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INTRODUCTION

A small family of NF-kB (p50/p65)-regulated microRNAs (miRNAs) has been identified and
partially characterized in Alzheimer’s disease (AD) brain in the hippocampal CA1 and temporal
lobe neocortical regions, and in reactive oxygen species (ROS)-, cytokine interleukin 1-beta (IL-
1β)-, amyloid beta 42 (Aβ42) peptide- and/or lipopolysaccharide (LPS)-stressed human neuronal-
glial (HNG) cells in primary co-culture. This microRNA family currently includes miRNA-9,
miRNA-30b, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. Other brain-enriched
miRNA species may be involved. Experimental evidence suggests that in neurological diseases,
the upregulation of this small pro-inflammatory miRNA family orchestrates a pathogenic gene
expression program that can explain many aspects of AD onset, and propagation and severity of
the disease including failure of microglial-mediated clearance of amyloid-beta (Aβ) and other end-
stage peptides from brain cells, amyloidogenesis, astrogliosis, deficits in neurotropism, neuronal
cell atrophy, and downregulation in the production of essential cytoskeletal components and
synaptic signaling elements. This opinion article will contribute to the interpretation of the
most recent findings in the current research area involving NF-kB-regulated miRNA-mediated
signaling pathways, and how this information may aid in the advancement of therapeutic strategies
for more effective clinical management of AD and other progressive age-related and lethal
neurodegenerative disorders.

ALZHEIMER’S DISEASE (AD): EPIDEMIOLOGY AND BASIC
FEATURES

AD is a slowly developing, irreversible, progressive, and inflammatory neurodegeneration of the
human brain, central nervous system (CNS), and neural vasculature (Alzheimer et al., 1995; Lane
et al., 2018; Trejo-Lopez et al., 2021). Due in part to the aging population and demographics, the
global incidence and prevalence of AD are sharply increasing, and AD currently represents the
largest single cause of age-related memory impairment and behavioral and cognitive decline in
Westernized societies. Current estimates put the global incidence of AD at about∼55 million, and
this number is expected to reach epidemic proportions and rise to about∼150 million cases by the
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year 2050 (Tahami Monfared et al., 2022; https://alz-journals.
onlinelibrary.wiley.com/doi/full/10.1002/alz.12638; https://
www.alz.org/media/documents/Alzheimers-facts-and-figures.
pdf; https://www.Alzint.org/about/dementia-facts-figures/
dementia-statistics/last accessed 13 June 2022). AD places a
tremendous socioeconomic burden on caregivers and on the
healthcare system as a whole. Despite ∼115 years of intense
and directed research, no effective treatment or cure for AD
exists, although many insights into the molecular-genetic nature
of this age-related disease have been established (Alzheimer
et al., 1995; Kaur et al., 2015; Lane et al., 2018; Dong et al.,
2021; Hermans et al., 2021; Trejo-Lopez et al., 2021; Liu et al.,
2022; Olufunmilayo and Holsinger, 2022; Pogue et al., 2022;
Rastegar-Moghaddam et al., 2022; Singh et al., 2022; Tahami
Monfared et al., 2022; Yoon et al., 2022). As a devastating,
inflammatory, and terminal neurodegenerative disorder, one
molecular genetic component that has emerged at the forefront
of current AD research is the DNA-binding element NF-kB,
probably the single most important transcription factor yet
identified in the complex neuropathology of AD. This opinion
article will address some recently described effects of NF-
kB on a small family of regulatory miRNAs observed to be
significantly altered in abundance, complexity and speciation in
AD-affected brain.

NF-κB-SENSITIVE microRNAS AND
INFLAMMATORY SIGNALING IN
ALZHEIMER’S DISEASE (AD)

Discovered about∼36 years ago, the heterodimeric transcription
factor NF-kB (p50/p65) was first described as a rapidly
inducible nuclear factor κ-light-chain transcription enhancer of
activated B cell lymphocytes in part responsible for the humoral
immunity component of the immune system (Sen and Baltimore,
1986; Kaltschmidt et al., 1993; Taganov et al., 2006). Since
then, recognition sites for this redox-controlled transcriptional
activator and DNA-binding protein have been found to occur
in multiple gene promoters, and it is now known to drive
a broad range of gene expression patterns in diverse cellular
types involved in host innate- and adaptive-immune functions
with important roles in the clearance of waste molecules
from the cytoplasm, inflammatory signaling, differentiation, cell
growth, tumorigenesis and neurodegeneration (Taganov et al.,
2006; Zhang et al., 2017; Baltimore, 2019). In resting cells the
pre-formed NF-kB (p50/p65; 115 kDa) heterodimer is bound
to a hydrophobic inhibitory kappa B protein (IkB, 36 kDa)
that prevents free NF-kB from promoter-DNA-binding and
gene transactivation. However NF-κB can be rapidly induced
in all cell types by treating them with pro-inflammatory
mediators that include interleukin-1beta (IL-1β), interleukin 6
(IL-6), tumor necrosis factor alpha (TNFα), and endotoxins
such as lipopolysaccharides (LPS), an intensely inflammatory
lipoprotein produced exclusively by Gram-negative bacteria, Aβ

peptides, viral gene products, ultraviolet and other ionizing
irradiation, and reactive oxygen species (ROS)-generating and/or
oxidizing compounds. Exposure to these factors induces IkB

decomposition triggered through a site-specific phosphorylation
of an IκB kinase (IKK) complex, followed by degradation
via the ubiquitin-proteasome system, and then rapid NF-kB-
activated transcription by multiple pro-inflammatory NF-kB-
sensitive gene promoters. The human brain and CNS contain
a very active, pleiotropic NF-kB-signaling system that has a
function in both neurological health and disease (Kaltschmidt
and Kaltschmidt, 2009; Christian et al., 2016; Liu et al., 2022;
Yoon et al., 2022). While the NF-kB (p50/p65; also known as
p50/RelA) heterodimer is especially abundant in nervous tissues,
other homo- or hetero-dimeric NF-kB transcription factor
complexes containing at least 5 other molecular components that
include RelA, RelB, c-Rel, p50, p52, and NFKB1 (p105) form
at least 12 different identified NF-kB complexes. All share the
conserved Rel homology domain (RHD) responsible for DNA
binding, dimerization, and association with the repressor protein
IκB (Zhang et al., 2017; Pires et al., 2018; Baltimore, 2019;
https://www.genecards.org/cgi-bin/carddisp.pl?gene=RELA; last
accessed 25 May 2022). It has been repeatedly demonstrated:
(i) that activated NF-kB subsequently upregulates a select
sub-group of disease-associated miRNAs comprising a well-
characterized NF-kB-sensitive Homo sapiens-enriched family of
potentially pathogenic miRNAs that include miRNA-9, miRNA-
30b, miRNA-34a, miRNA-146a, and miRNA-155 normally
involved in immunity, inflammation, and brain cell genetic
function in the CNS (Lukiw, 2012, 2020; Brennan et al., 2019;
Juźwik et al., 2019; Barnabei et al., 2021; Song et al., 2021; Yoon
et al., 2022); (ii) that the same miRNAs are upregulated in AD
brain; (iii) that this group of significantly over-expressedmiRNAs
are abundant in progressive and often lethal viral and prion-
mediated and/or related neurological syndromes associated with
progressive inflammatory neurodegeneration; and (iv) that all of
these NF-kB-sensitive endotoxin-responsive miRNA genes have
as many as three tandem, functional NF-kB binding sites stacked
in their immediate 5’-promoter region, making this miRNA
gene family exceptionally sensitive to NF-kB activation and NF-
kB-mediated transcriptional upregulation (Taganov et al., 2006;
Lukiw et al., 2008; Alexandrov et al., 2019; Jauhari et al., 2020;
Table 1). Interestingly, there is also abundant recent evidence
(i) that endotoxins such as LPS and other biophysical-barrier-
penetrating glycolipids and lipoproteins specifically induce
neurodegeneration by promoting neuro-inflammatory signaling
by stimulation of Toll-like receptors (TLRs) present on the
outer membranes of glial cells of the CNS (Kumar, 2019; Singh
et al., 2022); (ii) that extremely potent pro-inflammatory species
of LPSs have been found by many independent groups to be
localized in human brain neurons in AD brain (Zhan et al., 2018,
2021; Alexandrov et al., 2019; Zhao et al., 2019a; Singh et al.,
2022); and (iii) that a life-long supply of microbiome-abundant
Gram-negative bacteria-derived LPS would be available over the
long-term to chronically upregulate NF-kB in the brain and CNS,
as is observed in LPS-treated human neurons in primary culture
and in AD temporal lobe neocortex, the latter an anatomical
area targeted by the AD process (Lukiw and Bazan, 1998;
Zhang et al., 2017; Zhan et al., 2018, 2021; Zhao and Lukiw,
2018; Alexandrov et al., 2019; Zhao et al., 2019a; Singh et al.,
2022).
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TABLE 1 | NF-kB-induced microRNAs (miRNAs), their mRNA targets, functions, and pathways in Alzheimer’s disease (AD)-affected brain; all miRNAs listed show: (i)

significant upregulation following NF-kB (p50/p65) activation; (ii) are potentially pathogenic and are upregulated in AD brain, AD cell culture, and transgenic murine models

of AD (TgAD); and (iii) have been shown to interactively contribute to the AD process; some closely related work on the functions these miRNAs in neuronal cell culture,

TgAD models, and other human neurodegenerative diseases have also been included in the References.

Human miRNA mRNA target(s) mRNA function Result of mRNA and gene

expression deficit

Reference

miRNA-9 CFH complement factor H; repressor of

activation of the innate immune

response in brain and retina at the C3

to C3b transition

CFH deficits in disease are

pro-inflammatory; excessive activation

of the innate-immune response, altered

immune-signaling, neuroinflammation

Clement et al. (2016), Recabarren and

Alarcón (2017), Chen et al. (2018), Natoli

and Fernando (2018)

TREM2 triggering receptor expressed in

myeloid and microglial cells; surface

receptor essential in removing cellular

debris; viral infection

deficits in phagocytosis and clearance

of end-stage metabolic products from

cells including amyloid beta (Aβ)

peptides

Lukiw et al. (2008), Zhao and Lukiw (2013,

2018), Bhattacharjee et al. (2016), Chen

et al. (2021)

TSPAN-7 transmembrane spanning superfamily

member 7; regulator of surface

receptor signal transduction; activates

ADAM10-dependent cleavage activity

of βAPP; tau seeding activity; viral

infection

amyloidogenesis; impairment of

autophagic activity and promotion of

amyloid plaque formation; inhibition of

autophagy; supports the formation of

neurofibrillary tangles (NFT)

Jaber et al. (2019), Perot and Ménager

(2020), Chen et al. (2021), Turk et al.

(2021)

miRNA-30b NF-L (NEFL) neurofilament light chain protein;

neuron-specific; supports neuronal

cytoarchitecture, radial diameter of

axons and synaptic signaling

loss of neuronal cytoarchitecture and

signaling capacity; neuronal atrophy;

synaptic structural deficits; general

biomarker for neurodegeneration

McLachlan et al. (1990), Kittur et al.

(1994), Brennan et al. (2019), Xu et al.

(2021), Zhao et al. (2021)

miRNA-34a SHANK3 SH3 proline-rich and

multiple-ankyrin-repeat domain

(SHANK3) cytoskeletal anchoring

protein; gene directional gene

expression effects; associated with viral

infection

Disruption of the cytoskeleton and

post-synaptic structure and scaffolding

network; deficits in synaptic

organization, dendritic spine maturation

and synaptic vesicle release

Lu et al. (2010), Choi et al. (2015), Jaber

et al. (2017), Lee et al. (2017), Jin et al.

(2018), Zhao et al. (2019b)

TREM2 triggering receptor expressed in

myeloid and microglial cells; surface

receptor essential in removing cellular

debris; associated with viral

(SARS-CoV-2) infection

deficits in phagocytosis and clearance

of end-stage metabolic products from

cells including amyloid beta (Aβ)

peptides- deficits in AD and AMD

Zhao and Lukiw (2013), Zhao et al. (2013),

Hermans et al. (2021), Wu et al. (2021),

Olufunmilayo and Holsinger (2022)

miRNA-125b CDKN2A cyclin-dependent kinase inhibitor 2A

cell cycle inhibitor; induces cell cycle

arrest; viral (SARS-CoV-2) infection

downregulation of cell cycle control:

astrogliosis and glial cell proliferation

Pogue et al. (2010), Czapski et al. (2021),

Valeri et al. (2021)

SYN-2 synapsin-2: neuron-specific; neuronal

synaptic phosphoprotein; coats

synaptic vesicles; functions in the

regulation of neurotransmitter release

impairment of neurotransmitter release

and trans-synaptic signaling; synaptic

signaling deficits observed in AD brain

and in TgAD murine models

Ferreira and Rapoport (2002), Mirza and

Zahid (2018), Zhao et al. (2019a, 2021),

Jeśko et al. (2021)

15-LOX-1 ALOX15; arachidonate

15-lipoxygenase; essential in the

conversion of docosahexaenoic acid to

neuro-protectin D1 (NPD1)

lack of NPD1; lack of neurotrophic

support; deficiency of neurotrophic

omega-3 fatty acid derivatives in the

human brain neocortex

Lukiw et al. (2005), Zhao et al. (2014), Sun

et al. (2018), Al-Fadly et al. (2019)

miRNA-146a CFH complement factor H; complement

control glycoprotein; deficits in disease

are pro-inflammatory to the host; viral

(SARS-CoV-2) infection; see above

defective control and stimulation of the

innate- immune response; and

pro-inflammatory signaling; role in

neuro-pathological signaling in AD and

prion disease

Alexandrov et al. (2019), Slota and Booth

(2019), Fan et al. (2020), Yu et al. (2020),

Aslani et al. (2021), Pogue and Lukiw

(2021), Wu et al. (2021)

IRAK-1 interleukin-1 receptor-associated kinase

1; initiation and sustenance of the

innate immune response and NF-κB

signaling

compensatory surge in IRAK-2 and

chronic stimulation of NF-κB signaling

in the brain; neuroinflammation

Cui et al. (2010), Arena et al. (2017), Aslani

et al. (2021)

TSPAN12 transmembrane superfamily member

12; cell surface receptor involved in

signal transduction; activates

ADAM10-dependent cleavage of βAPP

and tau seeding activity

pathological shift from neurotrophic

(sAPPα) to amyloidogenic (beta- and

gamma-secretase cleavage);

processing of βAPP into neurotoxic

Aβ42 peptides

Li et al. (2011), Jaber et al. (2017), Aslani

et al. (2021), Miyoshi et al. (2021)

miRNA-155 CFH complement factor H; see above defective regulation of the

innate-immune response (see above)

Chen et al. (2018), Zingale et al. (2021),

Rastegar-Moghaddam et al. (2022)
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THERAPEUTIC STRATEGIES DIRECTED
AGAINST NF-kB AND/OR
PRO-INFLAMMATORY miRNA SIGNALING

Because NF-kB signaling pathways appear to be centrally
involved in a great many immune- and inflammation-linked
human diseases from carcinogenesis to neurodegeneration,
a large number of natural and synthetic NF-kB inhibitors
have been designed and tested, and are under very active
investigation to limit the extent of NF-kB activation in the
cellular environment. The evolution of one single high-potency
gene-activating transcription factor in overlapping signaling
pathways has made it challenging to find biologically active
inhibitory molecules that can interfere with and/or block
specific signaling pathways that lead to NF-κB activation
without multiple off-target effects or other complicating
factors. Even so, a number of NF-kB modulator and blocking
strategies have been adopted or are undergoing rigorous
evaluation in both research laboratories and in clinical settings.
In general, therapeutic NF-kB inhibition can occur via four
basic mechanistic strategies: (i) by blockage of the original
physiological stimulating signals that drive NF-kB activation;
(ii) by targeting phosphorylation pathways associated with
NF-kB activation because NF-κB phosphorylation controls
transcription in a gene-specific manner; (iii) by modulation
or activation of the IkB complex or other NF-kB subunits;
and/or (iv) by blockage of NF-kB translocation, DNA sequence
recognition, and binding and/or modification of NF-kB that
affects its activity or target specificity. These approaches include
but are not limited to the following strategies, most of which
are under very active research and therapeutic development:
(i) antioxidant approaches that neutralize the primary NF-kB
activation signals such as quenching of reactive oxygen species
(ROS) and other oxidizing and/or redox compounds (Kaur et al.,
2015; Barnabei et al., 2021; Jover-Mengual et al., 2021; Pogue
and Lukiw, 2021); (ii) alteration of multiple phosphorylation
events that disrupt the activation of the multi-subunit NF-
kB transcription complex and alter the interaction of these
phosphorylation sites that ultimately determines the selectivity
of NF-κB effects on transcriptional activity (by advanced
investigation of these highly interactive phosphorylation sites
and mechanisms it should be possible to modulate or block
many aspects of phosphorylation-mediated NF-kB activation;
Christian et al., 2016; https://360researchreports.com/global-nf-
kb-inhibitors-market-20149725); (iii) as previously pointed out,
because active NF-kB complexes are assembled from various
combinations of RelA, RelB, c-Rel, p50, p52, NFKB1 (p105)
etc., it may be possible to specifically block the generation
and/or assembly of a single monomeric species of NF-kB by
limiting the abundance of one of the subunits of NF-kB by
genome editing, including knock-out technologies and/or the
Cas9/CRISPR editing system (Wang et al., 2018; Dai et al., 2020;
Katti et al., 2022); (iv) NF-kB is directed to bind to its genomic
targets by topological features located in certain promoter
DNA sequences; therefore, these highly specific promoter DNA

binding sites can be masked, blocked, or modulated using
genome blocking technologies involving small non-coding
RNA (sncRNA), NF-kB decoy sequence, and/or Cas9/CRISPR
editing strategies (Taganov et al., 2006; Christian et al., 2016;
Zhang et al., 2017; Baltimore, 2019; Dai et al., 2020; Katti
et al., 2022; Yoon et al., 2022); (v) specific upregulated miRNA
abundance and speciation may be blocked or modulated using
chemically stabilized anti-miRNA strategies or by targeting
miRNA processing enzymes, thus preventing the creation of
a fully active and/or biologically available miRNA species; (vi)
directed delivery systems to the brain and/or CNS or other tissue
and/or organ systems to minimize unwarranted off-target effects;
(vii) long-term systemic ingestion of low-dose NF-κB inhibitors
including dietary-administered flavonoids, lignans, diterpenes
and sesquiterpenes, saponins, polysaccharides, polyphenols,
biological fiber, and other natural products that may have general
beneficial effects on reducing pro-inflammatory signaling,
carcinogenesis, and neurodegeneration by chronic dampening
of NF-κB activities. These have been used for millennia in the
pharmacopeia associated with ethnic biomedical-treatment
approaches (Gilmore and Herscovitch, 2006; Li et al., 2020a,b;
Olajide and Sarker, 2020; Uddin et al., 2021; Al-Khayri et al.,
2022; Das et al., 2022); and/or (viii) any combination of these
therapeutic strategies. Regarding the creation and testing of
synthetic NF-kB modulatory or blocking compounds, about
∼80 pharmaceutical companies are currently in the pursuit
of more effective, directed and specifically targeted NF-kB
inhibitors for clinical application in human diseases involving
excessive NF-kB activation and signaling (https://www.
futuremarketinsights.com/reports/nf-kb-inhibitors-market;
https://www.Globenewswire.com/news-release/2020/12/08/
2141 093/0/en/NF-kappa-B-Inhibitors-Therapeutics-pipeline-
analysis-of-80-Companies.html; https://360researchreports.
com/global-nf-kb-inhibitors-market- 20149725; last accessed 25
May 2022).

DISCUSSION

The pleiotropic homo- or hetero-dimeric transcription factor

NF-kB is a master regulator of the innate immune system,

inflammatory responses, and neurotropic, cytoskeletal, synaptic,

phagocytic, and synaptic deficit characteristics of the AD-
affected brain and related neurodegenerative disorders. One

critically important regulatory action of the NF-kB complex is

to upregulate a small family of pathogenic miRNAs in the brain
and CNS, which in turn targets and downregulates a group
of mRNAs whose downregulation is decisive in driving the
neuropathology of AD (Table 1). It is our opinion that these NF-
kB-regulated miRNA-mRNA linked pathological interactions
will provide a wealth of targets for therapeutics and disease
intervention. The merging of experimental and human clinical
trials will be decisive in the strategic design and application
of NF-kB and NF-kB-miRNA-induced modulatory agents and
drugs useful in the more efficacious treatment of the current
AD epidemic.
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Czapski, G. A., Cieślik, M., Białopiotrowicz, E., Lukiw, W. J., and Strosznajder,

J. B. (2021). Down-regulation of cyclin D2 in amyloid β toxicity,

inflammation, and Alzheimer’s disease. PLoS ONE 16, e0259740.

doi: 10.1371/journal.pone.0259740

Dai, W., Wu, J., Wang, D., and Wang, J. (2020). Cancer gene therapy by NF-κB-

activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres.

Gene Ther. 27, 266–280. doi: 10.1038/s41434-020-0128-x

Das, R., Mehta, D. K., and Dhanawat, M. (2022). Medicinal plants in cancer

treatment: contribution of nuclear factor-kappa B (NF-kB) inhibitors. Mini.

Rev. Med. Chem. doi: 10.2174/1389557522666220307170126

Dong, Z., Gu, H., Guo, Q., Liang, S., Xue, J., Yao, F., et al. (2021). Profiling

of serum exosome miRNA reveals the potential of a miRNA panel as

diagnostic biomarker for Alzheimer’s disease. Mol. Neurobiol. 58, 3084–3094.

doi: 10.1007/s12035-021-02323-y

Fan, W., Liang, C., Ou, M., Zou, T., Sun, F., Zhou, H., et al. (2020).

microRNA-146a Is a wide-reaching neuroinflammatory regulator and potential

treatment target in neurological diseases. Front. Mol. Neurosci. 13, 90.

doi: 10.3389/fnmol.2020.00090

Ferreira, A., and Rapoport, M. (2002). The synapsins: beyond the

regulation of neurotransmitter release. Cell. Mol. Life Sci. 59, 589–595.

doi: 10.1007/s00018-002-8451-5

Gilmore, T. D., and Herscovitch, M. (2006). Inhibitors of NF-kappaB signaling:

785 and counting. Oncogene. 25, 6887–6899. doi: 10.1038/sj.onc

Hermans, S. J., Nero, T. L., Morton, C. J., Gooi, J. H., Crespi, G. A.

N., Hancock, N. C., et al. (2021). Structural biology of cell surface

receptors implicated in Alzheimer’s disease. Biophys. Rev. 14, 233–255.

doi: 10.1007/s12551-021-00903-9

Jaber, V., Zhao, Y., and Lukiw, W. J. (2017). Alterations in micro RNA-messenger

RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s

disease (AD) hippocampal CA1. J. Alzheimer’s Dis. Parkinsonism. 7, 312.

doi: 10.4172/2161-0460.1000312

Jaber, V. R., Zhao, Y., Sharfman, N. M., Li, W., and Lukiw,W. J. (2019). Addressing

Alzheimer’s disease (AD) neuropathology using anti-microRNA (AM)

strategies.Mol. Neurobiol. 56, 8101–8108. doi: 10.1007/s12035-019-1632-0

Jauhari, A., Singh, T., Mishra, S., Shankar, J., and Yadav, S. (2020). Coordinated

action of miRNA-146a and parkin gene regulate rotenone-induced

neurodegeneration. Toxicol. Sci. 176, 433–445. doi: 10.1093/toxsci/kfaa066
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