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Abstract: In this work, ammonia cross-linked 8-armed polyethylene glycol hydrogel material was
successfully synthesized and used as a template for synthesizing nanoparticles with fluorescent
properties. The 8-armed polyethylene glycol hydrogel template was used to prepare molybdenum
disulfide quantum dots (MoS2 QDs). The ammonium tetrathiomolybdate functioned as a molyb-
denum source and hydrazine hydrate functioned as a reducing agent. The fluorescence properties
of the as-prepared MoS2 QDs were investigated. The bursting of fluorescence caused by adding
different concentrations of explosive TNT was studied. The study indicated that the synthesized
MoS2 QDs can be used for trace TNT detection with a detection limit of 6 nmol/L and a detection
range of 16–700 nmol/L. Furthermore, it indicated that the fluorescence-bursting mechanism is
static bursting.
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1. Introduction

Hydrogel is a polymer with a cross-linked three-dimensional network structure with
hydrophilic groups. Itcan swell in water but is insoluble in water [1], and is an essential
functional polymer material. Hydrogels contain hydrophilic groups that can absorb large
quantities of water, which causes them to swell. Most hydrogels have a high water content,
low modulus, and solid shape [2]. The multi-arm polyethylene glycol hydrogel material
is a new type of polyethylene glycol hydrogel. It has various advantages that long-chain
hydrogels do not have: high mechanical strength, high toughness, easy to prepare, and
biocompatibility.

In recent years, molybdenum disulfide (MoS2) research has focused on the applica-
tion of electrical and catalytic properties, and the related optical applications have not
been widely studied. Since its discovery in 2004, single-atom-thick graphene has been
widely used in interdisciplinary fields. Graphene materials have caused a sensation in
physics, chemistry, materials science, nanoscience, engineering, and biology [3–6]. The
excellent physical and chemical properties of graphene depend primarily on its inher-
ent two-dimensional properties [7]. Many ultra-thin nanosheets of graphene-like two-
dimensional inorganic materials such as MoS2 and tungsten disulfide are often used for
cutting-edge research [8–10]. MoS2 has attracted particular attention because it can be
easily peeled off. Moreover, MoS2 is a material with a specific energy bandgap and has high
chemical and thermal stability. Its properties increase the difficulty of preparing fluorescent
molybdenum disulfide materials. Therefore, it is imperative to study the synthesis method
of MoS2 materials with a fluorescent effect.

Some fluorescent MoS2 materials are beginning to be fabricated. In 2010, Splendiani
et al. manufactured MoS2 material on quartz and Si/SiO2 wafers using micro-lifting
technology and reported the fluorescent application of this material for the first time [11].
In 2011, Coleman et al. prepared fluorescent MoS2 utilizing ultrasonic waves in a suitable
organic solvent, which is a commercialized efficient MoS2 stripping method [12]. Eda
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et al. prepared MoS2 with a fluorescence effect through ultrasonic treatment and Li
intercalation [13]. Stengl et al. prepared MoS2 QDs using ultrasonic treatment and liquid
phase exfoliation [14]. Lin et al. prepared MoS2 QDs with different functionalizations
through surface modification of MoS2 QDs with thiol-containing capping agents using a
simple hydrothermal method [15]. Wu et al. [16] synthesized cysteine-functionalized MoS2
quantum dots (Cys-MoS2 QDs) by a simple amidation reaction, finding that Cys-MoS2
QDs had stable fluorescence. Roy et al. [17] synthesized water-soluble MoS2 QDs using a
simplistic bottom-up hydrothermal method.

Similarly, chemical vapor deposition methods are used to synthesize MoS2 films
with fluorescence effects on various substrates [18], and MoS2 films are prepared by
Ar+ plasma irradiation methods [19]. Most of the preparation methods for MoS2 QDs
are “top-down” preparation methods. These methods usually have many shortcomings,
such as environmental sensitivity, massive energy consumption, the use of expensive
and harmful organic solvents, and harsh pretreatment. “Bottom-up” methods such as
hydrothermal synthesis have also been reported to synthesize fluorescent MoS2 QDs [20].
However, hydrothermal synthesis methods also have some shortcomings. For example,
the synthesized products need to be separated for a long time. The reaction temperature is
relatively high, and a high-pressure vessel is required. These problems may be able to be
be solved by using the template method, but not many studies investigate this method.

2,4,6-Trinitrotoluene (TNT) is an important nitroaromatic explosive [21], which has
explosive solid power. Because of its use in terrorist activities, a quick and straightforward
technical means to detect TNT is needed. Moreover, TNT is considered a substance harm-
ful to the environmentthat has a lasting adverse effect on the health of humans and wild
animals [22]. Therefore, in the following work, a fluorescence sensor is designed to detect
TNT with the fluorescence quenching effect based on MoS2 QDs. This work uses 8-arm
polyethylene glycol hydrogel as a template material to synthesize QDs materials. Using
acrylate-terminated polyethylene glycol (PEGOA) as a template, there is no need for ex-
pensive reagents, hydrothermal conditions, other mechanical equipment, and complicated
post-processing procedures. The PEGOA is cross-linked by ammonia at room temperature,
reduced by hydrazine hydrate, and degraded. MoS2 QDs with fluorescence effect will be
prepared. 2,4,6-Trinitrotoluene (TNT) was selected as the target analyte. Studying the TNT
concentration and the fluorescence emission intensity data of MoS2 QDs will provide the
possible fluorescence quenching mechanism.

2. Materials and Methods
2.1. Materials

8-armed polyethylene glycol (8PEG-OH, Mw 15 KDa) was purchased from Jenkem
Technologies, Plano, TX, USA. 8-armed polyethylene glycol acrylate (8PEG) was prepared
using the same procedure as previously reported [23]. Polyethylene glycol diacrylate
(PEGDA, Mw = 2 kDa), ammonium tetrathiomolybdate (98% purity), and TNT (1 mg/L
ethanol standard solution) were purchased from Beringer (St. Helena, CA, USA). Ammonia
(37% w/w) and hydrazine hydrate were purchased from the China Pharmaceutical Group
(Shanghai, China). All other reagents were purchased from Aldrich and used as is unless
otherwise stated. Solvents were of at least analytical quality.

2.2. Synthesis of Acryloyl Chloride Modified 8-Armed Polyethylene Glycol (PEGOA)

First, 8PEG-OH (5 g) with hydroxyl capping was synthesized in a dry vacuum oven at
60 ◦C. 8PEG-OH was dissolved in 50 mL of Superdry solvent under nitrogen, and then the
solution was placed in an ice-water bath. Then, 4 g of sodium carbonate was added to this
mixture to neutralize the esterification reaction and produce the acid. The solution was
stirred and reacted with a magnetic stirrer at 35 ◦C for 4 days under a continuous stream
of nitrogen. The reacted solution was filtered through a column of alkaline alumina to
remove the insoluble solids and the acid produced during the reaction. The solution was
evaporated under a vacuum at 20 ◦C until a specific concentration was reached. An excess
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of cooled anhydrous ether (<4 ◦C) was added dropwise to the solution. The concentrated
solution was collected in a centrifuge tube, stirred continuously, and centrifuged rapidly
(5000 rpm, 15 min). After centrifugation was allowed to settle, the lower sediment was
taken and dried in a vacuum oven at 40 ◦C for 6 h to obtain a white powdery solid. The
dried final product was weighed, and the yield was calculated. The yield was about 72%.

2.3. Preparation of Ammonium Tetrathiomolybdate Solution

100 mg of ammonium tetrathiomolybdate was dissolved in 1 mL of ultrapure water
to obtain an ammonium tetrathiomolybdate solution with a 0.1 mg/mL concentration. The
ammonium tetrathiomolybdate decomposed easily in an aqueous solution and was easy to
prepare.

2.4. Synthesis of MoS2 QDs by 8-Armed Polyethylene Glycol Hydrogel Template Method

Three pre-prepared portions of 150 mg PEGOA were placed in 5 mL plastic centrifuge
tubes. Then, 150 mL of ultrapure water was added to dissolve them. For half an hour,
an ultrasonic cleaner was used for ultrasonic treatment to ensure that the solution was
completely dissolved and free of inclusions or bubbles. After ultrasonic treatment, 20 µL of
ammonium tetrathiomolybdate solution was added to the PEGOA solution. After evenly
mixing ammonium tetrathiomolybdate and PEGOA solution, 30 µL of ammonia, 30 µL
of a mixture of ammonia and hydrazine hydrate with a mass ratio of 1:1, and 30 µL of
hydrazine hydrate were added to the PEGOA and ammonium tetrathiomolybdate solution.
The three mixed solutions were then rapidly shaken and placed in an ultrasonic cleaner for
15 min to form the gum. 2 mL of ultrapure water was added to all three kinds of solutions
and set at room temperature for four days for gel formation.

2.5. Instruments and Measurements
2.5.1. UV-Vis Spectroscopic Testing

2 ml of the newly synthesized products of MoS2 QDs were added to ammonia water,
ammonia and hydrazine hydrate, and hydrazine hydrate only. At the same time, 2 mL of
the mixture solution of ammonium tetrathiomolybdate and 8-arm polyethylene glycol with
the same concentration were added. The four solutions were diluted to about 10 mg/L with
MiliQ water and put into quartz test tubes. The UV absorption spectrum was recorded
at room temperature with a TU-1901 UV-Vis spectrophotometer. The test range was
200–400 nm, the scanning rate was 100 nm/min, and the aqueous solution was the reference
solution.

2.5.2. Dynamic Light Scattering (DLS) Testing

The four solutions were diluted to about 2.0 × 10−5 mol/L with miliQ water. The
particle size and distribution of the solution were analyzed by a BI-90 plus dynamic light
scattering particle sizer. The particle size and its distribution were calculated with the
Stokes-Einstein equation.

2.5.3. X-ray Photoelectron Spectroscopy (XPS)

A total of 2 mL of the four solutions were refrigerated at −4 ◦C. They were then
freeze-dried at −60 ◦C, 20 Pa, for 3 days. After the freeze-drying process was complete,
the obtained powder was evenly applied to the conductive adhesive. The X-ray source
was al Kα Ray (1486.6 eV), and the beam spot size was 400 um. The energy of full-
spectrum scanning was 150 eV, and the step size was 1 eV. The ESCALAB 250 photoelectron
spectrometer was utilized for the test. The test results were plotted and analyzed using
Origin 8.5 software.

2.5.4. Fluorescence Emission Spectra

At room temperature, the excitation wavelengths of four solutions were scanned
with a LS-55 fluorescence spectrometer (PerkinElmer, Inc., Boston, MA, USA). The test
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conditions were set a slit width of 5 nm and scanning rate of 100 nm/min. We started
scanning at a fixed excitation wavelength of 320 nm and calculated the Stokes displacement.
Then, we gradually changed the excitation wavelength from 280 nm and obtained the
corresponding emission wavelength.

2.5.5. High-Resolution Transmission Electron Microscopy (HR-TEM) Measurement

The aqueous solution of PEGOA hydrogel degradation products containing MoS2
QDs was diluted slightly. A small amount of the solution was dropped onto the copper
mesh loaded with ultra-thin carbon film with a pipette gun. The samples were allowed
to air-dry overnight at room temperature. The samples were observed with a JEM-3030F
high-transmission electron microscope at different magnifications. The acceleration voltage
was 200 kV. There was minor damage to the material surface under this condition.

2.5.6. Fluorescence Detection of TNT

The degradation products of PEGOA hydrogel MoS2 QDs with ammonia and hy-
drazine hydrate were extracted at 2 mL and diluted below the maximum detection limit of
the LS-55 fluorescence spectrometer. The fluorescence spectrum test conditions in previous
studies were the same. TNT solutions with different concentrations were prepared. The
TNT solutions were added to the solution containing degradation products of MoS2 QDs
with a pipette gun. The concentration of TNT solution was changed from 0 to 1000 nmol/L.
The excitation wavelength of fixed fluorescence was 340 nm. The change of fluorescence
intensity was measured at the emission wavelength of 416 nm. The slit width was 5 nm,
and the scanning rate was 100 nm/min.

3. Results and Discussion
3.1. MoS2 QDs Fabrication with the PEGOA Template Method

MoS2 QDs were prepared with the PEGOA template method, which is different from
the MoS2 QDs synthesized in existing techniques. MoS2 QDs products were designed with
PEGOA as the template and ammonium tetrathiomolybdate as the molybdenum source.
The product obtained by crosslinking PEGOA with ammonia was a light yellow solution
without precipitation. It took a long time to reduce ammonium tetrathiomolybdate to
synthesize QDs. A group of products added to PEGOA and hydrazine hydrate were dark
brown solutions and suspended brown particles. This showed that the volume-limiting
effect is not strong when only in the presence of PEG molecular chains. However, its
reducibility is strong, and it produces the MoS2 particle with an indefinite diameter. Most
of the control groups without PEGOA produced black residues, indicating that ammonium
tetrathiomolybdate can only be reduced to MoS2 precipitate insoluble in water without
polymer chains. The product had no practical value. Unlike the product without the
PEGOA template, the MoS2 QDs synthesized by the PEGOA hydrogel template were
transparent solutions without residues and insoluble substances, and did not need any
separation treatment. This indicates that the PEGOA hydrogel template method is a fast
and straightforward method for preparing MoS2 QDs.

The formation of MoS2 QDs is schematically drawn in Figure 1a. Figure 1b,c shows
that the particle size of the MoS2 QDs was relatively large, as observed by HR-TEM. In our
previous work, the 8PEG hydrogel was used as a template to synthesize AgNCs. [24] The
formation was due to the volume-limiting effect of 8PEG networks to AgNCs. The AgNCs
formed inside the nanocages of the formed 8PEG gels. Results showed a homogenous
distribution of AgNCs in the gel matrix. This previous work inspired us with the idea to
attempt MoS2 QDs in situ formation. This is because the quantum dots displayed partial
agglomeration, as well as becausethe core-shell structure of the synthesized QDs was
caused by polyethylene glycol degradation. The existence of a single nanoparticle can still
be seen from the electron micrograph with a larger magnification. Its particle size is about
10 nm, indicating that molybdenum disulfide grows within the pore size of the PEGOA gel.
The formation of MoS2 QDs is limited in 8PEG networks, resulting in imperfect layered
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morphologies of MoS2 QDs. In addition, the formed MoS2 QDs are similar to nanoparticles.
They are different from the layered 2D MoS2 QDs.
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Figure 1. (a) Schematic drawing of MoS2 QDs formation; HR-TEM (b) image and (c) magnified
image of MoS2 QDs synthesized by the template.

The X-ray photoelectron spectroscopy (XPS) analysis of MoS2 products synthesized
by the PEGOA hydrogel template method is shown in Figure 2. XPS data show that
the sample contains sulfur, nitrogen, oxygen, carbon, hydrogen, and molybdenum. The
presence of nitrogen indicates that ammonia successfully acts as a crosslinking agent. The
sulfur element in MoS2 QDs prepared by the PEGOA hydrogel template method has a
weak peak at 162.2 eV. The Mo3d peaks have orbital self-selected split peaks, Mo3d5/2
and Mo3d3/2, positioned around 230 eV and 234 eV in the figure, respectively. This is the
characteristic peak of MoS2, indicating that PEGOA can be used as a template for preparing
MoS2 QDs.

3.2. Photoluminescence Performance Analysis of MoS2 QDs

8-armed star-shaped PEG-based hydrogels (8PEG-NH3) can be cross-linked by am-
monium solution 19. These were formed by an amine Michael-type addition reaction
between unsaturated carbon–carbon double bonds (acrylate end groups) and reactive
amine species. The degree of residual functional groups, the swelling degree, and the
resulting gels’ mechanical properties can be tuned [25,26].

Figure 3 shows the UV spectra of the MoS2 QDs synthesized by the above methods.
The UV spectrum of the ammonia water group has a specific UV absorption near 285 nm.
The UV absorption peak at 285 nm only appeared in the ammonia group. This is because
the added ammonium tetrathiomolybdate could not be reduced entirely. The intermediate
product may have a certain degree of UV absorption near 285 nm.
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Figure 2. The X-ray photoelectron spectroscopy (XPS) (a) survey analysis and (b) Mo3d of MoS2 products.
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Figure 3. UV-Vis spectrogram of synthesized MoS2 QDs by the above methods.

Figure 4 shows the dynamic light scattering (DLS) analysis of MoS2 QDs prepared with
the PEGOA template using NH3, NH3 + N2H4, and N2H4 cross-linking agents, respectively.
It can be seen from the figure that the particle size of ammonia as the additive is typically
around 4.8 nm. The size of the mixture of ammonia and hydrazine hydrate is mostly
about 4.1 nm. The size of hydrazine hydrate as the additive is mostly about 615 nm. This
phenomenon further indicates the formation of MoS2 QDs in the PEGOA template.

Figure 5 shows the excitation spectra obtained by scanning the MoS2 QDs when the
fluorescence emission spectrum was set to 420 nm. All solutions are filtered and removed
through a tetrafluoroethylene filter so as not to damage the instrument while measuring
the insoluble. The blank control group without PEGOA has a weak excitation peak at
365 nm, which may be the excitation peak of solvent water. The excitation peak of the
MoS2 QDs product obtained by adding only hydrazine hydrate is shallow and wide.
This indicates that the particle size distribution of MoS2 QDs obtained by reducing only
hydrazine hydrate is wide. The width of the excitation peaks when only ammonia is
added is much lower than that when only hydrazine hydrate is added. There are two little
peaks at 330 nm and 360 nm, indicating that the reduction reaction occurs very slowly and
only partially. The possible reason is that MoS2 QDs are synthesized inside the PEGOA
hydrogel, and some may be synthesized outside the hydrogel, resulting in uneven particle
size distribution. The ammonia and hydrazine hydrate groups show a strong excitation
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peak near 340 nm. The peak width was narrow, indicating that QDs with uniform particle
size were synthesized inside the hydrogel.

1 
 

 
Figure 4. Dynamic light scattering (DLS) analysis of MoS2 QDs.

Biosensors 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 
Figure 5. Fluorescence excitation spectrum of MoS2 QDs synthesized by above methods when emis-
sion spectrum is set as 420 nm. 

 
Figure 6. Fluorescence emission spectrum of MoS2 QDs synthesized by the above methods when 
excitation spectrum is set as 340 nm. 

Studying the position and intensity change of the emission peak of the MoS2 QDs can 
better explain the difference in the particle sizes of the synthesized QDs. As shown in 
Figure 7, when the excitation wavelength is increased from 285 nm to 345 nm, the peak 
position of the emission spectrum changes between 416–421 nm. Moreover, the peak po-
sition of the emission spectrum changes only 5 nm when the excitation wavelength 
changes by 60 nm. This further illustrates the advantages of the template method, which 
are particle size control and narrow distribution. When the peak is more significant than 
345 nm, the emission spectrum drops quickly, indicating that the fluorescence excitation 
peak of the prepared QDs is at 340 nm. It can be seen that a slight red shift of the fluores-
cence emission appears with the excitation wavelength. The redshift or change in the max-
imum intensity indicates a change in fluorescence properties, resulting from an interaction 
between the 8PEG and MoS2 QDs. It is suggested that the change in fluorescence is due to 
the further growth of MoS2 QDs. 

Figure 5. Fluorescence excitation spectrum of MoS2 QDs synthesized by above methods when
emission spectrum is set as 420 nm.

Since the MoS2 QDs have the most substantial excitation peak at 340 nm, we set the
excitation light wavelength to 340 nm to detect the fluorescence emission spectra of the four
groups of MoS2 products. The results are shown in Figure 6. The product obtained without
PEGOA in the control group has a weak emission peak near 414 nm, which may be a trace
amount of MoS2 QDs mixed with impurities. The group with only ammonia water and the
group with only hydrazine hydrate showed multi-peak distribution. The peak positions
ranged from 350 to 416 nm, indicating that the product’s particle size obtained without
volume limitation fully reduced was unevenly distributed. The fluorescence emission peak
position obtained by adding ammonia and hydrazine hydrate is at 416 nm, consistent with
the results described in other documents. This is the fluorescence emission peak of MoS2
QDs. The peak width is narrow, indicating that particle size distribution of QD formation
is relatively uniform. The Stokes shift of the obtained QDs is 76 nm, which may be one of
the characteristics of QDs synthesized by the template method.
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excitation spectrum is set as 340 nm.

Studying the position and intensity change of the emission peak of the MoS2 QDs
can better explain the difference in the particle sizes of the synthesized QDs. As shown in
Figure 7, when the excitation wavelength is increased from 285 nm to 345 nm, the peak po-
sition of the emission spectrum changes between 416–421 nm. Moreover, the peak position
of the emission spectrum changes only 5 nm when the excitation wavelength changes by
60 nm. This further illustrates the advantages of the template method, which are particle
size control and narrow distribution. When the peak is more significant than 345 nm, the
emission spectrum drops quickly, indicating that the fluorescence excitation peak of the
prepared QDs is at 340 nm. It can be seen that a slight red shift of the fluorescence emission
appears with the excitation wavelength. The redshift or change in the maximum intensity
indicates a change in fluorescence properties, resulting from an interaction between the
8PEG and MoS2 QDs. It is suggested that the change in fluorescence is due to the further
growth of MoS2 QDs.
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3.3. MoS2 QDs for Fluorescence Detection of TNT

In Figure 8a, when a certain amount of TNT solution is added to the aqueous solution
of MoS2 QDs, the fluorescence emitted by the MoS2 QDs is absorbed by the TNT molecules.
This phenomenon can be attributed to fluorescence resonance energy transfer, resulting in
the fluorescence quenching effect. The detection limit of the MoS2 QDs prepared by the
template method is 8 nmol/L. This value is determined by adding a certain amount of
TNT solution, and the fluorescence quenching intensity is more significant than the three
standard deviations detected by the instrument [27].
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QDs synthesized by the PEGOA template.

Figure 8b showed the fluorescence quenching degree (the ratio of fluorescence in-
tensity after adding TNT to solution without quencher) of MoS2 QDs. The fluorescence
intensity is used as a characterization of the degree of fluorescence quenching. It can be
seen that the fluorescence quenching degree (I0 − I)/I0 has a linear relationship with the
concentration of TNT solution. In the range of TNT concentration of 16–700 nmol/L, the
linear correlation coefficient is 0.9939, and the linear equation is Y = 0.00086127X − 0.01185.
This indicates that MoS2 QDs can be used as a fluorescence detection method to detect
TNT in the linear range. The detection range is 16–700 nmol/L.

The quenching mechanism of TNT can be determined according to the following
Lineweaver-Burk equation:

1/(F0 − F) = 1/F0 + KLB/
(

F0Cq
)

(1)

where F0 and F are the fluorescence intensity of QDs when TNT is not added and when
TNT is added, respectively. KLB is the corresponding static quenching constant, and Cq is
the concentration of the quencher. It can be seen from the formula that if (F0 − F)/F0 is
proportional to the concentration of the liquid, the mechanism of fluorescence quenching
is static quenching. Compared with the research of Xu et al., the detection limit of the
sensor in this paper is reduced, which is of great significance to the improvement of the
detection sensitivity of TNT [28,29]. In this work, the mechanism of sudden extinction
is the coordination structure formed between MoS2 QDs and TNT molecules. The TNT
molecules absorb the fluorescence emission of MoS2 QDs, which results in fluorescence
quenching.

4. Conclusions

In summary, a novel ammonia cross-linked acrylate-terminated polyethylene glycol
(PEGOA) hydrogel template was synthesized and used to prepare the nanocrystalline
material MoS2 QDs. MoS2 QDs prepared by the template method have a controllable
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particle size, narrow distribution, and stable fluorescence. They were influenced by the
different components of the incorporated cross-linking and reducing agents. The burst
effect of adding different concentrations of explosive TNT to the synthesized quantum dots
on the fluorescence was investigated. This investigation indicated that the synthesized
MoS2 QDs can be used for trace TNT detection with a detection limit of 6 nmol/L and
a detection range of 16–700 nmol/L. In the future, the quantum dots prepared by the
template method could be used in the fields of catalytic synthesis, cellular fluorescence
tracing, and fluorescence detection.
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