of CD34 and CD11b for cells mutated with select genes. 

C-D) UMAP for sample MSK71 clustered by immunophenotype with corresponding clones 

from Extended Figure 7 (denoted with ***) depicted in overlaid colors (C) or communities 

determined by phonograph (D). E) Fraction of cells in a given clone clustered in 8 

communities present in MSK71 depicted by color of corresponding community from (D). F) 
Heatmap depicts CLR of indicated proteins for each community from (D) (high=red; 

low=blue).
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