Received: 28 July 2018 Revised: 2 February 2019 Accepted: 25 February 2019

DOI: 10.1002/sim.8149

RESEARCH ARTICLE WILEY Statistics

Modeling lottery incentives for daily adherence

Colman H. Humphrey! | Dylan S. Small' | Shane T. Jensen! | Kevin G. Volpp!#** |
David A. Asch!>3#> | Jingsan Zhu?? | Andrea B. Troxel®

'Wharton School, University of

Pennsylvania, Philadelphia, Pennsylvania Many health issues require adherence to recommended daily activities, such as
2Perelman School of Medicine, University taking medication to manage a chronic condition, walking a certain distance
of Pennsylvania, Philadelphia, to promote weight loss, or measuring weights to assess fluid balance in heart
Pennsylvania . . . B 1

failure. The cost of nonadherence can be high, with respect to both individual
*LDI Center for Health Incentives and L .
Behavioral Economics, University of health outcomes and the healthcare system. Incentivizing adherence to daily
Pennsylvania, Philadelphia, Pennsylvania activities can promote better health in patients and populations and potentially
“Center for Health Equity Research and provide long_term cost savingS.

Promotion, Crescenz Veterans Affairs
Medical Center, Philadelphia,
Pennsylvania incentive in which payment occurs when both the participant's lottery number

Multiple incentive structures are possible. We focus here on a daily lottery

5The Penn Medicine Center for Health matches the number drawn and the participant adheres to the targeted daily
Care Innovation, University of
Pennsylvania, Philadelphia, Pennsylvania

behavior.

Department of Population Health, Our objective is to model the lottery's effect on participants’ probability to

New York University School of Medicine, complete the targeted task, particularly over the short term. We combine two

New York, New York procedures for analyzing such binary time series: a parameter-driven regression
model with an autocorrelated latent process and a comparative interrupted time

Correspondence

Andrea B. Troxel, Department of series. We use the output of the regression model as the control generator for the

Population Health, New York University comparative time series in order to create a quasi-experimental design.

School of Medicine, 180 Madison Avenue,
New York, NY 10016.

. KEYWORDS
Email: Andrea.Troxel@nyulangone.org

autocorrelated, binary, incentive, interrupted time series, lottery, quasi-experiment
Funding information

Centers for Medicare and Medicaid
Services, Grant/Award Number:
1C1CMS331009; National Institutes of
Health, Grant/Award Number:

RC4 AG039114

1 | MODELING LOTTERY INCENTIVES: AN INTRODUCTION

1.1 | Adherence to daily activities

Many chronic health issues require daily (or multiple times daily) adherence to medication for optimal management;
examples include diabetes, hypertension, and hypercholesterolemia. Some conditions, such as obesity, can be improved

Abbreviations: TE, treatment effect; ATE, average treatment effect; CDF, cumulative distribution function; MCMC, Markov chain Monte Carlo
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with daily physical activity. Other issues, such as addiction or substance abuse, are treated with abstinence programs in
which the daily goal is nonuse of the substance.

Many of these health-promoting activities can be defined as adherence to a recommended daily task. If medica-
tions are to be taken once or more per day, adherence constitutes taking all of the required pills for the day; failure
to take any portion would constitute nonadherence. Adherence to a daily activity can be defined as reaching a speci-
fied target, such as 7000 steps walked per day. In abstinence studies, adherence can be defined as achievement of an
abstinent day.

The purpose of defining health behaviors as adherence to a daily task is twofold: it permits both monitoring of activity
and incentivizing such activity. While adherence can be defined for any period, longer periods make it difficult to decipher
short-term behavior effects and make individual daily behaviors less salient. On the other hand, too-frequent moni-
toring (eg, twice-daily pill taking) may require burdensome evaluation and feedback, causing a disassociation between
adherence and intervention.

1.2 | Incentive mechanisms

There are a variety of ways to structure financial incentives, including as fixed payments, daily lotteries, pre-commitment
devices such as deposit contracts, or with nonmonetary rewards. We focus here on daily lotteries in which “winning” is
conditional upon fulfillment of the targeted daily activity. These lotteries incorporate several powerful concepts derived
from behavioral economics, a field that incorporates both economic principles and insights from psychology to encour-
age good decision-making and effect positive behavior change. For example, we tend to misinterpret small probabilities,
a phenomenon that may explain the popularity of state lotteries with very low expected values. In addition, we experi-
ence “loss aversion,” in which the loss of a certain size is more distressing than a gain of equivalent size is reinforcing.
We also experience “regret aversion,” in which the emotional cost of regret (eg, having missed the chance at a reward)
is significant.? Using these concepts, we have designed “regret lotteries” that take advantage of many of these concepts
to encourage desired behavior. Our group has conducted many trials of various lottery incentives for daily behaviors in
an effort to improve health behaviors in a variety of contexts; two examples regarding medication adherence are given in
the following.

In this paper, we aim to model the lottery program’s effect on adherence to a daily medication regime. We model daily
adherence, as a function of the daily lottery outcomes. Our main goal is to understand the mechanism of the lottery,
and how it affects both short- and longer-term adherence. We wish to form hypotheses about future lottery incentive
structures, including how to best allocate a fixed amount of money.*

1.3 | Binary time series

The analysis of autocorrelated time series with binary outcomes is less straightforward than analysis for the continuous
equivalent, as we cannot apply well-developed Gaussian methods. In place of autoregressive integrated moving average
models, binary models can use generalized linear autoregressive integrated moving average models; these models are
referred to as observation-driven, because the distribution of the outcome at a given time ¢ depends explicitly on prior
observations, and not on a hidden process.

In contrast to observation-driven methods, “parameter-driven” methods incorporate a latent process to account for
dependence. Kalman filtering is an example in continuous settings,’ and more generally, we can apply hidden Markov
models* and dynamic Bayesian networks.’ It is common to assume a discrete hidden structure to underlie a discrete time
series, but for many applications, including this paper's application, discrete hidden states do not offer much inferential
benefit over observation-driven methods. Similar to the work of Wu and Cui,® we will assume a continuous underlying
process.

The resulting model has useful inferential properties in its own right: we obtain information about both the underly-
ing autoregressive structure and the directionality and significance of our covariates. Following the work of Campbell
and Stanley,” we then analyze our multiple time series as comparative interrupted time series, using the output of our
regression models as the control mechanism for comparative time series.

*More specifically, a fixed expected amount per adherent day: the lottery naturally adds a random element to payouts, and in all payment structures,
payouts grow linearly with adherence, as is desired.
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2 | LOTTERY STRUCTURE

In our trials, lottery incentive group members were first asked to choose a personal two-digit number between 00 and 99.
Every day, a random number was selected as the winning lottery number. If a participant’'s number matched the lottery
on one digit (18% chance), s/he was eligible to win a small amount; if the participant's number matched both digits
(1% chance) s/he was eligible to win a large amount. The “win” amounts varied slightly by trial; the small prize was $5
or $10, and the large prize was $50 or $100, resulting in expected values of approximately $1.40 or $2.80, respectively. An
important feature of the lottery is that the participant received their winnings only if s/he had been adherent the previous
day. This “regret” feature, along with the variable reinforcement produced by randomness in the frequency of winning
and variation in the magnitude of the prize, was designed to enhance the motivational strength of the lottery.

We present analyses of two different studies using lottery incentive interventions to motivate daily behaviors, described
in the following. Both studies provided financial incentives for patients to take medications that they were already being
prescribed, and were reviewed and approved by the Institutional Review Board at the University of Pennsylvania.

2.1 | Medication adherence and hyperlipidemia

The Shared Incentives study® was designed to incentivize adherence to cholesterol-lowering medication (ie, statins),
and included four treatment arms: a control group, a physician incentive group (physicians received direct payments),
a participant incentive group (participants entered in a daily lottery like that described above), and a shared physician
and participant incentive group (both received incentives at half value). To demonstrate our approach, we focus on the
participant incentive groups here.

Both groups receiving participant incentives participated in a lottery as detailed in the previous section, with the par-
ticipant incentive group receiving $100 and $10 for large and small wins, respectively, and the Shared Incentive group
receiving $50 and $5. The trial enrolled 1503 participants, and followed them for 1 year of intervention, and an additional
3 months following the intervention; attrition was less than 10%. Participants in the control group and physician incen-
tive group were not part of the lottery intervention; we therefore combine both groups and consider them the control
group here.

2.2 | Medication adherence after myocardial infarction

The HeartStrong study,®° designed to incentivize adherence to beneficial medications following a heart attack (ie, statins,
aspirin, beta-blockers, and anti-platelet medications), included a control and an incentive arm. The incentive arm received
the same lottery as detailed above, with large win amounts of $50 and small win amounts of $5, along with social support
from a personal supporter and study-supported social worker. The trial enrolled 1509 participants, and followed them for
1 year of intervention, and an additional 3 months following the intervention; attrition was less than 10%. The control
group received usual care with no intervention.

3 | DATA DESCRIPTION AND ESTIMATES OF INTEREST

Our general problem consists of participantsi = 1, ..., N, each with a time series {Y;}! over a setstudy period ¢t = 1, ...,T;
(due to start-up issues with study devices, T; is often participant-dependent), with Y;, = 1 if the goal is completed, and 0
otherwise. Most of our studies are of the form

Yi,t =

1, pill taken by participant i on day ¢
0, otherwise,

or
v 1, participant i walks > 7000 steps on day ¢
=
' 0, otherwise.
For the case of medication adherence, a binary time series is the natural choice.

If the goal is completed on day ¢ and the participant has matching number(s), then the participant is awarded the lottery
winnings and is informed. If the goal is not completed but the participant has matching number(s), the participant receives
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a “regret” message telling her/him that s/he would have won, if s/he had only completed the goal. We represent these
outcomes with four indicators, with [ and L referring to the small and large lotteries, respectively, and w and r referring
to wins and regrets:

_{1, smallwin,Y =1 l_{l, smallwin,Y =0
r

0, otherwise 0, otherwise

@

L — 1, largewin,Y =1 I = 1, largewin,Y =0,
v 0, otherwise 0, otherwise.

These are participant- and day-dependent, so we collect them to give £i = (L, ly, Ly, L,)i. Note that, at most, one element
of Ei can take the value 1, and that most of the time (approximately 81% in the studies described here), Eﬁ = (0,0,0,0),
ie, no lottery winnings occurred.

The lottery results for participant i on day ¢ are given after Y;, is recorded; thus, our covariates for day ¢ include a function
only of {£!, ..., £}  }, lottery results from days prior to ¢.

3.1 | Lottery assessment: full study effects

We can define the ATE, as in Equation (2) (ATE during the study period) and Equation (3) (ATE during the follow-up
period) in the following, to describe the total value of the lottery:

[ T; T;
_ participant i in lotto arm participant i in control arm
ATEinsuy =E | DYV, ~E| QY @
| t=1 t=1
_ participant i in lotto arm participant i in control arm
ATEpost—study =E Yi,t —E it . (3)
| ©>T, t>T,

These values, however, are not our main objective; they are more properly compared with aggregation methods used in,
eg, the works of Patel et al'! and Troxel et al.’ Our goal is instead to analyze short-term response to the lottery, in order to
understand the mechanism of the lottery's effect and thus inform the optimal design for future lotteries.

It is possible that the entire effect of the lottery mechanism is nonresponsive to messaging: that is, participants adjust
their baseline goal-completion rate due to the knowledge of being in the lottery arm, and conditional on this have no
response to daily messaging and payouts. It is also possible that the lottery could be beneficial in terms of the ATE but
produce a locally negative effect. For example, winning the lottery could make participants decide that they have earned
a day off, leading them to be nonadherent the following day. If this is the case, then prior psychological knowledge, or
running many lottery experiments of different types, would best inform lottery design. We will not be totally left in the
dark in such a scenario, as we can compare local, or short-term, effects of the lottery with the ATE from aggregated models.
Patterns found under such a comparison can partially inform lottery design.

3.2 | Lottery assessment: short-term effects

We would like to determine the effect over d days of winning the various lotteries on day 7 for a given participant. Using
TE for the treatment effect, this would be

T+d

it

t=7+1 t=7+1

T+d
. ticipant i wi 11 lott: d ticipant i L 11 lott d
TE(small lottery, d.z, i) = l Yiptar icipant i wins small lottery on day ‘r] _ l yparticipant { loses small lottery on day r] ) (4)

where winning the small lottery requires a success on day 7, ie, Y = 1, and similarly, losing requires Y = 1. The equivalent
for the regret lotteries would require failure, ie, Y? = 0 in both the treated and control units.
Using our notation from earlier with lottery results, we could write the above equation

T+d T+d
. (1,)i=1Y!=1 (1,)1=0,Y!=1
TE(ly. d, 7,1) = lz Yi’{[ }] - lz v }] : (5)

t=7+1 t=7t+1
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Because we cannot observe counterfactuals, we instead compute the expected value of this quantity, using all participants

+d ) ) T+d ) )
ATE(,,d,7) =E l Z Yi{t(lw>r=1,Y,=1}] _E l Z Yi{t(lw>,=o,YT=1}] . )
t=7+1 t=7+1

In general, computing these quantities separately for each 7 is very noisy. We can define the full study local lottery effect
for d days as

ATE(ly, d, Full study) = E; ATE(l,,, d, 7). @)
Similarly, we have ATE(L,,, d, Full study), ATE(l,, d, Full study), and ATE(L,, d, Full study). The number of days d can
be chosen by the practitioner; we use d € {1,5,10}.

4 | MATCHING AND MODELING DAILY ADHERENCE

In this section, we outline our two-pronged approach for our matching analysis. Our main interest is to compare the
difference in adherence between lottery winners and nonwinners, and similarly, between those who received a regret
message and those who did not. Once the controls, ie, the appropriate comparison group, are chosen, this method is
straightforward.

Choosing suitable controls is the most difficult aspect of most matching analyses, and the same is true here. We want to
match people with an approximately similar base rate of adherence at the time of the comparison, or else our differences in
adherence rates will not correctly estimate the effect of the lotteries. To this end, we cannot match people based on overall
adherence: this is partly due to post-treatment matching bias,'? but also ignores the variance in adherence probability for
each participant over the course of a study.

We propose to model the daily adherence probability for each participant. We use the output of this modeling procedure
to generate controls for our matching procedure. We could also match on recent adherence; we compare this method to
ours in Section 7.4.

4.1 | Data structure and latent processes

We have N time series, {Y;}!,i € {1, ...,N}. Each time series is a binary sequence, Y, € {0,1},t = 1, ..., Ty, corre-
sponding to daily adherence. Each sequence has a sequence of associated covariates, {U,}!, and a parameter vector f.
The covariate vector includes a function of {£}, ... ,Ei_l }, ie, all lottery results up to day (t — 1).f The covariate vector
{U;}' could also include other clinically relevant variable such as participant demographics or baseline characteristics.

A standard generalized linear model assumes that the mean of Y is a function G(.) of (8') U, where G(.) is a function
from R — (0, 1), typically, a CDF such as the logistic function or the Gaussian CDF. The issue is the lack of independence:
the unconditional mean E[Y}; | Uﬁ] is unlikely to be the same as the conditional mean E[Y}; | Yt"_l, Ul;]. Note that, for
binary data, E(Y) = P(Y = 1).

We can solve the correlation issue in multiple ways. From the work of Cox et al,'* the two most general descriptions are
observation-driven models and parameter-driven models. In observation-driven models, Y;; depends explicitly on prior
values Y! for ¢ < t; see the GLARMA package' for R. In parameter-driven models, we assume a hidden state on which
Y depends. We believe that parameter-driven models offer a more natural interpretation of the process of the time series.
Under simulation, they project less bias onto future predictions. The disadvantage is in fitting these models.

We let X[" represent this hidden state, or underlying process. That is, for each binary sequence {Y;}!, there is a
corresponding continuous sequence {X;}!, on which the binary sequence depends. Specifically, we assume that

Pr(Yi, =1[X,) =® (th) >
where @ is the normal CDF.

We assume that Xt" directly incorporates the unit level covariates, Uﬁ. Further, we assume an autocorrelation parameter
@ € (—1,1) on the error structure for the underlying process

X =BYU L+,
Mg = @M+ &

®

"The lottery on day ¢ is a function of Y;; thus, £, cannot be a predictor for Y.
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Combining this in one step, we have
Xl = BYUL, =0 (X[ = (BYUY) + ey, ©)

with ]| being a zero mean, IID variable such that Var(e}, ) = ¢7. Unconditionally, Equations (8) give E(X}) = (BYU.
It generally will not be necessary to assume that ¢ is normally distributed.

This model is equivalent to having an underlying process a;, with P(Y; |U;) = ®(p'U; + «;), with a; being an
autoregressive mean zero process with no covariates.

We further discuss what our unit level covariates U! contain in the next section. Note that our notation differs from
typical regression models, in that Uti, and not X' ti, would contain clinical variables of importance if they were to be included

in the model.

4.2 | Structure of U and decaying lottery effect

Our predictors, the Uﬁ vectors, contain an intercept, a time variable, and prior lottery results. The time variable is to
account for potentially changing base goal completion rates over the course of the study.

As detailed in our data description and Equations (1), we allow the lottery to affect the underlying processes {X;}' in
four ways: when you win the lottery, and when you would have won if you had been eligible, ie, when you receive a regret
message; and for each, when the amount is large, and when the amount is small. We called this collection of mutually
exclusive indicators £}, with £} = (L, Iy, L, L,)..

Further, we allow these lottery effects to propagate beyond the next day, into the future. If the lottery only affected the
next day, we would have

U; = [1, t, (lw7lraLW’Lr)§—1] : (10)

Instead, we allow U to contain a function of prior lottery results. The method is detailed in the following section.
Essentially U contains a power decayed function of the most recent lottery, with the rates of decay also parameters in our
model. Each lottery effect is assumed to be strongest initially, but may continue to have some effect for future days. Our
models allow both the shape of the decay and the length of the decay to vary. We fit the decay parameters separately for
the large and small lotteries.

4.3 | Decaying lottery effect

In allowing the lottery to affect future days, we set up a decaying structure on all four lottery effects. The data do not,
in general, have enough signal to strongly identify separate decay parameters for winning and regret, so we fit the same
parameters for the two large effects, large wins and large regrets, and a separate set of parameters for the small effects,
small wins and small regrets.

We assume decay is parameterized by (y, 1), ie, we have some function G(x, y, A) that gives the weight of values from x
days ago. We assume that G(0,y, 4) = 1 for all y and 4, so that all decay is relative to day one.

y can be thought of as the shape parameter, and A the length parameter. A is how many days the lottery lasts for, so that
G(x,y,4) = 0for anyx > A.y controls how the effect scales down to zero at x = A: when y = 1, the decay is linear; for
y < 1, the effect decays more rapidly than linearly, and for y > 1, the values decays more slowly than linearly, ie, the
effect of the lottery is stronger for longer.

For these applications, we use the following functional form:

Gy ) = {é/l_(w X< an

x> A

While x will only ever be an integer in our examples, this function is defined for allx > 0. A can also be any real number,
not just an integer.

We can then use the propagated lottery effects in U. Note that we propagate only the most recent effect. Recall our vector
of lottery effects, Ci = (L, Ly, Ly, L,)i. Without loss of generality, we focus here on just one effect, eg, the small wins, ,,, on
day ¢ for person i.
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If one of the other three results happened more recently, that is, if there was a large win, a large regret, or a small regret
more recently than a small win, we set (lw)i = 0. If a small win was the most recent result, assume that occurred d days
ago, with d > 0. We set

(lw); = G(d, Ysmall, lsman) X (lW)i—d'
Of course, if d = 0, ie, the win occurred on day ¢, we set (lw)i = 1. Thus, we can just eliminate the indicator from the
above definition, to get

()i = G(d, Ysmal> lsman),  Won d days ago
o 0, other lottery result since.

If no lottery result has happened at all yet, we set Ei =(0,0,0,0).

For the small lotteries (win and regret), recall that we have pg, 11610 = 0.18, and for the large, we have pj g 010 = 0.01.
We assume a finite effect, with no effect after at most 10 days for the small lotteries, and 100 days for the large; ie, we
limit Agman to be less than 12, and Ajarge to be less than 100. This allows a flexible decay pattern, as seen in Figure 1, which
presents decay curves for varying values of y and A.

While we can have individual small lottery coefficients for participants, due to the large amount of noise in the data,
we assume a shared value of y gy, and Asman over all participants and, similarly, a shared yi,r5 and Ajarge.

4.4 | Modeling methods for regression

If primary interest is inference for the g’ vectors, we can follow the work of Wu and Cui® or the work of Dunsmuir and
He' in marginalizing out the {X'} processes to get valid inference on f'.

If we have inferential interest in ¢’ and the {X]} sequences themselves, we cannot aggregate through X, and must either
solve a very high dimensional likelihood problem, or use Bayesian methods, similar to the work of Klingenberg.'¢ Bayesian
methods also allow us to place a flexible hierarchical structure on our parameters. We can also make our problem more
general and allow the parameter vectors to vary over time.

Details of our hierarchical setup are given in Appendix B.

4.5 | Comparative time series

In theory, if our model is well fit and correct, we can solve integrals, or even simulate, to work out the unconditional effects
of Ui on future observations, YTi, T > t. However, this requires our model to be well specified to obtain unbiased estimates
and also requires our model to be fully identified. We would like to be able to make valid inference on the unconditional
effects even if the best our model can do is have good predictive properties. If our model were misspecified and could
only guarantee unbiasedness of the {X,}! sequences, we would still like to obtain marginal inference. Further, as we will
discuss in Section 4.7, the regression does not directly measure the lottery effects on adherence.
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Assume we have a dichotomous covariate, V}, which can be an element of our covariate vector UiT, at some potentially
different time /. Assume it takes values in {0, 1}. We can think of this as a treatment variable.

Our desire is to create quasi-experimental data, following the work of Campbell and Stanley.” For any given time 7, we
can run one of two separate procedures: (a) run our model up to time z; (b) take the results from our model run on the
full dataset at time z. From either of these two procedures, we will get a distribution for X! and, thus, a distribution for
P(YI =1).

We can separate our sequences into those with V! = 1 and those with V! = 0, and call these “treated” and “control,”
respectively. We use the model output X! values to match “treated” sequences with “control” sequences. In our data, V!
is the lottery result on day r — 1. To be specific, it is an indicator variable for one of the four possible lottery results. Thus,
we also match sequences on YTi_l, to make sure V'is just the effect of the lottery. That is, when two people are both eligible
(ie, both adherent) but only one wins, we can match them on lotto wins; when two people are both not eligible (ie, both
not adherent) and one gets a regret message, we can match them; when one person is eligible and the other is not, we
cannot match them.

From here, we can apply the logic of interrupted time series: compare the subsequent sequences Y;;, t > 7, for the
treated and control units. Because our sequences were matched at time 7, we do not have to fit time series models to
the sequences: we can simply compare the differences and conclude the marginal effect of V. This gains us both internal
and external validity, since we need not worry about the effects of V potentially being different for different X levels. The
downside is that we can no longer use just any control subject for any treated subject. This leads us to the estimands in
Section 3.2, ie, Equation (7): the average short-term effect of each lottery type.

If V'is continuous, we can still do this analysis, but we would have to change the strict definition of treated and control.
One option would be to treat it as a dose-response model.

4.6 | Matching details

Here, we provide more concrete detail for the above section. For every day ¢ of the study, we find our set of “treated”
participants for each lottery effect. That is, we find all those who won the small lottery on day ¢, all those who had a small
regret on day ¢, all who had a large win on day ¢, and all who had a large regret on day t. Our set of potential controls
includes those who did not have a lottery effect on day ¢. To measure the effect of wins, we compare lottery winners only
to participants who also completed the goal on day t, but did not win the lottery. To measure the effect of regret messages,
we compare regret message receivers only to participants who also did not complete the goal on day ¢ and thus were not
eligible.

We have the option to match with or without replacement, ie, we can match each control to multiple treated subjects,
or match each control to at most one treated subject. Allowing matching with replacement reduces bias because we can
choose the closest possible controls for each treated subject.!” The downside is a potential increase in variance; however,
in our case, blocking multiple uses of controls reduces our sample size enough to more than offset any variance decrease,
so we match with replacement.

We determine the distance of each control to each treated participant based on P(Y; = 1) = ®(X;), the predicted
probability of adherence on day t. We then compare @(Xfontr"l) and @(Xfreated), and if they are within a given tolerance 6,
the control participant is matched to that treated participant. We also allow many-to-one matching: multiple controls are
used if available. In typical MCMC fashion, we compute ®(X) for every iteration (post burn in), and average through them.

We make comparisons over 10 days, ie, we record the difference in adherence between our treated and control par-
ticipants over a 10-day period. Optionally, we can further restrict matches by using a cooling-off period: a matched
participant must wait a given number of days to be used in another comparison. If we use 5 days as a cooling-off
period, a participant cannot be part of a match on day 5 and also day 7—we will wait until day 11 to rematch
him/her.

These matches give us a set of comparisons for all lottery types across the timeframe of the study. However, both of the
choices above—the tolerance 6 and the cooling-off period—present trade-offs in terms of the quality of each match and
the total number of matches, ie, a classic bias-variance trade-off. We are not guaranteed to be able to match every treated
subject at every time period. We discuss the implications of this further in Section 7.

One downside of matching with replacement is that the variance calculation becomes more difficult, particularly
in many-to-one matching. We overcome this by bootstrapping to obtain the variance instead. Details are given in
Appendix C.
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TABLE1 Adherence after matching on day 13

Study Day
14 15 16 17 18 19 20 21 22 23

45 1 0 o0 1 1 0 0 1 1 0
21 1 1 1 0 1 o 0O 0 O O
62 0 1 0 O 0 o0 1 1 0 O

4.7 | Comparing regression with matching output

One might ask why we would want matched estimates after fitting our regression model. The primary reason is that the
matched estimates more directly answer the question of interest: how much effect does the lottery have, and what is the
mechanism? The direct estimates of the lottery effects also come with directly estimated standard errors.

The output of the regression method does not automatically inform us about the output of the matching method. For
example, if a study has an extremely high adherence rate, this will limit the maximum effect size of the lottery: it is difficult
to achieve a discernible positive difference in a participant’s adherence rate if s/he is already completing the goal 98% of
the time. The autoregressive parameters also affect the propagation of the lottery effects: a participant who nearly always
just repeats today what s/he did yesterday will on average respond less strongly to any incentives. Thus, if we want to
know the change in adherence from the lottery, we need to measure the change in adherence from the lottery.

On the other hand, the regression method does not suffer from these shortcomings; thus, we might expect our
parameters to generalize beyond the scope of the study group more readily than the in-sample lottery estimates.

5 | MATCHING EXAMPLE AND GRAPHICAL SUMMARIES

Given the set of matches generated according to Section 4.6, we obtain a set of differences for all four lottery types. For
each type, we may have multiple differences on a given study day, or none. Note that a given difference refers to one
treated participant, and at least one but potentially many controls.

5.1 | Matching example

Consider a specific example of the adherence vectors for the three units given in Table 1. If participant 45 wins the small
lottery on day 13, we search for controls. Say that participant 45 has an expected value of P(Y) of 0.6 (corresponding to
X = 0.25),* and participants 21 and 62 both complete the goal on day 13 but do not win the lottery, and have expected
values of P(Y) 0of 0.55 and 0.63, within our set threshold § = 0.05, ie, |0.6 —0.55] < 0.05and, similarly, |0.6 —0.63| < 0.05.
We can therefore match these two participants with participant 45 on day 13.8

With just one control, we simply subtract; with multiple controls we average the controls, then subtract. Thus, here,
our difference vector would be

21 62
Y45 _ Y14:23 + Y14:23
14:23 2

> =(0.5,-1,-0.5,1,0.5,0,-0.5,0.5,1, 0).

Based on this comparison alone, our estimate for the 1-day effect of the lottery would be an increase of 0.5; our 5-day
estimate would be 0.5 — 1 — 0.5 + 1 + 0.5 = 0.5, our 10-day estimate would be the sum of all 10, or 1.

Of course we do not just use one comparison; hence, our estimate for the 1-day effect is the average of the first element
of all such difference vectors, the 5-day estimate is the average of the sum of the first five element of all such vectors, and
similarly for the 10-day effect.

fWe have P(Y = 1) = ®(X), butindeed, EP(Y = 1) = E®(X) # ®(EX). We can match on EX instead of E®(X) if we want, but note that it will not be
equivalent, and it is generally worse in simulation.

$Note that it is possible that there might be no matches for participant 45 on this day. This could happen if no else completed the task that day; it could
happen if everyone who completed the task also won the lottery; it could happen if no one eligible was within the required 6 = 0.05 of 0.6; finally, it
could happen if everyone eligible was in a cooling-off period.
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FIGURE 2 Opverall and per-half estimates of all lottery effects, Shared Incentives. Top left panel gives full study results for small lottery
wins and regrets. Top right panel gives results split by first and second half of the study time period. The bottom two plots give results for
large lotteries, over the full study (left) and for the two halves (right). Each plot provides win confidence intervals in blue, and regret
confidence intervals in red, with the estimate as a black dash, for each of the three short-term periods considered: 1, 5, and 10 days [Colour
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TABLE 2 Total possible matches and total matches formed in the Shared Incentives study.
Matches that would have been formed without duplicated controls are provided for context

Small Wins Small Regrets Large Wins Large Regrets

Occurrences of Lotto type 2825 3507 140 191
# Matches, duplicated controls 2672 3305 132 182
Controls per match 1.93 1.91 1.94 1.91
# Matches, no dup. controls 1091 1374 55 92

Controls per match 1.79 1.81 1.71 1.86

5.2 | Graphical summaries

In the previous section, we provided an example of how we form the difference vectors for the matching process. We can
aggregate these vectors in many ways; for example, we could stratify by different values of X to see the effect of the lotteries
separately for high-adherence and low-adherence participants.

We produce an overall estimate of the effect of the four lotteries, for 1-, 5-, and 10-day periods. Finally, we split the study
in two with respect to time duration and compute the estimates separately for the first half and second half, to evaluate
any estimated change in the effect of the lottery. These estimates are given with valid (bootstrapped) confidence intervals.

5.3 | Shared Incentives results

Here, we provide a summary for the Shared Incentives data. The overall and per-half estimates for small and large lotteries
are provided in Figure 2. Blue lines and boxes describe effects for lottery wins; red lines and boxes describe effects for
regret messages.

Each colored bar represents a confidence interval around the effect estimate, which is given as the black dash within
the bar.T In the plots on the left, we produce estimates and intervals for the full study; in the plots on the right, we split
our estimates for each half. Within each plot, the blue bars toward the left display the estimates for wins, and the red bars
toward the right display the estimates for regrets. As discussed above, we plot the 1-, 5-, and 10-day estimates for each.
Finally, the top panel is for small lotteries, and the bottom panel is for large lotteries.

There is evidence that the small regret messages have a positive and significant effect on adherence, while small wins
do not; both large wins and large regret messages appear to have a positive effect of an extra 0.4 adherent days in the
10-day period after receiving the message. Note that the scales differ for small and large lotteries. There are modest and
inconsistent variations in effects between the first and second halves of the study.

We give the total number of matches possible and matches formed in Table 2. We allow duplicated controls in our study.
Even with a tight caliper of § = 0.03, we are able to match nearly every lottery result. If we had not allowed duplicated
controls, we would have lost over half of our matches, even with just a 3-day cooling-off period (slightly less if we had
mandated at most one control per treated).

5.4 | HeartStrong results

We produce the same graphical summaries for the HeartStrong data. The overall and per-half estimates for small and
large lotteries are provided in Figure 3.

Here, we see that the regret estimates have much higher variance than the win estimates, both at the daily level and
for longer periods. This is a consequence of very high (92.5%) adherence overall, averaged over participants. Thus, there
are far more participants winning lotteries than receiving regret message, both small and large. Overall, there appears to
be little to no effect of any lottery type. This is again likely attributable to the very high baseline adherence in this study.
There are no discernible differences between the first and second halves of the study.

Similar to the Shared Incentives study, we give the total number of matches possible and matches formed in Table 3.
We apply the same matching rules as before, allowing duplicated controls and applying a caliper of § = 0.03. Again,
we succeed in matching nearly every lottery result. If we had not allowed duplicated controls, we would have lost

INote that this is not necessarily in the center of the bar, because these are bootstrapped intervals, not generated from normal approximations.
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TABLE 3 Total possible matches and total matches formed in the HeartStrong study. Matches
that would have been formed without duplicated controls are provided for context

Small Win Small Regret Large Win Large Regret

Occurrences of Lotto type 33971 3198 2000 177
# Matches, duplicated controls 33686 3046 1970 166
Controls per match 1.99 1.88 1.99 1.84
# Matches, no dup. controls 12500 1046 754 63

Controls per match 1.98 1.61 1.99 1.64

approximately two-thirds of our matches, with just a 3-day cooling-off period (slightly less if we had mandated at most
one control per treated).

6 | SIMULATION STUDY

We simulated datasets according to our model, with a factorial design as follows: number of participants (20, 100, or 300);
length of sequences per participant (200 or 500 days per person); value of parameters (all zero or randomly nonzero).

Appendix A details some aspects of this simulation. We focus on using the resulting X (really ®(X)) values to perform
our matching.

For each simulation, we can derive the true value of the lottery at any time point ¢ by simulating data up to time ¢, setting
the lottery results on day ¢ to take our desired value, and then simulating any number of days beyond. This is computed
as a function of the parameter means and standard deviations.

For each MCMC result, we calculate the estimated lottery effects as per Section 4.6, and bootstrap the intervals.

Figure 4 plots power as a function of the absolute value of the counterfactual truth. These plots contain two lines. The
blue line is for matching as we have described in this paper: run the MCMC, match on ®(X), and compute the estimated
lottery effects. The red line is for matching on Y itself: at time ¢, compute the running average of the most recent k days,
and match on those, then compute the estimated lottery effects with these new matches.

For these comparisons, we use § = 0.03, and for Y, we match exactly on the mean with k = 10,” which gives approxi-
mately the same number of controls for both approaches. We see that ®(X) matching has higher power at all levels of the
true value for all lotteries except for small wins, where the two are about equal. We will discuss the method of matching
on Y further in Section 7.4.

Coverage reaches the nominal value for null lottery effects: we get 95% coverage of zero for simulations with no lottery
effect. Coverage drops to 70% in the worst cases at the extreme values of the counterfactual lottery; partly this is due to
correlation between the lottery coefficients and the decay coefficients.

We use the simulation study in the following section.

7 | SENSITIVITY ANALYSES

7.1 | Length of lottery effect

We somewhat arbitrarily use 1, 5, and 10 days to evaluate the effects of the lotteries. We can use any number of days,
although as mentioned in Section 3, we are not trying to assess the total value of the lottery with this analysis, but
specifically the shorter-term effects.

In Figure 5, we plot the estimated effects from our simulated datasets, going to 25 days. In most cases, the extent of
the effect is seen after 10 days. In applied work, we can, of course, estimate any number of cumulative days, and the
right number will depend on what is of interest to the practitioner. The message of the simulation study is that only very
extreme effects would not manifest within ten days.

# Matching exactly on the mean Y does not mean we match exactly on the last 10 days, only that two people must have completed the goal the same
amount of times in the last 10 days to be matched.
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FIGURE 4 Power as a function of (absolute) counterfactual truth [Colour figure can be viewed at wileyonlinelibrary.com]

7.2 | Control eligibility: matching on propensity

In order for a match to be considered valid, we require a control to be within a given tolerance of a treated subject, as
outlined in Section 4.6. If the tolerance is large, we obtain more matches of lower quality. If the tolerance is small, the
matches are high-quality, but the number of matches could be low.

In Figure 6, we plot the distribution of the ®(X) values from the Shared Incentives study as a histogram of all values. We
see that there are a large number of participant-days with very small likelihood of achieving the goal and a moderate num-
ber of participant-days with very high likelihood of achieving the goal, with the remainder with intervening likelihoods.
Thus, the availability of controls differs according to the value of ®(X).

Further, in Figure 7, we plot the mean squared errors of the estimates as a function of the tolerance 6, averaged over
our simulation results. This plot is for the 1-day effect. When § is very small, the error is high, because many subjects are
unmatchable. As 6 increases somewhat, the error is reduced, reaching its lowest value at around 6 = 0.01; the error then
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increases approximately linearly as 6 increases until 6 is approximately 0.3. Note that, for these results, we allow at most
three controls for each treated subject, so as § — 1, we do not tend to allowing random matches, but instead the best three
are chosen if all controls are available; this explains why the error remains moderate.
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The best 6 depends on how many participants there are, and to a lesser degree, how many days constitute each series.
The small and large lotteries will have different optimal solutions, as will the 1-, 5-, and 10-day effects.

For real data, we cannot assess the bias in the bias-variance trade-off separately. Instead, we can plot the number of
formed matches as a function of §. This serves as a proxy for variance, especially if we use a bound on the number of
controls for each treated subject. Figure 8 plots the percentage of possible matches formed in the Shared Incentives study
as a function of 6, holding all other variables constant (using the values used for our results: at most two controls per
treated). We plot the percentage when duplicates are allowed, and when they are not.

A small 6 means that some participants on some days might have no valid matches at all, and a large § means that some
matches may be essentially random. In our analysis, as in our simulated results above, we restrict to the three closest
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matches if more than three are eligible. If we were worried about excluding treated subjects who had no match, we could
force a match in all cases, even if the two ®(X) values were not close, and only use multiple matches if we had multiple
matches available.

Note that our priority is not out-of-sample prediction; reducing squared error is not our primary goal. Bias is generally
a more significant concern than variance, as bias error is hidden from us. Thus, we tend to favor small values of §. We still
care about power, however, so variance is certainly not irrelevant.

7.3 | Control eligibility: multiple matches

In our matching algorithm, we allow each participant to be involved in multiple comparisons starting on a given study
day. We also do not restrict concurrent matching: we allow, eg, a participant to be a control starting on day 11 and then a
treated unit starting on day 13.

Avoiding this restricts the number of matches we could create, with the benefit of avoiding correlated differences, eg,
if a participant is used as a control from day 11 to day 20, and a treated subject from day 14 to day 23. Depending on the
desired 6 and number of participants, avoiding concurrent matches could have a significant impact on the total number
of matches. Here, we evaluate the effect of changing this restriction.

We can increase the variance but potentially decrease the bias by tightening this restriction. We can allow a participant
to be freed to be matched after a fixed number of days, eg, five, or as mentioned, extend to a 10-day restriction, which is
equivalent to not allowing a person to be involved in more than one match simultaneously.

Our desire to avoid bias depends on our period of interest. If the 1- and 5-day effects are of primary interest, a 10-day
restriction will prevent matches that might not have caused us concern. However, if the 10-day effect is of primary interest,
we may be more inclined to keep the restriction closer to 10 days, assuming we can justify the restriction with a large
sample size.

Figure 9 plots the standard errors of the estimate for small wins for the 1-day effect, comparing matching with and
without replacement when the true effect is zero. Note that coverage for the duplicated matches is actually slightly higher
than the nonduplicated matches. The relationship between the two is the same for nonnull effects.

We can also see the difference in number of matches formed when we allow duplicates, looking at Tables 2 and 3, and
Figure 8 from the prior section.
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7.4 | Matching on adherence

Instead of running our MCMC and matching algorithm based on the output, we could instead simply match directly on
the {Y;}! sequences: for a given day r, we can match participants based on some function of days up to and including day
7. For example, we could match on an average of the most recent 10 days, or a weighted average with the most recent days
weighted more heavily; we could match exactly on a small sequence of days; we could match both means and number of
switches! of the most recent twenty days.

Such a procedure avoids the entire problem of fitting the MCMC. Of course, we may also be interested in the outcome
of that model, but for now, we focus on the matching results.

In Section 6, we compared matching on ®(X) to matching on the most recent 10 days; ie, we can match participant 13
and participant 94 on day 17 if

1 17 1 17
—HYYyB=—=Y3)yv* 12
10; t 10 & t (12)

In our simulations, this procedure results in lower power than ®(X) matching (see Figure 4). In our simulations, this
was because the variance of the estimates from matching on Y, measuring from the counterfactual truth, was higher for
all lotteries and cumulative estimates. We do not recommend this procedure as a final outcome, but consider it a useful
sanity check on the outcome of the MCMC procedure.

8 | DISCUSSION

In this paper, we propose a two-pronged approach to analyzing binary time series with intermediate outcomes. First, we
fit a parameter-driven regression model with a latent process; second, we use the outcome of that model to form matches
and estimate effects.

We can view this whole process as an extended propensity match. We first build and fit a latent model: this gives us
probabilities for each participant on each day. Secondly, we then use this to form matches, based on minimizing probability
distance: this is the same concept behind propensity matching.

Once we form these matches, we break the time series up into segments: a time series interrupted by the lottery results.
These matched segments form our lottery estimates, and thus, we have effect estimates on the correct scale.

In our studies, we saw a stronger effect in both cases from the regret messaging. This reinforces what regret theory
indicates: we hate to lose more than we love to win.

It is difficult to judge in our studies if the large lottery is sensible, in terms of providing 10 times the effect of the
small lottery. In both studies, the large lottery effects do seem larger than the small lottery effects, but the results are
consistent with many possible patterns of effect. We could read these results as a validation of having a large and small
prize; alternatively, it is possible the large prize dampens the effect of the small one. We also note that it appears that
effects in the second half of the study are not overly damped compared to the first half: it is encouraging that participants
seem to remain engaged even after 6 months of the program.

A more general question is whether the lottery is sensible at all: the strongest effects measured are 0.5 extra goal com-
pletions days in the 10-day period following the lottery. As discussed in Section 3; however, this “interior” analysis of the
lottery is not the best way to answer the question of the lottery's total worth.
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I A switch is going from adherent to nonadherent on consecutive days, or vice versa. The sequence 010101 has five switches, while 000111 has only one.
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APPENDIX A

SIMULATION STUDY

Each simulation was run with 2000 MCMC iterations; convergence is very fast, from a random start, typically within the
first 200 iterations.

Coverage at zero is at the nominal value for all six parameters. Coverage drops to about 80% away from zero without
using bootstrapped confidence intervals: bootstrap at the level of participants and run the MCMC algorithm on each
bootstrap sample. This can be an expensive step in terms of computation.

The @ parameters have one issue near zero, in that the estimate will not be negative. This by itself is not a problem, but
the variance of the overall mean is correlated with the ¢ parameter and is worse the closer ¢ is to zero.

The decay parameters are poorly identified, but the log-likelihood is significantly higher with them than without. The
main issue is that the parameters are highly correlated: both the decay and the “length” parameters are correlated, and
both are correlated with the respective lottery coefficients. We recommend keeping them for the matching procedure, but
we would not trust inference directly on the decay parameters, due to this identification issue.
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APPENDIX B

HIERARCHICAL STRUCTURE AND GIBBS SAMPLING

For the majority of our parameters, we have a basic hierarchical structure of the form
By~ N (B, 0%, (B1)

where f is the parameter of interest, and f; is the value of that parameter for participant j. § itself is assumed to come
from a very flat distribution with mean zero, and the variance is fit straight from Ime4 random effects models. The user
can adjust the functions for greater flexibility.

We use this structure on the intercept coefficients, the time coefficients, the small win lottery coefficients, the small
regret lottery coefficients, and the ¢ parameters. The exceptions are the large lotteries. Under simulation, we require huge
amounts of data to fit individual large lottery parameters to each participant. This is unsurprising, because the average
participant only wins a large lottery 3.5 times, let alone a further split into winning and regret. If your data can support
individual large coefficients, then, of course, you can fit them.

Note that, from simulations, the lme4 defaults perform very well when compared with pure Bayesian methods, and for
the variance parameter, Ime4 behaves similarly to flat priors with a spike at zero. Ime4 models will also “blow up” when
the data cannot support the model, a feature hidden in the form of a bug. This information is what leads us to avoiding
fitting individual parameters for the large lotteries.

For the Gibbs sampling, we sample from our generated Ime4 models.

B.1 | Hard to fit data

If the overall adherence is extremely high, as it is in the HeartStrong study, or extremely low, the parameters will not be
strongly identified. Similarly, we will have problems if the number of switches in the binary sequences is extremely low.

For the HeartStrong study, this was overcome by having no time coefficient, and only two hierarchical parameters:
the intercepts for each participant and the autoregressive parameters. With these restrictions, the MCMC converges very
quickly.

APPENDIXC

BOOTSTRAPPED INTERVALS AND P-VALUES

In standard bootstrapping with replacement, we resample our data multiple times, compute our estimates and potentially
standard deviations for each resample, and combine those with the estimates on the full sample to produce inferences.
Applying this, when we are computing our matched differences, we could sample each treatment-control combination,
potentially many-to-one matching, with replacement. But, this would not correctly estimate the variability of our data: if
each participant has slightly different lottery behavior, then this method will underestimate the noise of each resample.

Similar to using random effects, we must be slightly more careful when resampling with our data: we should sample
participants with replacement. This can happen at any stage of inference: we can resample participants when we are
calculating our difference estimates, or we could do it from the very start and run the entire MCMC analysis on resampled
datasets. Note that this would be expensive.

Generating confidence intervals and p-values from bootstrap estimates is nontrivial. Our method is the recommended
method from the work of Hesterberg'®; using our bootstrap samples to approximate the distribution of the ¢ values
produced by differences. This method is from the work of Efron and Tibshirani."

We are interested in some covariate . We use the estimate §, and the standard error Sey from our base estimation. In
testing against zero, we generate

(CD
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This t statistic might not have a t distribution, due, eg, to lack of independence. We use our bootstrap samples to estimate
the distribution instead: we generate R bootstrap ¢ statistics
p =B

t =
Sege

(C2)

Setting g, to be the @ quantile of the bootstrap ¢ distribution, we have
(ﬂA - ql_a/ZSAeﬁ, ﬂA - qa/zs%ﬂ) . (C3)

We can reject zero at level a. We can further use this to form p-values by calculating the largest « such that this interval
contains zero.
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