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Simple Summary: Even though the presently employed biomarkers in the detection and manage-
ment of multiple myeloma are demonstrating encouraging results, the mortality percentage of the
malignancy is still elevated. Thus, searching for new diagnostic or prognostic markers is pivotal.
Liquid biopsy allows the examination of circulating tumour DNA, cell-free DNA, extracellular RNA,
and cell free proteins, which are released into the bloodstream due to the breakdown of tumour cells
or exosome delivery. Liquid biopsy can now be applied in clinical practice to diagnose, and monitor
multiple myeloma, probably allowing a personalized treatment of the disease.

Abstract: Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour
cells and tumour-originated DNA in plasma have become the new targets for their possible employ in
tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple
Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses
in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and
genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant
drawback for regular disease examination as it requires an invasive practice. Moreover, new data
demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple
myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment
of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles,
and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as
early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive
monitoring in multiple myeloma.

Keywords: multiple myeloma; liquid biopsy; cancer biomarkers; circulating tumour cells; cell free
DNA; miRNAs; exosomes; tumour-educated platelet; prognosis

1. Introduction

Multiple myeloma (MM) is a malignancy due to the clonal growth of plasma cells
(PCs); it is a not curable condition and MM subjects undertake heavy therapies with longer
or shorter intervals of remission before a relapse happens, thus making a new therapy to
start. With the discovery of new drugs and therapeutical procedures, patients’ survival
has increased to 50% (five years) and 29% (ten years) in 2018 with respect to 37% of
5-year-survival between 2005 and 2009 [1–3].

Several types of MM have been described, between them micromolecular myeloma
and extramedullary multiple myeloma (EMM), which is an aggressive form of MM, iden-
tified by the presence of tumoral PCs outer of the bone marrow (BM); it is a multi-focal
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condition characterized by a huge heterogeneity and correlated with a bad outcome [4].
Both forms appear to be more difficult to diagnose than the classic form of the disease.

The identification of MM is performed through the discovery of clinical, chemical,
histological, and radiological signs of disease, which considerably modify patient sur-
vival [5,6].

BM aspirates constitute the main method employed to identify the disease, perform a
prognosis, and define a genetic classification. However, they stand for a relevant shortcom-
ing for serial MM examining as they require a painful and invasive practice. Furthermore,
new results displayed that a sole BM aspirate is incapable of expressing the intricate MM
heterogeneity. In fact, beyond aggressive, BM aspirates might not be entirely demonstrative
due to irregular BM participation, spatial genomic heterogeneity, or the presence of an EM
disease. A recent analysis executing multi-region evaluation of iliac crest confirmed the
presence of spatial genomic heterogeneity in more than 75% of MM subjects [7]. Thus, there
is mounting attention in alternate techniques to identify the MM disease and to evaluate
genetic profile of medullar and EM tumour plasma cells.

Liquid biopsy (LB) is the procedure of investigating neoplastic cells, genetic materials
(such as DNA, or MiRNAs), tumour-educated platelets or other components in a liquid
milieu instead of traditional tissue biopsy; the material used for the liquid biopsy can be
from peripheral blood (PB) or any other organic fluids [8].

Although some well-structured reviews have been written on the possibility of using
liquid biopsy in MM, often these reviews have privileged an aspect of myelomatous disease
such as diagnosis or prognosis, the possibility of detecting the minimal residual disease or
to understand some aspects of the biology of myeloma. Our work sought to summarize
the different aspects of the relationships of liquid biopsy with the clinic, biology, diagnosis,
prognosis and treatment of MM [9–12].

In the last few years, several experimentations have confirmed the ability of LB
in identifying the disease, considering prognosis, performing a molecular profile, and
detecting minimal residual disease (MRD), and have suggested that LB might be employed
as a substitution of BM aspirates [13,14] (Figure 1).
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2. Liquid Biopsy and Circulating Tumour Cells

Movement of circulating tumour cells (CTCs) appears to be an early event in tu-
morigenesis, and several reports have demonstrated its occurrence in different types of
tumours [15,16]. Recently, CTCs have gained importance as they are minimally intrusive
markers that can disclose essential data about the neoplastic disease. Actually, CTCs may
have several clinical applications, such as in identification, treatment management, and
monitoring of cancer patients [17].

In MM, CTCs are discharged from the BM into the blood circulation [18], returning
again to the BM at various positions in a spreading course [19]. As CTCs come out straight
from the BM, their phenotype should coincide with that of the BM plasma cells [20,21].
In fact, the presence of typical B-cell maturation indicators or other molecules such as
adhesion molecules stayed unchanged with respect to BM compartment [22]. Nevertheless,
the capacity of CTCs to come out may also imply specific characteristics promoting MM
diffusion via systemic circulation, making it a possible sign of different cellular functionality.

2.1. Methods of Detection of CTCs

Several new methods to identify CTCs have emerged, either via cytometric techniques
or nucleic acid-based procedures [23–26]. However, cytometric techniques have been
demonstrated to be easier to perform and have been preferred to recognize CTCs employing
their size, antigen expression, and the presence of specific molecules. For instance, as
for solid tumors, CellSearch is an FDA-approved method to identify CTCs of epithelial
origin [27–30]. In spite of the small number of CTCs and morphologic heterogeneity, this
method is capable of guaranteeing a correct and reliable evaluation of CTCs [31].

A specific technique performed employing an optical apparatus named “diffuse
in vivo flow cytometry” (DiFC) was used to analyse uncommon, green fluorescent protein
expressing CTCs [32], and to evaluate short-term modifications of CTCs in MM. For rare
CTCs (less than 1 CTC per ml of blood), the use of short time DiFC periods often occasioned
no identifications. Instead, for more diffuse CTCs, the number differed by an order of
magnitude over the timescales considered. The results were coherent with important
modifications in the number of CTCs on short times (minutes and hours). This may be due
to the constant detachment of CTCs from BM and the brief half-life of CTCs in the blood.
However, authors demonstrated that the evaluation can be improved by analysing greater
volumes and numerous samples.

In a different study, researchers used an enrichment-free four-plex immunofluores-
cence technique and single-cell DNA sequencing for identification and genomic classifi-
cation of plasma cells to distinguish normal and malignant plasma cells in blood and BM
aspirates from patients with newly diagnosed myeloma and monoclonal gammopathy
of undetermined significance (MGUS) [33]. The results confirmed that peripheral blood
plasma cells presented the same genomic modifications that were present in BM plasma
cells. However, a group of rare cells presented genetic changes not identified by conven-
tional diagnostic techniques of random localized BM biopsies. Thus, this type of LB can
identify rare cells that have the capacity to improve our knowledge of subclonality in MM.

A different approach was performed by Foulk et al., who developed a different method
to analyse CTCs employing fluorescence in situ hybridization (FISH) together with next-
generation sequencing (NGS), recognizing a greater number of CTCs in all phases of MM
with respect to normal subjects. Furthermore, they were able to find a correlation between
CTCs and the number of PCs in the BM, the amount of monoclonal component, and the
stage (ISS) of disease [34]. Similarly, a different experimentation allowed for implementing
a cell-based immunofluorescence test to differentiate MM CTCs from normal cells based on
morphologic characteristics and the presence of antigens, such as CD138 and CD45 [35].

A different method to detect CTCs and BM clonal cells employed the next-generation
flow (NGF) cytometry [36]. In some cases, plasma cells from EM plasmacytomas were
also evaluated and whole-exome sequencing was made in three spatially distributed
samples. CTCs were identified in the PB of all MM subjects. Authors highlighted that about
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22% of CTCs came out from a BM or EM place far from the corresponding BM aspirate.
All high-risk genetic alterations were identified in CTCs if present in BM plasma cells,
excluding one t(4;14). In any case, about 82% of genetic alteration occurring in BM and
EM neoplastic cells were demonstrable in CTCs. These data support the ability of CTCs as
useful, non-invasive risk-stratification tool of MM patients.

Recently, Wang et al. employed a mixed aptamer-triggered hybridization chain reac-
tion with tetrahedral DNA framework, herringbone channel chip, to create an effective
microfluidic system for analysis of simulated CTCs [37], while a new method for in-situ
separating and rapidly identifying CTCs from peripheral blood at single-cell resolution
employing black TiO2-based Surface-Enhanced Raman Scattering bio-probe on a microfilter
was also proposed [38]. CTCs were extracted from peripheral blood by microfilter according
to the size and deformation difference. The bio-probe was constituted of crystal-amorphous
core-shell B-TiO2 nanoparticles, alizarin red as Raman reporter molecules, and a fine pro-
tecting protective stratum of NH2-PEG2000-COOH.

Other studies confirmed that CTC mutations at a single-cell level agreed with BM
plasma cells [39]. However, different results are present in literature, and in a study
only 20% genetic alterations were present in both neoplastic compartments. Conversely,
employing a wider approach as the whole exome sequencing (WES), CTCs were able to
present up to 93% of genetic alterations identified in BM plasma cells [40] (Table 1).

Table 1. Different techniques used in the identification of CTCs.

Technique Target Marker Features Refs.

DiFc To evaluate short time
modifications

Green fluorescent
protein-expressing CTCs

Small
samples are unlikely to yield a

quantitatively accurate estimate
of mean CTC numbers.

[32]

Immunofluorescence
technique and single cell

DNA sequencing

Identification and
genomic classification CD138, CD56, CD45, DAPI Detection of rare cell populations [33]

FISH and NGS Correlation between CTCs
and clinical parameters CD38, CD38/138, CD45, CD19

It can be used to study disease
biology and monitor clinical

disease progression
[34]

Immunofluorescence test To differentiate normal
and clonal cells

CD138, CD45,
phospho-ribosomal protein S6

The assay is highly repeatable and
reproducible [35]

NGF cytometry Evaluation of EMM

Patient-specific aberrant
phenotypes identified with
NGF were used for highly

purified fluorescence-activated
cell sorting of CTCs

Concordance between BM tumor
cells and CTCs was high for
chromosome arm-level copy

number alterations (≥95%) though
not for translocations (39%).

[36]

WES
Correlation with genetic
alterations found in BM

samples
CD138

100% of clonal mutations in patient
BM were detected in CTCs and

99% of clonal mutations in CTCs
were present in BM MM.

[40]

DiFc: Diffuse in vivo flow cytometry; FISH: Fluorescence in situ hybridization; NGS: Next generation sequencing;
NGF: Next generation flow cytometry; WES: Whole exome sequencing.

Transcriptomic analysis has been commonly employed to classify MM subgroups
with specific characteristics and different outcomes [41]. Overall, the extremely coinciding
transcriptomic findings suggest that CTCs mirror their BM equivalent. Thus, models
tend to cluster in a patient-specific modality rather than by MM cell source [42,43]. This
hypothesis would be further confirmed by the relevant similarity between CTCs and BM
plasma cells upon reconstructing the B-cell receptor (BCR), which indicates the identical
clonal derivation.

From what has been said, it is evident that we are far from the possibility of stan-
dardizing the CTC evaluation technique. Each of the proposed methods seems to have
advantages and offers the possibility of detecting characteristics of the biology of MM. Thus,
the differential expression of several molecules such as adhesion molecules, integrins and
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cytokine receptors might be useful to clarify specific dynamics of specific MM subsets [44].
For instance, the decreased presence of CD81 and CD138 supports the possibility that, in
some cases, CTCs could be a more immature population. Instead, the absence of CD49 and
CD56 has been correlated with an aggressive disease and suggested that it was a probable
sign of plasma cell leukemia [45,46].

Probably, in the future, it will be necessary to privilege the reproducibility and com-
parison of the results obtained using techniques whose validity is widely shared.

2.2. CTC, Progression and Prognosis of Monoclonal Gammopathies

It is well known that MGUS evolves at a uniform and small percentage of 1%/year.
The chance of converting from smouldering multiple myeloma (SMM) to active MM is more
varied. Various risk elements have been recognized to calculate SMM risk advancement
at diagnosis, and scales have been suggested to detect subjects with an increased risk of
progression at two years. It is possible that employing different scales some subjects might
be incorrectly classified as SMM while really holding MM. This emphasizes the requirement
for improved diagnostic criteria to recognize higher risk SMM subjects that may profit from
precocious therapy [47].

CTCs can be found almost immediately after the premalignant clonal process has
started. A recent study displayed that 59% of subjects affected by MGUS have demon-
strable CTCs with respect to 100% of cases with SMM and manifest MM [48]. The main
distinction between these conditions is the rate of CTCs, with increasing percentages from
0.0002% (0.008 CTCs/µL—for MGUS) to 0.004% (0.16 CTCs/µL—for SMM) and 0.04%
(1.9 CTCs/µL—for overt MM) [49]. Significantly, the number of CTC was considered an
independent prognostic element with respect to BM morphology or FC. Increasing logarith-
mic ratios of CTCs were correlated with lower progression-free survival. A cut-off of 0.01%
CTCs displayed an independent prognostic significance (hazard ratio: 2.02) in multivariate
progression-free survival analysis including lactate dehydrogenase concentrations, the In-
ternational Staging System, and cytogenetic analysis. MM subjects with undetectable CTCs
had extraordinary progression-free survival regardless of complete remission and MRD
condition. In patients with detectable CTCs, only obtaining MRD negativity displayed a
significant increase in progression-free survival [50].

However, an experimentation employed single cell RNA sequencing to analyse sub-
jects along the monoclonal gammopathy advancement spectrum, revealing great interindi-
vidual variation. In any case, in subjects with initial disease and in patients who presented
a minimal residual disease after therapy, authors identified only few clonal PCs with molec-
ular findings analogous to those of patients with advanced myeloma. Thus, this method
allows the employ of LB to detect tumoral PCs, which reproduce BM disease [42].

Furthermore, genomic analysis of CTCs through whole exome sequencing has con-
firmed the existence of a great correspondence in clonal alterations between CTCs and
BM samples in the different phases of diseases, although some sub-clonal alterations were
identified only in CTCs [51–53].

Liquid biopsy has also been used in the set of MM patients undergoing transplanta-
tion. In a phase III clinical trial, subjects with MM were analysed at the diagnosis, after
treatment (achievement of complete response, after induction treatment, autologous stem
cell transplant (ASCT)) and consolidation treatment [53]. A 99.6% decrease in the number
of CTCs was reported from diagnosis to post-ASCT. Remarkably, ISS III MM subjects only
displayed a decrease in CTCs after ASCT, and not after that the induction treatment has
been performed alone.

2.3. CTCs and Prognosis of Multiple Myeloma

Many reports have confirmed the presence of a correlation between the number of
CTCs and parameters correlated with a poor prognosis [20,54]. The quantity of CTCs
was reported to be a marker of survival in subjects with newly identified and relapsed
MM [55]. When the evaluation was limited to the actively relapsing patients, the best
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cut-off predicting for the greatest risk of death within a year was about 100 clonal CTCs;
with a sensitivity of 62% and specificity of 73%. According to this result, authors identified
≥100 events as a cut-off for labelling the prognostic value of CTCs in actively relapsing
MM subjects [56]. Remarkably, a high number of CTCs in SMM were correlated with a
huge risk of progress to manifest MM in 2–3 years after diagnosis [57]. Lately, employing
the NGF technique Sanoja-Flores et al. confirmed that CTCs in PB at the disease onset are
linked to a bad prognosis of both MGUS and MM subjects [58].

Experimental studies have suggested that CTC clusters might have a prognostic
significance and might be able to predict chemoresistance. These clusters can provide data
on modifications in the genetic outlines, somatic changes, and epigenetic alterations with
respect to cells in a primary tumour site. Microfluidic techniques have the possibility of
investigating CTC clusters via the capability to proficiently separate these cells from the
peripheral blood of patients in a liquid biopsy. Microfluidics can also be employed in in vitro
experimental models of CTC clusters and allow their identification and study [59–62].

3. Liquid Biopsy and Cell Free DNA
3.1. Origin of Cell Free DNA

The greater part of cell free DNA (cfDNA) in PB derives from hematopoietic cells [63]
and tumour-originated cfDNA (ctDNA) can be present in very small amounts, according to
the stage of disease and the form of tumour [64]. However, cfDNA in MM has been reported
to have a great similarity with BM aspirates, although some studies have displayed that this
concordance is generally limited to a restricted number of mutations [65,66]. This could be
judged a shortcoming due to the great inter- and intra-patient genetic heterogeneousness
of MM [67], and the consideration that copy number alterations are the keystone of disease
prognosis [68,69]. However, as reported above, WES of cfDNA offers more data on genetic
characteristics and has also demonstrated greater similarity with BM aspirates [70].

Nucleic acids are discharged into the peripheral blood after cellular death due to pro-
grammed cell death, or necrosis, and the spontaneous liberation of DNA/RNA-lipoprotein
complexes [71].

The possibility to find cf nucleic acids in the serum was first reported decades ago [72].
Several studies performed on solid tumours demonstrated that neoplastic cells could lib-
erate nucleic acids and that this cfDNA is representative of the whole genome of the
tumour. Compared to normal subjects (mean: 15.21 ng/mL; median: 14.37 ng/mL;
range: 12.20–19.51 ng/mL), tumour subjects always displayed greater concentrations of
plasma DNA (mean: 275.35 ng/mL; median: 139.0 ng/mL; range: 22.44–1037.49 ng/mL)
(p < 0.0001) [73]. Furthermore, genome sequencing and WES of the cfDNA might be em-
ployed to recognize genetic alterations correlated with chemoresistance without the need
to perform successive biopsies. A study recognized a subset of genes that were positively
selected after therapy, many of which have been correlated before with drug resistance
(MED1, GAS6, PIK3CA) [74].

The size of cfDNA ranges from 50 base pairs to 1000 base pairs, but generally ranges
between 50 and 200 base pairs [75]. It has a short life (4–30 min), as it is quickly eliminated
by the hepatic and renal system and circulating DNase [76]. Normal subjects generally
present small amounts of cfDNA, but concentrations are much increased in tumours.
Nevertheless, any situation able to cause a foster destruction or death of non-tumoral cells
will also enhance cfDNA concentrations. These conditions include inflammation, infections,
and trauma [77,78].

It is noteworthy that serum contains 20 times more cfDNA than plasma as it is dis-
charged from the white cells when they are damaged. However, this may reduce the cfDNA
deriving from the tumour. Thus, plasma is the favoured material employed to decrease
background interference during the test [79].
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3.2. Methods of Detection of cfDNA

The use of the deep sequencing of ctDNA from MM subjects is an extremely sensi-
tive method able to recapitulate mutational patterns of corresponding BM aspirates [80].
Droplet digital PCR is presently employed to analyse mutational status and to track MM
progression [81]. Kis et al. displayed that analysing of ctDNA allows the study of sub-
clonal hierarchies, mirroring BM samples [65]. Nevertheless, in some cases, the genetic
alterations recognized were identified only in plasma, which is coherent with the spatial
heterogeneity of MM [82–84]. In this sense, integrating plasma ctDNA assessment in MM
evaluation might constitute a relevant progress in the effort to individualize MM treatment
approaches [85].

It was proposed that the minor tumour load of early phases possibly relates with
a smaller cfDNA amount. Even with the more effective techniques, more than 50% of
asymptomatic subjects did not display any alteration in cfDNA, probably indicating the
low mutational bulk of these conditions [86]. These data support the hypothesis that ichor
copy number alteration (CNA) execution is inadequate in the group of patients with small
tumour elements. However, since ichor CNA, an algorithm optimized for ultralow pass
sequencing, assesses the rate of tumour-originated cfDNA via the identification of somatic
CNAs, it is conceivable that, in subjects lacking clonal CNAs, the tumour portion could
be undervalued. To improve the employ of LB, a more adequate genome-wide strategy
could be applied. Nevertheless, the cost–benefit proportion should be evaluated at the
economic side.

Kis et al. described a hybrid-capture-based LB Sequencing (LB-Seq) technique em-
ployed to evaluate all protein-coding exons of BRAF, EGFR, KRAS, NRAS, and PIK3CA in
cfDNA samples from MM patients. This methodology includes a filtering algorithm that
allows identification of tumour-originated portions existing in cfDNA at allele incidences
as low as 0.25%. Employing this method, they identified 49/51 somatic mutations, with
subclonal hierarchies reproducing tumour profiling with a concordance of 96%, and other
further mutations probably skipped to BM aspirates [65]. These findings were confirmed
by other studies [66].

Between the advantages of cfDNA, there is the opportunity with which it can be
managed. With common accessible phlebotomy tubes that enclose formaldehyde-free
fixatives, cfDNA is constant at room temperature for several days [87]. However, plasma
should be achieved by centrifugation within hours after sample attainment to prevent cell
death and DNA alteration, as DNA from white blood cell destruction may reduce the levels
of MM-originated cfDNA [88].

Nevertheless, one of the inconveniencies of cfDNA is that it cannot be enhanced for
MM-specific cfDNA, dissimilar MM cells from the BM, which can be enhanced employing
magnetic bead sort or flow selection. In any case, it is much easier to increase the amount
of cfDNA by enhancing the quantity of PB extracted than augmenting the quantity of BM
obtained through a biopsy.

3.3. cfDNA Disease Advancement and Relapse

Amounts of cfDNA seems to connect to spread and severity of the disease. To evaluate
the correlation between cfDNA and MM progression, a study considered plasma samples
from MM subjects without extramedullary involvement and EMM patients. Remarkably,
greater amounts of cfDNA were achieved from patients who presented extramedullary
involvement with respect to subjects without this type of involvement. Furthermore,
plasma ctDNA presented a greater concordance to extramedullary tumour than that of BM
aspirates. Thus, cfDNA is a useful substitute for EMM genetic determination, especially
when tumour is difficult to get to, and may also be employed to trace MM progress [89].

As said above, SMM is a predecessor condition of MM, in which some subjects quickly
evolve to MM, while others maintain this dormant type of the disease [90]. Many studies
have investigated genomic characteristics in SMM that can correctly identify patients
with high risk SMM [91,92]. However, there are only limited studies on cfDNA in SMM.
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From some reports, cfDNA was reduced in SMM subjects with respect to patients with
overt MM. An experimentation evaluated if cfDNA amount changes corresponding to
risk level classified by the 70 gene expression profile (GEP70) [93]. cfDNA concentrations
were remarkably greater in the GEP70 high risk set with respect to the low risk set and
were associated, albeit faintly, with different biomarkers such as β2-microglobulin, and
lactate dehydrogenase. Furthermore, authors evaluated cfDNA amounts in SMM subjects
performing serial analyses and displayed increased allele portion of mutated KRAS as
cfDNA increases. These findings state that cfDNA is a dynamic instrument able to catch
genetic changes in monoclonal gammopathies [93].

In a different study, the usefulness of cfDNA to identify the tumour load and to predict
the possibility of a disease relapse in MM subjects was proved. Furthermore, the relapse of
MM was evidenced more accurately by evaluating cfDNA with driver mutations than by
evaluating serum free light chains [94].

The prognostic ability of cfDNA was also demonstrated in a different setting of
patients such as novel diagnosed (ND) and relapse/refractory (RR) subjects, studying
ras/raf signaling pathway and TP53 in BM and plasma samples. The whole amount and
percentages of genetic alterations in the different type of samples were remarkably greater
in RR subjects with respect to ND subjects. Furthermore, subjects featuring more than two
mutations presented a remarkably shorter overall survival (OS). Similarly, subjects with
TP53 alterations had shorter OS with respect to subjects with no TP53 alterations. Finally,
cfDNA evaluation recognized a greater occurrence of DNA-repair gene altered subclones
than BM examination [94].

Rustad et al. reported a connection between the number of mutated alleles in the
PB and the proportion of BM plasma cells, which may mirror mutated cells, the total
tumour load, and the progression to a more severe condition that is corresponding to the
M protein [81].

Vravel et al. published a long-term analysis on blood-based MRD assessment em-
ploying tumour-specific cfDNA identification by ASO-qPCR [95]. They highlighted a
relevant connection of amount of tumour-specific cfDNA concentrations with clinically im-
portant situations such as induction treatment and autologous stem cell transplant (ASCT).
Moreover, size of cfDNA fragments is correlated with improved therapy response.

All these data sustain the idea of tumour-specific cfDNA as a marker of prognosis,
since a greater amount of plasma genetic alterations is correlated with a reduced sur-
vival [95]. This notion is coherent with the assumption that increased spatial genetic
heterogeneity constitutes an unfavorable condition in MM patients, with a higher proba-
bility of chemoresistance. Thus, detecting such heterogeneity may be essential to identify
patients who might be unresponsive to treatment. In fact, resistance to a specific substance
is likely due to the occurrence of driver genetic alterations in oncogenes or tumour suppres-
sor genes. Surely, these alterations are more recognizable with LB than with a single-site
BM aspirate. Evaluating the genetic profile through liquid biopsies would offer a more
illuminating opportunity for personalised treatment in MM [96].

Remarkably, certain mutations of great prognostic importance such as PIK3CA are
more easily identified by a LB [65,66], and cfDNA may aid in recognizing MM subjects
with an adverse risk profile more adequately than only via BM aspirate [97].

3.4. cfDNA and MRD Evaluation

Regarding the study of the MRD with cfDNA, there are some reports that compare it to
the other conventional techniques such as flow cytometry and DNA evaluation in BM [98].
Mazzotti et al. displayed the lack of a connection between DNA and BM for the MRD by
NGS, employing only IgH gene rearrangements [99]. A different study demonstrated that
cfDNA can be employed to evaluate the MRD, especially in EMM [89]. However, in other
experimentations, although a relevant correlation between the amount of tumour-specific
cfDNA with clinical events has been identified, the data in the case of the MRD checking
were not meaningful [51].
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Currently, the application of cfDNA alone has no employ in the evaluation of the
MRD in MM patients, although there is increasing evidence that it might be a useful
ancillary procedure for the management and control of the pathology and, perhaps, with
its perfection, into a relevant instrument for the assessment of the MRD [100].

Finally, subjects with non-secretory MM might also profit from cfDNA evaluation
as monoclonal proteins or serum free light chains are not obtainable as biomarkers for
checking these subjects [101,102]. Furthermore, cfDNA assessment may also be used for
fragile and elderly MM subjects with different, relevant conditions, which are less subjected
to repeated BM aspirates. For these subjects, cfDNA analysis is markedly appealing, as this
procedure allows indolent evaluation, which can be performed by sending the samples to
laboratories far away and allows complete molecular investigation without the need for
invasive practices (Table 2).

Table 2. Diagnostic and prognostic value of cfDNA in multiple myeloma.

Diagnosis Techniques Target Features Refs.

Extramedullary MM
CAPP-seq ultra-deep
targeted next-generation
sequencing

Identification of cancer-gene
somatic mutations

Greater amounts of cfDNA with
respect to subjects without EMMM [80]

Multiple myeloma Digital droplet polymerase
chain reaction analysis

Evaluation of recurrent mutations,
mainly in mitogen activated
protein kinase pathway genes
NRAS, KRAS and BRAF

Correlation between the number of
mutated alleles in the PB and the
proportion of BM plasma cells

[81]

Smoldering MM Gene expression profile Analysis of 70 gene expression Reduced amounts of cfDNA with
respect to overt MM [93]

Prognosis

Relapsed MM Next-generation sequencing Identify driver mutations
Percentage of ras/raf and TP53
mutations was remarkably greater
in RR subjects with a reduced OS

[94]

MRD assessment

Extramedullary MM Targeted deep sequencing
and ddPCR assays Mutational analysis

The concordance of plasma ctDNA
to extramedullary tumor
concordance was 0873, which is
much higher than that of
BM aspirates

[89]

Multiple myeloma Ultra-low-pass whole
genome sequencing Detectability of cfDNA and CTCs Correlation with disease

progression is higher for CTCs [51]

4. Liquid Biopsy and MiRNAs
Methods of Detection and Biological Significance of miRNAs

MicroRNAs (miRNAs) are a group of small molecules of 19–24 nucleotides in size, and
they are the most copious RNAs in the peripheral blood. They have a great stability and
perform a relevant action in MM proliferation and in the onset of chemoresistance [103–106].

Until now, several established laboratory procedures have been employed for the
evaluation of miRNAs, including oligonucleotide microarray, qRT-PCR, and northern
blotting [107]. Recently, an integrated miRNA biosensing method for the detection and
analysis of serum-based miRNAs employing the DNA-linked gold nanoprobe and duplex-
specific nucleases-mediated signal amplification was proposed [108].

Chen et al. assessed the possibility to use extracellular RNA (exRNA) originated
from the peripheral blood of MM subjects for entire transcriptome definition [109]. They
recognized 632 differentially-expressed genes (DEGs) in MM subjects, of which 26 were
shared in NDMM and RRMM patients. Furthermore, they recognized 54 and 191 genes
exclusive to NDMM and RRMM patients, and these included several miRNAs [109].

In a study, quantum dot-molecular beacon functionalized MoS2 fluorescent probes
were employed for the simultaneous identification of MM-correlated miRNA-155 and
miRNA-150 [110]. The two probes can efficiently find miRNA-155 and miRNA-150 with
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adequate recovery percentages, with a low detection limit. These findings suggest that this
technique is the most precise method to analyse miRNAs and that fluorescent probes
with signal amplification approaches can obtain extremely sensitive identification of
MM-correlated miRNAs in MM patients.

5. Liquid Biopsy and Exosomes
5.1. Origin and Detection of Exosomes

A different form of LB consists of the evaluation of the genetic material enclosed in the
exosomes discharged by the neoplastic cells. In fact, some experimentations have revealed
the presence of miRNAs and long noncoding RNAs in the exosomes extracted from the
peripheral blood of MM subjects [111–113].

Small extracellular vesicles (EVs) or exosomes are elements of about 30–150 nm in
diameter surrounded by a lipid bilayer, which are delivered from cells into the extracellular
milieu and perform relevant actions in several biological and pathological phenomena
including tumours [114,115].

5.2. Biological and Clinical Significance of Exosomes

EVs are capable of regulating the activities of target cells by modulating metabolic and
signalling paths, and in a tumoral setting, promoting the generation of an advantageous
tumour micromilieu [116,117]. EVs present similar biomarkers of their cell of origin, and
this allows for evaluating them as a useful target for identification and treatment of cancer
patients [118]. Relevantly, EVs defend their cargo including RNAs from destruction in the
extracellular space and can be efficaciously isolated from peripheral blood, making them
perfect elements for LB [119,120].

To date, different analytical techniques have been implemented for the exosome iden-
tification. For instance, exosomes can be isolated and studied by ultra-centrifugation,
and isolation kits are commercially available. Furthermore, the features of exosomes can
be quickly studied by enzyme-linked immunosorbent assay and Western blot analysis
or employing the scanning or transmission electron microscopy, nanoparticle tracking
examination and atomic force microscopy. The identification techniques also include the
polymerase chain reaction or sequencing techniques. Moreover, several new sensing meth-
ods have been utilized in the exosomes study, such as colorimetric detection, fluorescence
assay, surface plasmon resonance, electrochemical analysis, and integrative microfluidic
systems. Recently, the electrochemical analysis with the nano-sensing interface has been
proposed [121–124].

Exosome gene components seem to conserve the same abilities as far as diagnoses and
prognosis as cfDNA. For instance, many experimentations have evaluated the capability
of EV-RNA to discriminate between MGUS or MM subjects at the disease onset, together
with and other hematological pathologies. Caivano et al. reported the diagnostic capability
for small EV-originated miRNA-155. Peripheral blood concentrations were displayed to be
remarkably reduced in MM subjects with respect to other different hematologic patholo-
gies [125]. Analogously, EVs originated from the peripheral blood of MGUS, or MM subjects
presented considerably lower concentrations of lncRNA PRINS with respect to different
hematological diseases [113]. Kubiczkova et al. stated that miRNA-34a and let-7e that
originated from circulating exosomes can differentiate MGUS and MM from other diseases
with extreme accuracy [126]. Similarly, Zhang et al. [127] displayed that peripheral blood-
originated miRNA-20a-5p, miRNA-103a-3p, miRNA-185-5p, miRNA-425-5p, let-7c-5p, and
let-7d-5p concentrations were extremely reduced in exosomes extracted from MM subjects
with respect to different hematological diseases, while the concentrations of miRNA-4505
and miRNA-4741 were considerably greater. As for monoclonal gammopathies, lower
concentrations of exosome-originated miRNA-20a-5p, miRNA-103a-3p and increased con-
centrations of miRNA-425-5p, and miRNA- 4505 were also capable of differentiating SMM
from different hematological diseases. Furthermore, authors also demonstrated that re-
duced concentrations of exosome-derived miRNA-20a-5p, miRNA-103a-3p, miRNA-140-3p,
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miRNA-185-5p, let-7c-pc and greater concentrations of miRNA-4505 and miRNA-4741 were
able to discriminate MM with respect to SMM patients. The study of the genetic material
derived from exosomes could also provide useful indications regarding the tendency to the
disease progression. Exosomes extracted from the peripheral blood of MM subjects were
reported to present altered concentrations of let-7b and miRNA-18a, which are involved
in MM progression [112]. Lower levels of both let-7b and miR-18a were significantly asso-
ciated with poor prognosis with a reduced progression-free survival and OS in NDMM
subjects treated with bortezomib-based treatment, validating their prognostic significance
and their usefulness for risk definition of chemoresistance [112].

The latter is an extremely relevant argument in MM patients. Multidrug resistance
(MDR) is a specific form of chemoresistance, in which MM cells develop cross-resistance to
a broad variety of different, unrelated substances after contact with a single drug [128–130].

A study recognized large EVs that can be employed to evaluate clonal load, MM
diffusion and the onset of MDR in MM patients [131]. The cargo enclosed in EVs differed
in the presence of several biomarkers such as CD138, CD34, P-glycoprotein (P-gp), and
phosphatidylserine (PS). Augmented concentrations of P-gp and PS correlated with MM
advancement and failure to respond to treatment. Moreover, PS, P-gp and CD34 were
essentially present in CD138− EVs in progressed MM. Specifically, a population positive
for CD138-P-gp+CD34 is augmented in advanced and unresponsive MM [131]. This
analysis constitutes a test performed via LB able to manage MDR and non-responsiveness
to treatment (Table 3).

In conclusion, Evs constitutes an adequate substitute of their cells of origin, which are
mostly restricted to the BM. MDR in MM subjects MM can be recognized and successively
controlled by evaluating exosomes in peripheral blood in the field of liquid biopsies.

6. Tumor-Educated Platelets (TEP) and Liquid Biopsy

Platelets are circulating corpuscles deriving from megakaryocytes in the BM, which
have a main role in haemostasis and the beginning of wound healing. However, they also
participate in general and local phenomena linked to tumour proliferation, as neoplastic
cells can modify the RNA pattern of these elements. Furthermore, TEPs can absorb the
circulating mRNA delivered by neoplastic cells or ingest solubilized tumour-derived
proteins [132]. These connections between platelets and tumour cells may imply a possible
role of TEPs for tumour identification and management [133].

Neoplastic cells can relocate molecules such as RNA to platelets via direct connection
and delivery of exosomes, which is able to modify the platelet precursor RNA, and under
the effect of neoplastic cells and neoplastic milieu platelet immature mRNA is transformed
into mature RNA able to form functional proteins, generating TEPs (Figure 2). The identifi-
cation of TEPs in the peripheral blood of neoplastic subjects is awaiting employment in the
tumour diagnosis [134–136] (Table 3).

Although there are no specific studies in progress about TEPs and MM, several corre-
lations between platelets and MM have been identified, such as the notion that low mean
platelet volume is correlated with worse outcome in MM subjects and may be employed as
a relevant marker for MM advancement and prognosis of these patients [137,138]. Soon,
the analysis of TEPs could constitute a useful complement in the context of liquid biopsies
and a new approach to myeloma disease.
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Table 3. Studies on exosomes and educated platelets.

Methods Targets Results Refs.

Prognostic significance

Small RNA sequencing analysis
and quantitative reverse
transcription polymerase chain
reaction array

Circulating exosomal
microRNAs

miRNAs, let-7b and miR-18a,
were significantly associated
with PFS and OS

[112]

TaqMan Low Density
miRNA Arrays Expression of 667 miRNAs

Lower levels of miR-744 and
let-7e were associated with
shorter overall survival and
remission of myeloma patients

[126]

Flow cytometric analysis Analysis of circulating large
extracellular vesicles

Elevated levels of P-glycoprotein
and phosphatidylserine correlate
with disease progression and
treatment unresponsiveness

[131]

Diagnostic significance RT2 lncRNA PCR Array—Human
lncRNA Finder

Long noncoding
RNA molecules

Dysregulation of exosomal
lncRNA PRINS in MM vs.
controls

[113]

Quantitative RT-PCR Exosome miR155 levels
Exosome miR155 levels were
significantly lower in multiple
myeloma vs. controls

[125]

Real-time quantitative PCR
Expression of let-7c-5p,
let-7d-5p, miR-140-3p,
miR-185-5p, and miR-425-5p

Expression of exosomal miRNA
is related to the expression levels
of a clinical feature-related factor

[127]

Multiple myeloma
educated platelets

Prognostic significance Hematological analyzer
Evaluation of mean platelet
volume in patients with
multiple myeloma

Low mean platelet volume is
correlated with poor prognosis
in MM patients

[135–137]
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7. Conclusions

Latest developments in genomic knowledge have not only enhanced our understand-
ing of the molecular mechanisms of hematological diseases, but also modified the area of
clinical diagnostics.

In this field, the employ of liquid biopsies seems a promising tool to be used also in
MM subjects. Until now, experimentations focused on CD138+ augmented CTCs or on
cfDNA for genetic analysis in MM patients have confirmed their usefulness for diagnosis,
prognosis, and response evaluation [139].

In the future, several features of liquid biopsies will be studied more in-depth to
improve results and support their clinical employ. An interesting aspect could be to investi-
gate diverse biomarkers at the same time to obtain higher sensitivity and specificity. For
instance, liquid biopsies simultaneously evaluating CTCs and cfDNA might be particularly
advantageous. Understanding the genomic concordance of CTCs and cfDNA may modify
their employ in performing MM precision medicine.

Furthermore, a fundamental application of liquid biopsies could be correlated to the
identification and molecular characterization of EMM. Recent imaging procedures suggest
that EMM could be more common than supposed before, and it has been proposed that
liquid biopsies might be useful to diagnose and manage EMM [140,141].

Liquid biopsies may be taken into account as a good clinical possibility thanks to their
non-invasiveness, absence of painpainless, fair accuracy and reliability. However, before
being used to the clinical setting, this technique needs to be confirmed and supported in
adequate clinical trials. One of the essential requisites is the integration of these procedures
in the managing strategy of MM patients and the achievement of clear evidence of full
agreement with the conventional gold-standard parameters including M protein level, BM
aspirate, and imaging. The employ of LB in assessing the response to treatment of MM
constitutes a further possibility, and in a short time this method could even establish itself
as a reference technique in the study of patients with MM.

Surely, there are still several weaknesses to overcome, such as enhancing the achieve-
ment of an appropriate amount of cfDNA and the choice of the most appropriate technique
to be used (for instance NGS).

The addition of LB into controlled clinical trials will assess its significance as an
independent factor for diagnosis and prognosis of MM patients beyond presently existing
biomarkers. The practicality and facility of a simple blood draw over a BM aspirate is
of great advantage for MM patients and intensely justifies its further exploration in the
context of MM.
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