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Abstract

Motivation

Gene Essentiality Analysis based on Flux Balance Analysis (FBA-based GEA) is a promis-

ing tool for the identification of novel metabolic therapeutic targets in cancer. The recon-

struction of cancer-specific metabolic networks, typically based on gene expression data,

constitutes a sensible step in this approach. However, to our knowledge, no extensive

assessment on the influence of the reconstruction process on the obtained results has been

carried out to date.

Results

In this article, we aim to study context-specific networks and their FBA-based GEA results

for the identification of cancer-specific metabolic essential genes. To that end, we used

gene expression datasets from the Cancer Cell Line Encyclopedia (CCLE), evaluating the

results obtained in 174 cancer cell lines. In order to more clearly observe the effect of can-

cer-specific expression data, we did the same analysis using randomly generated expres-

sion patterns. Our computational analysis showed some essential genes that are fairly

common in the reconstructions derived from both gene expression and randomly generated

data. However, though of limited size, we also found a subset of essential genes that are

very rare in the randomly generated networks, while recurrent in the sample derived net-

works, and, thus, would presumably constitute relevant drug targets for further analysis. In

addition, we compare the in-silico results to high-throughput gene silencing experiments

from Project Achilles with conflicting results, which leads us to raise several questions, par-

ticularly the strong influence of the selected biomass reaction on the obtained results. Not-

withstanding, using previous literature in cancer research, we evaluated the most relevant

of our targets in three different cancer cell lines, two derived from Gliobastoma Multiforme

and one from Non-Small Cell Lung Cancer, finding that some of the predictions are in the

right track.
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Introduction
Recent findings show that cancer cells adapt their metabolic processes to enhance proliferation
[1,2]. To that end, cancer cells consume additional nutrients and divert those nutrients into
macromolecular synthesis pathways. Apart from alterations in glucose metabolism, the so
called Warburg effect, more have been reported in the synthesis of nucleotides, amino acids
and lipids [3,4]. In addition, relevant mutations in metabolic genes and accumulations of key
metabolites have been detected in cancer cells [5]. In light of these evidences, the study of cellu-
lar metabolism in cancer research has been actively reawakened. Holistic systems biology
approaches, based on genome-scale metabolic networks and high-throughput “omics” data,
open new avenues to exploit metabolic disorders of tumour cells, particularly for addressing
different unmet clinical needs in cancer.

Different methods exist to analyze genome-scale metabolic networks of human cancer cells.
Constraint-based modeling (CBM) is an emergent area in Systems Biology that includes an
increasing set of methods [6,7]. The most prominent method in CBM is Flux Balance Analysis
(FBA), which assumes that the fluxes in the network follow a biological objective function to be
optimized, typically cellular growth [8]. Growth is modelled here as an additional artificial
reaction involving the metabolic requirements, in terms of building blocks and energy, for pro-
ducing a gram dry weight (gDW) of biomass. FBA allows us to conduct gene essentiality analy-
sis (GEA) at the metabolic level, namely by identifying those genes whose individual deletion
prevent growth reaction from being active [9]. Synthetic lethality, which refers to two (or
more) non-essential genes whose simultaneous deletion becomes lethal for a given phenotype,
can be similarly accomplished. Importantly, the first application of FBA-based GEA to human
metabolism and cancer research was accomplished in [10]. They revealed that haem oxygenase
is synthetically lethal with the tumour suppressor fumarate hydratase. This result was later
experimentally validated, showing its relevance to treat leiomyomatosis and renal-cell cancer,
as germline mutations of fumarate hydratase underlie this cancer [11]. This successful result
showed that FBA-based GEA is a suitable approach to elucidate novel drug targets in cancer.

FBA-based GEA starts from a reference genome-scale metabolic network of human metab-
olism, such as Recon2 [12]. In order to capture cancer-specific metabolic features, this refer-
ence network must be contextualized with available experimental data [13]. The manual
process of building a reliable context-specific metabolic network is complex and time consum-
ing [14]. For this reason, automatic network reconstruction algorithms have been proposed,
typically based on gene/protein expression data. Given the wealth of transcriptomic data,
mRNA expression data is the most frequent type of data used in the different reconstruction
methods. A non-exhaustive list of this type of methods includes: GIMME [13], iMAT [15],
E-Flux [16], MBA [17], PROM [18], MADE [19], INIT [20], or MIRAGE [21].

The results obtained from FBA-based GEA are dependent on the different elements
involved in this network reconstruction process, i.e. reference network, defined growth
medium, gene expression data and reconstruction algorithm. However, to our knowledge, no
extensive assessment evaluating the influence of the metabolic reconstruction process and
expression data on the results of gene essentiality analysis has been carried out to date in can-
cer. To that end, in this article, we conducted an extensive study for different types of cancers
from the Cancer Cell Line Encyclopedia (CCLE) [22] so as to disentangle the effect of some of
these factors in the resulting list of essential genes. In order to more clearly observe the effect of
cancer-specific expression data, we did the same analysis using randomly generated expression
patterns. In addition, we used high-throughput gene silencing data [23] to extensively test the
predictions of the FBA-based GEA approach. Finally, we contrasted literature data about
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predicted essential genes in three cancer cell lines: two derived from Gliobastome Multiforme
(GBM) and one from Non-Small Cell Lung Cancer (NSCLC).

To be able to conduct this extensive study, we introduce a fast network reconstruction algo-
rithm based on gene expression data, which is treated using the Gene Expression Barcode [24],
a robust statistical method developed to predict expressed and non-expressed genes in
microarrays.

Methods

Network reconstruction model
Network reconstruction algorithms address the problem starting with a group of reactions that
should be present based on previous experimental evidence, typically gene/protein expression
levels. These reactions do not usually form a coherent network [25]. Indeed, they are not neces-
sarily connected to each other, may form separated clusters or even be isolated from the rest.
Thus, reconstruction algorithms fill in the gaps until a coherent network is obtained. Hypothe-
sized reactions come from a database of known biochemical reactions, generally associated
with the organism under study. In addition, note that it is also typical to avoid some reactions
in the reconstruction because of experimental evidence of their absence [15].

Current reconstruction algorithms typically rely on Mixed Integer Linear Programming
(MILP). We, instead, make use of an iterative strategy based on linear programs (LP), as MILP
formulations are not sufficiently fast for the intended study. It is also the case that each recon-
struction algorithm is usually focused towards the integration of a different type of one or
more input experimental information. Because of this, in most cases, the results obtained from
each one of them are not easily comparable. In our case, we focus on the use of mRNA tran-
script level data, as this is the most easily accessible data source in cancer. As detailed below, we
used the Gene Expression Barcode [24], an elegant technique to select expressed and non-
expressed genes, which eventually constitutes the source of evidence to contextualize metabolic
processes.

Another feature of our reconstruction algorithm is that it supplies networks directly amena-
ble to FBA, as we will carry out Gene Essentiality Analysis based on FBA in our study. This
means that the reconstructed network should be able to produce biomass while it fulfills the
steady state condition. Most other reconstruction algorithms are designed to guarantee the
later but not the former.

Our algorithm distinguishes from others in several ways, apart from the fact that most of
them rely on MILP formulations. GIMME [13] and iMAT [15] also use mRNA transcript level
information, but its treatment is less elaborated than the one conducted with Barcode. MADE
makes use of differential expression [19], focusing on metabolic adaptation between at least
two scenarios. INIT is geared towards the use of more than one type of data [20]. MBA requires
the definition of a core set of reactions forced to be included in the reconstruction [17]; how-
ever, while defining this active core is possible for well-known tissues, this is questionable
when the available evidence is limited to gene expression data, typically involving conflicts
between expressed and non-expressed genes and reactions due to post-transcriptional regula-
tory events [15,26]. MIRAGE extends upon MBA accounting, among other things, for biomass
production [21]. PROM [18] and E-Flux [16] belong to a different family of methods, where
maximum allowable fluxes are adjusted using gene expression data. In particular, PROM inte-
grates metabolism with regulatory networks, requiring a large gene expression dataset with
genetic and environmental perturbations.

Conceptually, our algorithm takes an approach that is more similar to iMAT than to other
algorithms. Both classify reactions into high (H), moderate (M) and low (L) activity based on
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gene expression data and try to balance the inclusion of H and L reactions using the objective
function. Unlike iMAT, we also minimizeM reactions to some extent, so as to obtain a mini-
mal network that satisfies the set of constraints. In addition, our algorithm adds the require-
ment of biomass production, as it is intended for obtaining networks directly amenable to
FBA. However, as noted above, the main contribution of our approach with respect to iMAT is
a significant reduction of computation time, while respecting the quality of the solution.

For the reduction of the computation time, our algorithm goes in the same direction as the
algorithm recently presented in [27], termed FastCore. This algorithm uses a multistep
approach based on linear programming, but it is conceptually similar to MBA, as it also forces
the inclusion of a core set of reactions. Apart from the way it handles the inclusion of reactions,
which is based on a three level classification from gene expression data, our algorithm also dif-
fers from FastCore in that it uses the concept of reduced cost from linear programming theory
to guide the iterative solution process. In addition, we take into account the effects of different
stoichiometric representations [28] by formulating the problem with respect to the maximum
allowable flux through each reaction as given by a Flux Variability Analysis (FVA) [29].

Overall, our approach has been designed with the specific needs of this study in mind. A
simplified version of our algorithm is presented below. Full technical details of our approach
can be found in S1 Text.

Overview of our linear programming-based algorithm
Consider a general metabolic network with C compounds and R reactions represented by its
stoichiometric matrix S [30]. We denote Irr the set of irreversible reactions. For convenience,
each reversible reaction contributes two different irreversible reactions to the total number R.
These two irreversible reactions are denoted f and b, forward and backward, respectively, each
of which represents the original reversible reaction in one different direction [31]. The set of
forward and backward steps that arise from reversible reactions are denoted Rev.

The flux through each reaction i (i = 1,. . .,R) is represented by a continuous variable vi.
After the split of reversible reactions, fluxes can only take non-negative values, bounded by a
maximum flux value, vmax

i (Eq 1). To later apply FBA-based GEA, we also enforce the steady
state condition (Eq 2) and a minimum flux v�biomass through the biomass reaction (Eq 3). For
those compounds taken from or excreted to the medium, exchange reactions were added
appropriately.

0 � vi � vmax
i i ¼ 1; . . . ;R ð1Þ

XR

i¼1

Sci�vi ¼ 0 8c 2 C ð2Þ

vbiomass � v�biomass ð3Þ

To properly define vmax
i for each reaction, we perform a Flux Variability Analysis (FVA) [29]

under constraints (1)-(3). Uptake reaction bounds from the growth-medium under consider-
ation are included in Eq 1.

We also define a continuous variable zi for each reaction, bounded between 0 and 1 (Eq 4),
which may force a minimum flux through its associated reaction, vi (Eq 5). δ is a strictly posi-
tive constant with a maximum value of 1 that fixes the lower bound on vi in relation with the
value of zi with respect to vmax

i . The inclusion of vmax
i in Eq 5 as calculated by FVA allows us to

set an activation threshold independent of the stoichiometric representation. We remark that
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this set of variables is continuous, as in [27], and not binary, as in a number of previous works
[15,17].

0 � zi � 1 i ¼ 1; . . .R ð4Þ

d � vmax
i �zi � vi i ¼ 1; . . . ;R; 0 < d � 1 ð5Þ

Our objective is to minimize the number of reactions in L while maximizing those inH. For
that, our objective function minimizes the sum of fluxes through reactions belonging to L with
a weightWL, as well as the flux through reactions inM with a weightWM, while maximizing
the number of reactions inH using z variables with a weightWH (Eq 6). The term δ�vmax

i in Eq
6 allows us to avoid the flux bias introduced by the specific stoichiometric representation of
reactions. Different criteria to establish these weights are discussed in the Results section.

min WL
XR

i¼1ji2L

vi
d � vmax

i

þWM
XR

i¼1ji2M

vi
d � vmax

i

�WH
XR

i¼1ji2H
zi ð6Þ

As noted above, it is common to set zi as a binary variable, but relaxing that constraint, as
done here, achieves the same “flux diversification” effect desired [27]. Minimizing the sum of
fluxes for L andM is not the same as minimizing the number of reactions in L andM, but it
allows us a linear formulation of the problem without negatively influencing the final solution
in terms of quality. Overall, with these features, we avoid a mixed binary formulation, harder
to solve because of the integrality constraints on some of the variables [32].

Since we have split the reversible reactions into two irreversible steps, but have added no
constraint guaranteeing that only one of them is active at a time, solving this problem (Eq 6
subject to Eqs 1–5) will give us a solution where all forward and backward steps from reversible
reactions inH are active, even if their net flux (vf−vb) is zero. Note that this does not occur with
reversible reactions in L orM, because minimizing the sum of fluxes already enforces the usage
of reversible reactions, if necessary, only in one direction.

This issue is illustrated in Fig 1. Fig 1A shows an example reference metabolic network,
including the classification of reactions asH,M or L. Fig 1B shows the resulting solution once
the linear program defined by Eq 6 subject to Eqs 1–5 is solved. It can be observed that the
solution certainly produces biomass via reactions 2 (M), 3 (H), 5 (H) and 17 (H). In addition, it
activates two cycles with net flux equal to zero, namely the first one involving reactions 4 (H)
and 14 (H) and the second one involving reactions 9 (H) and 15 (H). The presence of these
spurious cycles is a consequence of the non-binary formulation proposed above, which
requires an iterative procedure that disentangles whether (or not) these reversible reactions in
H can be included in the reconstruction in combination with other reactions.

The iterative procedure we used is described in detail in S1 Text. It is based on linear pro-
gramming and it makes use of the concept of reduced cost (taken from linear programming
theory) to guide and accelerate the iterative solution process.

Reaction classification
The input of the reconstruction algorithm is the reaction classification as highly (H), medium
(M) or lowly (L) expressed. This information is obtained from gene expression experiments, in
our case collected from GEO database [33].

We focused on Affymetrix HGU133plus2 arrays, which can be processed using Barcode
[24]. This method is designed to be able to work with just one sample and make it comparable
to others, instead of needing several samples at the same time. We preprocessed the data using
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Barcode’s R script, using one sample at a time. We retrieved the Z-score values obtained from
this algorithm, which is equivalent to processing each sample with fRMA [34].

Because the Z-scores retrieved from Barcode were given at the probe-set level, using gene-
probe relationships annotated in hgu133plus2.db R package, we obtained the gene Z-score
value as the median value of the corresponding Z-scores of its associated probe-sets. Each gene
value was transformed into present(1)/absent(0) call using Barcode’s criteria. Present genes are
classified as high (+1) and absent genes as low (-1).

Finally, reactions are classified as highly, medium or lowly expressed using gene-protein-
reaction rules and the gene expression classification mentioned above [35] (see S1 Text for a
more detailed explanation). Those reactions for which no gene expression is available or that
are not related to any gene (e.g. spontaneous reactions) are classified as medium expressed.

Gene Essentiality Analysis
Essential genes are defined here as those genes whose removal render the cell unable to produce
biomass. Using the Boolean gene-protein-reaction rules incorporated in genome-scale meta-
bolic networks such as Recon2 [12], we can evaluate which reactions will stop working after a
particular gene is deleted. Thus, a gene knock-out is simulated by setting the upper and lower
bounds of the corresponding reactions to zero in an FBA calculation, and checking whether (or
not) the remaining network is still able to produce biomass.

Fig 1. Illustration of the issue of spurious cycles of reversible reactions from theH set appearing in our linear programming formulation. A)
Example reference metabolic network with a 3-level classification of reactions. It involves ten reactions plus the biomass reaction. Reversible fluxes are split
into two non-negative steps. Backward reactions are shown in dashed line. Reactions 3, 4, 5, 7 and 9 are classified as H; reactions 2, 8 and 10 asM; and
reactions 1 and 6 as L. B) Solution obtained when solving the linear program defined by Eq 6 subject to Eqs 1–5. Thicker arcs represent active reactions,
cycles involving the forward and backward steps of a reversible reaction inH are represented with thinner lines and inactive reactions are colored in light
grey.

doi:10.1371/journal.pone.0154583.g001
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In order to reduce the number of FBA calculations required to check the essentiality of
every single gene, we first calculated the maximum biomass possible in the wild-type network
and searched for a flux distribution with minimum sum of fluxes through reactions for which
gene-to-reaction mapping is defined. If a particular gene knock-out does not affect any reaction
in that optimal flux distribution, we can be certain that a new FBA calculation will give us the
same solution as in the wild-type network and we can therefore skip such gene knockout.

Comparison to experimental data
In order to assess the accuracy of our approach to predict essential genes, we used high-
throughput silencing experiments taken from project Achilles [23]. We derived a score for
each gene in each cell line following the method introduced in [36]. However, we multiplied
the obtained scores by -1 so that the lower the score, the more essential the gene is supposed to
be, as it happens with the shRNA fold changes in the high-throughput silencing experiments.
We then compared the distribution of the scores of the obtained essential metabolic genes ver-
sus the nonessential metabolic genes using a one-sided two-sample Kolmogorov-Smirnov test,
as suggested in [10]. This test helps us to see if the obtained essential genes are biased towards
lower, more essential scores. However, the bias may be significant but not sufficiently large so,
in addition, we measured the proportion of obtained essential genes with a negative Aquilles-
based score in each scenario, a point where the probability of the gene being essential is higher
than being non-essential. In fact, we noticed that only a fraction of the metabolic genes had a
negative score in the Achilles data, so we want to make sure that the calculated essential genes
are enriched in them.

Results
The approach presented above is first applied to reconstruct the metabolic network of 174 can-
cer cell lines using gene expression data obtained from the Cancer Cell Line Encyclopedia
(CCLE) [22]. The choice of this subset of cell lines was made taking into account the available
high-throughput gene silencing data from project Achilles [23] (S1 Table). The technical per-
formance of our approach is evaluated and compared with iMAT, the most similar approach
to the one introduced here (S1 Text). Next, we perform FBA-based GEA over these recon-
structed networks and assess the frequency with which each essential gene would appear in a
network reconstructed from random expression data. In addition, we compare the obtained
results to high-throughput gene silencing experimental results [23]. Finally, we contrasted liter-
ature data about predicted essential genes in two GBM-derived and one NSCLC-derived cell
lines.

To this end, we used the original human metabolic network Recon2 [12] as reference net-
work (a similar analysis for Recon1 can be found in S1 Text). This network provides a biomass
reaction, which is directly used in this study. The growth medium was RPMI1640, defined as
in [10]. In addition, reactions were classified as highly, medium or lowly expressed using gene-
protein-reaction rules and the gene expression classification described in Methods section.

The algorithm was implemented in Matlab, using Cplex optimization software to solve the
corresponding linear programs. The computation time needed to solve a single reconstruction
problem using the strategy described above is in the order of seconds, in par with the perfor-
mance of Fastcore [27]. On the instances our method was applied, computation time is gener-
ally below 10 seconds on a 64 bit Intel Xeon E5-1620 v2 at 3.70 GHz (4 cores) and 16 GB of
RAM. This sets our algorithm as substantially faster than iMAT, where the median time to
obtain a solution was around 57 seconds (stopping with a 0.5% optimality gap).
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Model parameters and reconstruction
In our reconstruction algorithm we have several parameters that require being fixed. The most
relevant parameters are the weightsWH,WM andWL, as there is a conflicting trade-off between
reactions inH and L. In particular, the use of all reactions inHmay involve a significant number
of reactions in L; similarly, a minimum use of reactions in Lmay imply a limited use of reactions
inH. In order to study this trade-off between reaction inH and L, we propose the schemas in
Table 1, with α = 103. Schema 1 gives more weight to the minimization of reactions in L over the
maximization of reactions inH; Schema 2 provides equal weight, while Schema 3 is the opposite
of Schema 1. Details and sensitivity analysis of α and other parameters fixed in our algorithm can
be found in S1 Text. Main conclusions achieved were robust to changes of these parameters.

When classifying reactions from gene expression data, avoiding the inclusion of reactions in
L as much as possible might be more meaningful than trying to force the presence of all reac-
tions in H, as a high gene expression signal does not necessarily translate into a high enzymatic
activity. However, the identification of non-expressed genes constitutes a more difficult task
[37]. For this reason, an approach closer to Schema 3 has been typically preferred.

We compared the performance of our reconstruction approach using the different schemas
with iMAT. As can be seen in Fig 2, which shows the percentage of reactions classified as H
and L that were included using each reconstruction algorithm, the avoidance of L reactions in
Schema 1 has an impact on the number of reactions inH included in the model, providing a
significantly different solution than Schema 3.

As expected, Schema 2 is the most similar to iMAT, as both provide equal weight to reactions
inH and L. It can be observed that the number of L reactions included is very similar and the
number ofH reactions included by our algorithm is somewhat lower. Overall, both methods
obtain similar reconstructions in terms of the number ofH and L reactions they include. Thus,
we consider our algorithm a valid tool for the task at hand. Note that the maximum possible per-
centage ofH reactions included in the reconstruction does not necessarily reach 100% as there
might be reactions that cannot operate in steady state under the imposed medium conditions.

Gene essentiality analysis
With a fast reconstruction algorithm in our hands, we can address the question of the extent to
which the set of essential genes is being affected by context-specific expression data. To further
explore this issue, we permuted the metabolic gene expression classification of each sample 10
times and reconstructed the corresponding networks followed by the calculation of their corre-
sponding essential genes, leading to a background of almost 2000 random results.

Fig 3 shows the results of this experiment for Schema 3 (the list of genes and values can be
found in S2 Table). As partially expected, there are some genes that are fairly common in any
reconstructed network. The most extreme cases are genes that appear as essential whatever the
input expression is. These are a direct consequence of the input reference network, the fixed
growth medium conditions and the selected biomass reaction. This analysis confirms the
extent to which these factors can affect the results.

Table 1. Weighting schemas used in the reconstruction algorithm proposed.

Schema WH WM WL

1 α 1 α2

2 α 1 α

3 α2 1 α

doi:10.1371/journal.pone.0154583.t001
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Note that there also exist some essential genes very frequent in the individual samples but
less frequent in the random networks. These would be, a priori, the most interesting ones, as
they are more related than the other genes to the particular expression of the samples.

The most striking fact is that the list of obtained essential genes exclusive of each cancer
type is fairly short. Only 6 genes appeared only in one cancer type when using our algorithm
with Schema 3, 22 and 21 if we used Schema 1 and 2, respectively. We expected a more diverse
set of essential genes for each cancer type.

Some previous work explored the essentiality concept under very diverse growth medium
conditions [38] for some bacterial metabolic networks. They concluded the existence of a core
set of reactions needed for biomass production independent of the selected growth medium.
Our study leads to very similar insights for the case of network contextualization. The same
conclusion was achieved for different parameter settings and scenarios, including the use of
Recon1 and a general growth medium (see Table B in S1 Text).

Comparison to high-throughput gene silencing experiments
A systematic effort to identify essential genes in different cancer cell types is being carried out
in what is known as project Achilles [23]. The coverage of this project has grown during the

Fig 2. Boxplots of H and L reaction coverage in networks of selected cancer cell lines. Boxplots
showing the percentage of H and L reactions included in the reconstructed context-specific networks of
selected cancer cell lines using our algorithm under Schema 1, 2 and 3 and iMAT. The reference network
used was Recon2.

doi:10.1371/journal.pone.0154583.g002
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last years [23,39,40]. They performed high-throughput gene silencing experiments to identify
genetic vulnerabilities in different cell lines. Comparison of computationally obtained essential
genes with the results coming from this type of experiments have been previously used to assess
the validity of the approach [10].

The results for the Achilles experiments are summarized per gene as explained in the Meth-
ods section, so that the more negative the score is, the more essential the gene is considered.
Focusing on samples from the CCLE with matched Achilles experiments, we used a two-sam-
ple one-tailed Kolmogorov-Smirnov test between the metabolic essential genes obtained from
our in-silico approach and the rest of metabolic genes to see if the former had generally lower
scores than the later. Fig 4 shows the results for this analysis, where our algorithm (under dif-
ferent schemes) does not seem to obtain a high number of results below the 5% value (which
should be later corrected for multiple hypothesis testing using, for example the false discovery
rate (FDR)). S1 Text includes the same analysis as in Fig 4 but using Recon1, where results

Fig 3. Essential gene frequency for reconstructed context-specific networks of selected cancer cell lines. Essential gene frequency for
reconstructed context-specific networks of selected cancer cell lines using our algorithm with Schema 3 and Recon2 as the base network. The
horizontal axis contains the ENTREZ Symbols of the obtained essential genes. The height of the bars indicates the fraction of samples in which
the gene appears as essential. The height of the black line indicates the fraction of randomly reconstructed network in which the corresponding
gene appears as essential.

doi:10.1371/journal.pone.0154583.g003

Fig 4. KS test p-value of essential genes in reconstructed context-specific networks. KS test p-value of
essential genes obtained from the networks reconstructed from CCLE samples with matched Achilles
experiment using our algorithm under Schema 1, 2 and 3. The base network is Recon2.

doi:10.1371/journal.pone.0154583.g004
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below the 5% value are more common (Fig I in S1 Text). However, we expected the FBA based
GEA to give significant results with almost all the samples we tried it on. Note also that this
analysis was recalculated for different parameter settings and we obtained similar results,
though particularly inferior when a general growth medium was fixed (Table C in S1 Text).

In addition, we decided to count the fraction of genes with a negative Achilles-based score (i.e.
those with a higher probability of being essential than non-essential), among the genes predicted
as essential in our in-silico approach. We observed that the number is around 10 to 20%, regard-
less of the reconstruction method used (Fig 5). However, if we take all the metabolic genes repre-
sented in Recon2, we see that around 8 to 16% of them had a negative Achilles-based score.
While [38] found that the core reactions in bacterial metabolic networks where enriched in
experimentally proven essential genes, our results do not allow us to make the same claim. Note
that when we replicated the same analysis for Recon1 (Fig J in S1 Text), in contrast with the
results obtained in the KS test, we obtained very similar (even slightly worse) results than in
Recon2. A similar conclusion was found for other parameter settings (Table C in S1 Text).

Knowing that some genes appear similarly in both random and cancer-specific expression
based networks, while others are clearly tied to the cancer-specific expression pattern, we tried
to identify a relationship between this and the corresponding experimental essentiality score.
However, we were unable to find a significant correlation when focused on each particular
CCLE sample, possibly due to the reduced sample size obtained as we restrict to essential genes
that appeared only in less than a given threshold in the random samples. To overcome this
issue, we merged the results of the CCLE sample set and analyzed whether, as this threshold
was lowered, the fraction of genes with a negative Achilles-based score increases. This pattern
was moderately found in the case of Schema 3 in both Recon1 and Recon2, but not in Schema
1 and 2 (S1 Text), which leaves inconclusive evidence for establishing a relationship between
FBA predicted cancer-specific essential genes and Achilles data.

Findings in the literature
Despite the results of our comparison with project Achilles data, we decided to take a look into
the essential genes obtained for two GBM-derived cell lines (U251 and U87) and one NSCLC-

Fig 5. Percentage of essential genes satisfying Achilles-based threshold of essentiality. Percentage of
essential genes obtained from the reconstructed context-specific networks of selected cancer cell lines using
our algorithm under Schema 1, 2 and 3 that have a negative Achilles-based score, indicating a higher
probability of being essential than non-essential according to processed gene silencing data obtained from
project Achilles. The base network is Recon2. The last boxplot indicates this percentage when all the
metabolic genes are taken into account.

doi:10.1371/journal.pone.0154583.g005

Assessment of FBA Based GEA with a Fast Network Reconstruction Method

PLOS ONE | DOI:10.1371/journal.pone.0154583 May 4, 2016 11 / 17



derived cell line (A549). Since the data used in CCLE only considered a single sample for each
cancer cell line, we applied the same approach to an additional set of samples obtained from
GEO (see S1 Table).

We found interesting the case of the gene PLD2 (ENTREZ ID 5338). This gene appears as
essential in 84% of the networks reconstructed from GBM samples with Schema 3, while it
only appears in 27% of the networks reconstructed from random expression data and in 32%
of the networks reconstructed from all the CCLE selected samples. This gene has been shown
to play an important role in cancer [41] and to inhibit the proliferation of U251 cells when sup-
pressed [42]. However, its Achilles-based score in the U251 cell line is 20.03 and 12.70 in the
U87 cell line, which, in principle, would have not attracted our attention.

Other interesting genes are RRM1 (ENTREZ ID 6240), RRM2 (ENTREZ ID 6241), FDPS
(ENTREZ ID 2224) and HMGCR (ENTREZ ID 3156), although these also appear as essential in
many of the networks reconstructed from all the CCLE selected samples (but not in the randomly
reconstructed networks). RRM1 and RRM2 form the enzyme ribonucleotide reductase, whose
inhibition via GTI-2040 has been shown to have a potent antitumor activity in different cell lines,
including U87 [43]. In the case of A549, siRNA-mediated silencing of RRM1 and RRM2 inhib-
ited its growth [44]. On the other hand, FDPS inhibition has shown an increased paclitaxel-
induced apoptotic cell death in U87 glioblastoma cells [45]. In addition, bisphosphonates have
been found to inhibit FDPS activity [46], and there is research showing that they inhibit cell pro-
liferation in A549 cells [47]. Finally, inhibition of HMGCR through simvastatin reduced cell
growth in U87 cells [48] and increased apoptosis in an in vivomouse GBMmodel [49]. Likewise,
simvastatin has also been found to inhibit A549 proliferation [50], although it has also been pro-
posed that it acts through Akt signaling dependent down-regulation of surviving [51].

The Achilles-based score for RRM1 in U251, U87 and A549 is -17.8360, -7.416 and 1.4952,
respectively; 5.6092, 8.7197 and 7.3371 for RRM2; -4.08, 6.74 and -11.2250 for FDPS; 14.85,
5.16 and 11.7576 for HMGCR. Again, except for RRM1 in U251 and U87 and FDPS in U251
and A549, these genes would probably have not called our attention, but there is literature in
their favour.

Conclusion
In this work, we have evaluated the accuracy of the results obtained from Flux Balance Analysis
based Gene Essentiality Analysis (FBA based GEA) when networks contextualized with gene
expression are used. In order to carry out this research, we have introduced a new fast meta-
bolic network reconstruction algorithm that has been used to evaluate the approach. We
focused on the reconstruction of networks from samples in the Cancer Cell Line Encyclopedia
(CCLE) that had an available high-throughput gene silencing experiment in project Achilles.

Current methods that apply gene essentiality analysis, to our knowledge, lack an assessment
of their results against random input, which would allow us to distinguish them from those
obtained because of algorithmic artifacts or the rigidity or incompleteness of the reference net-
work. Here, we directly addressed this issue by evaluating the impact of cancer-specific gene
expression in GEA in comparison with randomly generated expression patterns.

To achieve the objective above, the need of a fast reconstruction algorithm is a must. The
reconstruction algorithm proposed here builds on the reasoning present in previous
approaches [10,17,27]. Our approach is conceptually similar to iMAT [15], but, in line with
FastCore [27], it provides us with network reconstructions in much less time, thanks to the
iterative LP strategy used. This feature has allowed us to reconstruct a high number of networks
in order to assess the frequency with which genes appear as essential in randomly generated
data.
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The results show that the resulting list of essential genes has a varying degree of dependence
on the reference network, the reconstruction algorithm and context-specific expression data.
Most relevant conclusions are discussed below.

First, we observed a clear role of the schema (parametersWH,WM andWL) in the recon-
struction, which illustrates the need to decide over the treatment of highly and lowly expressed
reactions. Systematic procedures as Barcode [24], which was used in this article, are an essential
part in this debate. Barcode, for example, is very restrictive for expressed genes and it is more
likely to have false negatives. If that is the case, Schema 3 could be the preferred option, as it
biases the reconstruction towards including reactions classified asH. However, Schema 1
would be the most realistic approach if we could identify non-expressed genes accurately.

Second, we emphasize the need of a robust gene essentiality analysis, as the general results
seem insensitive to the reconstruction process, at least when transcriptomic data is exclusively
used. In particular, using randomly generated expression patterns, we found essential genes
that are more likely to appear than others, which illustrate a higher dependence on the refer-
ence network, fixed growth medium and the selected biomass reaction than on the context-spe-
cific expression data.

Third, we found essential genes that are rare in the randomly generated networks and recur-
rent in cancer samples. These can be considered as highly dependent on the context-specific
expression data and are presumably the ones we would find more interesting at first glance.
However, the comparison to experimental high-throughput silencing data cannot be consid-
ered to agree with the computational results, suggesting the need to consider additional factors.

We believe the selection of the appropriate biomass reaction, or an appropriate metabolic
task function, is key in the whole process, as it plays a central part in the definition of essential-
ity. For illustration, we tried some random alterations to the biomass reaction (S1 Text) and, as
expected, had an impact on the results. In fact, the selection of an appropriate biomass function
is probably one of the biggest challenges ahead in the FBA based GEA methodology. The use of
the biomass function is well founded in bacterial metabolism, but it may not be the best option
for modeling some types of cancer. Furthermore, it is likely that this function will differ
between different cell lines. More than a biomass reaction we will be probably looking for a
cancer-specific metabolic task or objective function, as recently proposed in [52] and [53].

Another possibility is that the reference network (from which our reconstructions are
derived) misses several reactions that would allow us to capture more differences at the recon-
struction level. It is known that the central metabolism and some major pathways are well stud-
ied and represented in these networks, but a big part of the real metabolic possibilities of the
cells might still be missing. It is also important to note that this approach does not consider in
any way the cell rearrangement that may follow a knock-out intervention, which could provide
an explanation for some false-positive predictions.

It should also be noted that high-throughput gene essentiality experiments are far from triv-
ial and their analysis is also complicated. Hence, lists of essential genes based on the analysis of
those experimental results would also likely need follow-up experiments to confirm them.

We would like to point out that focusing on the p-value of the KS test alone is not sufficient
to test the relevance of the obtained list of essential genes. The two sample KS test is designed
for comparing whether two observed sets may come from the same distribution or not. What
we really want to check is if the obtained essential genes are ranked at the very top of the exper-
imentally obtained rank of essential genes. If that happens, the KS test will give a significant p-
value. However, if the KS test gives a significant p-value, it does not necessarily imply that the
calculated genes fall at the very top of the list, they may just be biased, on average, towards the
top. Hence, to complement the KS test, we calculated the proportion of obtained essential
genes satisfying the essentiality threshold derived from the data in project Achilles. Under this
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measure, the list of obtained essential genes did not have a proportion very different from the
one that can be obtained when focusing on all the metabolic genes. The same conclusion was
found in the scenarios evaluated, including different reference networks (Recon1 and Recon2),
growth media (RPMI and general growth medium) and reconstruction algorithm parameters.

Despite these discrepancies between the predicted genes and the Achilles data, we were able
to find a number of genes in GBM with a higher frequency in the samples than in the random
networks which have been shown to effectively reduce its proliferation when targeted [42,43].
We also found some additional genes in GBM and NSCLC with interesting references in the lit-
erature [44–51].

Constraint based modeling approaches have had a great success in the microbial metabolic
modeling research. The success has been possible in part thanks to the great number of experi-
ments and information that has been gathered in those organisms. As cancer cell lines are less
well characterized than some microorganisms, data from projects like Achilles constitute a
very valuable resource to boost the models’ performance. Until now, data on the real essential-
ity of metabolic genes was scarce. Although high-throughput silencing experiment data is com-
plex and may contain inaccuracies, it is our best chance to improve these models.

Overall, we believe that constraint based approaches hold great promise in the study of can-
cer metabolism. Notwithstanding, for its application towards the identification of essential
genes, the technique needs to carefully consider the assumptions it makes and identify the cor-
rect formulation of the question at hand. Our framework exposes these issues and can be a key
component to solve the final puzzle.
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