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Abstract

Motivation: Given a protein of unknown function, fast identification of similar protein structures

from the Protein Data Bank (PDB) is a critical step for inferring its biological function. Such struc-

tural neighbors can provide evolutionary insights into protein conformation, interfaces and binding

sites that are not detectable from sequence similarity. However, the computational cost of perform-

ing pairwise structural alignment against all structures in PDB is prohibitively expensive.

Alignment-free approaches have been introduced to enable fast but coarse comparisons by repre-

senting each protein as a vector of structure features or fingerprints and only computing similarity

between vectors. As a notable example, FragBag represents each protein by a ‘bag of fragments’,

which is a vector of frequencies of contiguous short backbone fragments from a predetermined li-

brary. Despite being efficient, the accuracy of FragBag is unsatisfactory because its backbone frag-

ment library may not be optimally constructed and long-range interacting patterns are omitted.

Results: Here we present a new approach to learning effective structural motif presentations using

deep learning. We develop DeepFold, a deep convolutional neural network model to extract struc-

tural motif features of a protein structure. We demonstrate that DeepFold substantially outperforms

FragBag on protein structural search on a non-redundant protein structure database and a set of

newly released structures. Remarkably, DeepFold not only extracts meaningful backbone seg-

ments but also finds important long-range interacting motifs for structural comparison. We expect

that DeepFold will provide new insights into the evolution and hierarchical organization of protein

structural motifs.

Availability and implementation: https://github.com/largelymfs/DeepFold

Contact: jianpeng@illinois.edu

1 Introduction

The comparison of protein structures has been a fundamental and

widely applicable task in structural biology. Given a new protein with

unknown functions, searching similar protein structures from existing

databases is a critical step for predicting its function. It is particularly

valuable when the query protein shares little sequence similarity

with existing ones, where sequence alignment algorithms, such as

BLAST(Camacho et al., 2009), cannot easily identify evolutionary

relationships. Protein structural search against a database is often

expensive because performing pairwise structure alignments against

all proteins in a database is computationally linear to the number

of protein structures in the database, which is usually large. Due to

the advances in crystallography and cryo-EM, the Protein Data

Bank(Berman et al., 2000), a database of solved protein structures,

has recently been increasing rapidly, with new protein structures

solved almost every day, though the number of possible protein folds

is thought to be bounded. Structural classifications of PDB, including

SCOP(Fox et al., 2014) and CATH(Sillitoe et al., 2015), enable us to

explore the hierarchical organization of protein structure space and

provide useful guidelines on the relationship between protein struc-

ture and functions by identifying structural neighbors. However, the

classification of structural neighbors may not be optimal, as there are

neighbors, though functionally and structurally similar, classified dif-

ferently. Thus, fast and accurate structural search against a large-scale

protein structure database is still a challenge.

Arguably the most popular structural comparisons approaches

are structural alignment-based methods (Menke et al., 2008;

Shindyalov and Bourne, 1998; Wang et al., 2013; Ye and Godzik,

2003; Zhang and Skolnick, 2005). Pairwise structural alignment

algorithms take 3D coordinates of two protein structures and opti-

mize a predefined geometric similarity measure using heuristics,

such as simulated annealing, dynamic programming and local

search. Although these approaches can provide residue-resolution

alignments with high accuracy, they are often computationally
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expensive. Such computational cost makes large-scale structural

search not practical when coping with a very large database since

the runtime of such structural alignment algorithms scales linearly

to the number of proteins in the structure database.

Another entirely different approach for structural search is to repre-

sent protein structures using structural features as 1D vectors and then

perform similarity calculation of such vectors without performing an

alignment. The idea of alignment-free algorithms was initially intro-

duced for protein sequence comparisons. A feature vector is computed

to represent each protein sequence for fast cosine- or Euclidean

distance-based similarity calculations. For instance, CD-HIT computes

a histogram of k-mers for fast sequence clustering (Li and Godzik,

2006). Other examples include k-mer mismatch kernels for homology

search and compositional methods for metagenomic binning (Eskin

et al., 2002; Luo et al., 2016). In many applications, these methods

can provide fast comparisons with comparable performance to the

alignment-based methods. Recently, several alignment-free protein

structural comparisons have been proposed (Budowski-Tal et al.,

2010; Rogen and Fain, 2003; Zotenko et al., 2006). By representing

each protein as a vector of structure features or fingerprints, we can

compute the similarity between vectors to find structural neighbors in

a large database. As a notable example, FragBag represents each pro-

tein by a ‘bag of fragments’, which is a vector of frequencies of a set of

predefined contiguous short backbone fragments (Budowski-Tal et al.,

2010). Although it achieves comparable accuracy to some structural

alignment algorithms, the performance of FragBag is not satisfactory

when the database becomes large. A possible reason is that FragBag

only considers contiguous backbone fragments, which captures only

local property of the whole structure. This limitation is sub-optimal be-

cause important long-range interacting patterns are ignored.

Here we present a new approach to learning an innovative struc-

tural motif presentation using deep learning. Inspired by FragBag, we

hope to further generalize it by learning conserved structural motif for

protein structure representation. We develop DeepFold, a deep convo-

lutional neural network model to extract structural motif features of a

protein structure from its Ca pairwise distance matrix. This neural

network model extracts local patterns from residue contact patterns

and composes low-level patterns into high-level motifs from layer to

layer. From this neural network, we can represent each protein struc-

ture/fold using a vector of structural motifs and perform the structural

search by only computing vector similarity. This neural network

model is trained in a supervised manner by fitting TM-scores (Zhang

and Skolnick, 2004, 2005), a structural similarity score, between

existing protein structures from a nonredundant SCOP database. We

demonstrate that DeepFold substantially outperforms three existing

alignment-free methods, FragBag (Budowski-Tal et al., 2010), SGM

(Rogen and Fain, 2003) and SSEF (Zotenko et al., 2006), on protein

structure search for a set of newly released PDB structures in 2016.

DeepFold achieves improved structural search accuracy and obtains

better structural neighbors. We also show that DeepFold not only

extracts conserved backbone segments but also identifies important

long-range interacting structural motifs in the representation. We ex-

pect that DeepFold will provide new insights into the evolution and

hierarchical organization of protein structural motifs.

2 Background: protein structure comparison
and retrieval

2.1 Structural alignment
Pairwise structural alignment algorithms take two protein structures

as input and identify geometrically aligned substructures according

to a predefined structural similarity score. Notable examples of

structural alignment algorithms include TM-align (Zhang and

Skolnick, 2005), Combinatorial Extension (CE) (Shindyalov and

Bourne, 1998), DeepAlign (Wang et al., 2013), Matt (Menke et al.,

2008) and FATCAT (Ye and Godzik, 2003). It is worth noting that,

given a structural similarity score, sophisticated optimization and

sampling techniques are usually required to optimize the score and

find the best alignment and substructures. As a result, the computa-

tion of aligning two structures is expensive. Therefore, using struc-

tural alignment algorithms for structural neighbor retrieval would

require O(n) pairwise structural alignments, where n is the size of

the structure database used for retrieval. By February 1st of 2017,

there have been more than 117 000 protein structures deposited in

the PDB. Even the non-redundant SCOP and CATH include more

than 13 000 structural domains. Thus, naively applying structural

alignment algorithms for protein structure retrieval is prohibitively

expensive.

2.2 Alignment-free methods
In contrast to structural alignment algorithms, alignment-free meth-

ods have been proposed for accelerating structural neighbor search.

Instead of optimizing a complex score for identifying geometrically

similar substructures, alignment-free methods represent each protein

as a set of structural patterns or fingerprints encoded in a feature

vector and compare these representations via very simple similarity

calculations like cosine- or Euclidean similarity. For example,

Zotenko et al. (2006) count the frequencies of 1500 secondary struc-

ture triplets (SSEF) as a vector for representing a protein structure.

Scaled Gaussian Metric (SGM) (Rogen and Fain, 2003) represent a

protein structure using 30 global backbone topological measures.

Recently, Kolodny and co-workers developed FragBag (Budowski-

Tal et al., 2010), a ‘bag-of-words’ vector representation including

frequencies of local contiguous fragments in the protein backbone.

The optimal performance was achieved with a library of 400 back-

bone segments, each with 11 contiguous residues. Although FragBag

shows improved retrieval performance over previously existing

alignment-free methods, the accuracy of FragBag is still not satisfac-

tory compared to advanced alignment-based methods. Possible rea-

sons are that i) the backbone fragment library may not be optimal

and that ii) the long-range interacting patterns, which are known to

be highly important in discriminating different protein fold, were

not considered.

3 Learning structural motifs for protein structure
representation

We propose DeepFold, a novel deep learning based method to pro-

ject tertiary protein structures into a low-dimensional vector space.

Different from conventional protein structure filtering methods like

FragBag, our method does not need a predefined fragment library

but automatically identifies relevant local structural protein motifs

and long-range interacting motifs. Benefiting from the powerful rep-

resentation learning ability of the deep neural network, DeepFold is

able to construct a more powerful protein structure representation,

achieving a better performance on the task of protein structural

searching.

3.1 Protein structure comparison
Suppose we have a query structure xQ and two candidate template

protein structures xA, xB. By applying the DeepFold neural network

on these structures as a feature extractor, we obtain three
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corresponding structural fingerprint vectors vQ, vA; vB. With these

fingerprints, we compute the similarity of each candidate to the

target query by taking the cosine similarity of their corresponding

vectors and ranking all candidates from a structure database

accordingly. A schematic diagram of this procedure can be found in

Figure 1. Thus, how to effectively represent each protein into a

low-dimensional vector space is quite critical for enabling accurate

protein structure search.

3.2 Deep convolutional neural network
Deep convolutional neural networks (DCNNs) are natural for learn-

ing hierarchical representations of image data. Multiple layers of

convolutional filters are constructed for identifying local patterns in

a nested manner. Inspired by the recent successes of DCNNs in com-

puter vision and image processing, we propose to develop a deep

convolutional neural network model, DeepFold, to learn structural

motifs for structural comparison.

Given a tertiary structure of a protein, we first calculate the Ca

pairwise distance matrix as the raw representation feature, aiming

at preserving the geometric information of the input protein struc-

ture. We denote the proteins structure as x and its pairwise distance

matrix as D, each entry Dij being the Ca distance between ith residue

and jth residue. Due to the existence of missing residues in protein

structures, directly taking the distance matrix as input may later

cause numerical issues in the neural network. So instead, we use the

following tensor as input.

Xijk ¼ D�2k
ij ;k ¼ 1; :::;K (1)

where X 2 RL�L�K and K is an integer indicating the inverse power

of the squared distances. It is worth noting that the choice of this in-

verse power series of distances is similar to several distance-

dependent approximations in force field energy functions, such as

van de Waals and electrostatic energies (Brooks et al., 1983; Weiner

and Kollman, 1981).

As shown in Figure 2, a deep neural network, DeepFold, takes

the transformed input feature of X, followed by a sequence of blocks

of transformations. Each block contains the stacked layers including

a convolutional layer and a nonlinear transformation ReLU layer.

After the last convolutional layer, we apply a mean-pooling layer

and L2 normalization to aggregate features and obtain the final fin-

gerprint representation f ðXÞ of the input protein structure. Taken as

a whole, our deep net is a non-linear mapping from a high-

dimensional structural input X to a low-dimensional fingerprint rep-

resentation f ðXÞ. Specifically, a convolutional layer takes the output

from the previous layer Hn�1 2 RLn�1�Ln�1�Kn�1 as input and

compute output Hn 2 RLn�Ln�Kn in the following way. For each

k 2 f1; 2; ::;Kng

Hk
n ¼ ReLUðWk

n �Hn�1 þ bk
nÞ (2)

where for the nth convolutional layer, Wk
n 2 Rl�l�Kn�1 is a weight

tensor of Kn�1 convolutional filter weights of size l� l. The function

operator ð�Þ is 2-dimensional convolution operator over the first

two dimensions of the input Hn�1, and bn is a bias term. Intuitively,

a filter in the first convolutional layer can be seen as a local feature

extractor on the inverse pairwise distance matrix with the goal to

capture important local residue contact patterns as a structural

motif. In higher layers, a filter can be seen to compose low-level

structural motifs into high-level motifs. However, note that the con-

volutional operation essentially performs dot products between the

filters and local regions of the input features. A common implemen-

tation of the convolutional layer is to take advantage of this

fact and formulate it as matrix multiplications. The output dimen-

sions Ln � Ln depend on the stride which further reduces the

feature dimensionality by controlling how the convolutional

filters slide across the input of each layer. After each convolutional

layer, a Rectified Linear Unit (ReLU) function (Krizhevsky et al.,

2012) is applied for nonlinear activation. The ReLU can be imple-

mented by simply thresholding a matrix of activations at zero by

ReLUðhÞ ¼ max ð0;hÞ. Given any tensor/matrix/vector input h,

ReLU takes elementwise max operations. Compared to traditional

logistic or tanh functions, ReLU is found to greatly accelerate the

convergence of stochastic gradient descent due to its linear, non-

saturating form.

After the last convolutional layer, we get KN feature maps with

the size of LN � LN. Then for each feature map i 2 f1;2; ::;KNg,
we extract the diagonal elements of each feature map and take the

mean pooling (that is, calculating the mean value of diagonal ele-

ments). Therefore, we get the KN-dimensional vector representation

of f(x). For optimization efficiency, each vector is normalized

with L2 Norm so that all the vectors are projected on a sphere

jjf ðxÞjj2 ¼ 1. Similar to the FragBag representation, DeepFold maps

an input tertiary structure into a low-dimensional one-dimensional

fingerprint vector but this representation is parameterized via a deep

neural network, with each dimension encoding a specific structural

motif. Therefore, DeepFold is more powerful than FragBag in that it

extracts not only contiguous backbone fragments but also the long-

range interacting motifs, which are completely omitted by FragBag.

One can easily see that FragBag becomes a special case of DeepFold

if we only consider the near-diagonal region of the pairwise distance

matrix as input. Our in-house experiments showed that the learning

convergence of this special case is poor in practice.

3.3 Learning to compare protein structures
Given two proteins xA and xB, with their normalized representations

f ðxAÞ and f ðxBÞ, we expect the similarity between f ðxAÞ and f ðxBÞ
can reflect the structural similarity between xA and xB. So if two

proteins have very similar structures, we should map their features f

ðxAÞ and f ðxBÞ to be close to each other, while if xA and xB have dif-

ferent structures, we should push their fingerprint features far from

each other. Although pairwise structural alignments are slow in pro-

tein structural retrieval, we can precompute them on a training data-

set and use the resultant structural similarity scores to guide the

training of DeepFold. So our key idea here is to fit structural com-

parison scores using powerful deep neural networks, thus enabling

fast alignment-free comparison and retrieval for new query proteins.

Fig. 1. Alignment-free structure comparison. The query protein structure is

mapped into a low-dimensional fingerprint vector. We then compute a cosine

similarity score between the query fingerprint vector and the vector of a tem-

plate structure. Similar structures share high similarity scores, while dissimi-

lar structures share low similarity scores
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To implement this idea for training DeepFold, we use the cosine

similarity score of f ðxAÞ and f ðxBÞ and apply the well-known max-

margin ranking loss function (Wang et al., 2016) to discriminate

structurally similar proteins from dissimilar ones.

To apply the max-margin rank loss function, we first define

what positive (similar) and negative (dissimilar) pairs of proteins

are. In this work, we use the structural alignment program TM-align

(Zhang and Skolnick, 2004) to measure the structural similarity of

two proteins. Based upon a dynamic programming algorithm, TM-

align performs structural alignment of the two input structures to

produce an optimal superposition and return a TM-score that scales

the structural similarity in the range of ½0; 1�. Therefore, for a

protein xA, we define all pairs (xA, xB) from the database with

TM-score higher than p � TMmaxðxAÞ as positive pairs, where

TMmaxðxAÞ is the maximal TM-score between xA and other proteins

in the database, and p is a hyper-parameter chosen to be 0.9. So

only very similar structures in the database are considered to con-

struct positive pairs in training. For all other pairs that have scores

smaller than this threshold, we consider them as negative pairs. It is

important to note that other structural similarity scores or structural

alignment algorithms can be used here. We choose TM-align/score

as it has been shown to be both fast and accurate in structural classi-

fication and often more robust than many other structural similarity

scores (Zhang and Skolnick, 2005).

With the defined positive and negative pairs, our target is to

make the margin between all positive pairs and negative pairs as

large as possible. Formally, for a specific protein xA, suppose the set

of all positive pairs is XþA while the negative set is X�A. Thus, the

margin loss could be defined as:

LðxAÞ ¼
X

xþ 2Xþ
A

X

x� 2X�A

max ð0; cos ðf ðxAÞ; f ðx�ÞÞ

�cos ðf ðxAÞ; f ðxþÞÞ þmÞ
(3)

where m is a small positive margin value, which is chosen as 0.1 in

this work. Then, the objective is to minimize this margin loss and

learn the parameters {W, b} in all layers of the neural network as

defined in the above.

Efficient online training

In above Equation 3, to optimize the loss function, we need to sum

over all positive and negative training pairs and minimize the rank

loss function. However, the number of training pairs can be very

huge, and thus it is not feasible to optimize them all at one time. In

addition, the imbalance of positive and negative pairs pose another

challenge in training. Here, we use the stochastic gradient descent to

only randomly take a small batch of training samples at in each iter-

ation. Specifically, we use mini-batches to do the feed-forward

passes and back-propagation in each iteration. Motivated by

(Schroff et al., 2015), we design a simple yet effective sampling

method to obtain a fast empirical convergence by selecting effective

pairs. Given a protein xA, we consider the most effective positive

pairs and negative pairs ðxA; x
þ
a Þ and ðxA;x

�
a Þ accordingly as:

xþA ¼ arg min
x2Xþ

cos ðf ðxAÞ; f ðxÞÞ (4)

x�A ¼ arg max
x2X�

cos ðf ðxAÞ; f ðxÞÞ (5)

Intuitively, we identify those positive pairs that are easier to get

confused with negative pairs (furthest positive pairs) and those nega-

tive pairs that are easier to get confused to positive pairs (nearest

negative pairs) within each mini-batch. If mini-batches may not

have any positive pair, we add at least one positive pair for each pro-

tein in the mini-batch to balance the training. Also, inside each mini-

batch, we identify negative targets that are most similar to the query

and incorporate the margin between all positive pairs and these k

negative pairs to make the training process more effective.

3.4 Implementation details
The first convolutional layer consists of 128 filters of size 12�12

with a stride 2�2. After that, we connect it with the second layer of

256 kernels of size 4�4 with a stride of 2�2. From the third layer,

we stack 3 identical convolutional layers, each with the size of 4�4

and a stride 2�2. Finally, the output of stacked layers is linked to

400 filters with a size of 4�4 and a stride of 2�2. The total dimen-

sion of 400 is selected to match the size of the vector representation

used in FragBag. Based on the features extracted, we capture only

diagonal elements and perform mean pooling for each filter. Then

we conduct L2 normalization and project all final fingerprints into

the space of sphere jjxjj2 ¼ 1.

DeepFold is implemented with the Python library Lasagne (https://

github.com/Lasagne/Lasagne) based on Theano platform (Theano

Development Team, 2016). In the optimization, we apply stochastic

gradient descent (SGD) with a momentum of 0.9. The learning rate

decay scheme is chosen with AdaGrad (Duchi et al., 2011) algorithm.

The mini-batch size is chosen as 64 considering the memory usage on

the graphics card. Within each mini-batch, we sample one positive in-

stance for each protein and compute top 10 hardest negative instances

in the margin loss inside each mini-batch. To make the model more

robust, we used Dropout(Srivastava et al., 2014) after each ReLU

layer, which could be viewed as an ensemble trick to enhance the

Fig. 2. Deep neural network structure of DeepFold: Given a protein structure, we first compute the raw distance features. Then we feed the features into a

deep convolutional neural network that consists of N convolutional blocks. Inside each block, we apply a convolutional layer, followed by a ReLU nonlinear layer.

The final output of DeepFold is a vector representation of structural motifs
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generalization ability of the model. During training, we monitor the

retrieval accuracy using the validation set as queries and the training

set as the database. Totally, we train each model with 100 epochs and

select the one with best evaluation accuracy. Then we report the per-

formance tested with testing fold as queries and all of the training

data as the database on this selected model. All the experiments are

performed on a workstation with 256GB RAM and an NVIDIA

Titan X graphics card with 12GB memory.

4 Results

4.1 Comparison to existing alignment-free structural

retrieval methods
Experimental settings

We construct a sequence-nonredundant structure dataset by filtering

out protein structures with 40% sequence identity in the latest

SCOP database (version 2.06) (Fox et al., 2014). The filtered data-

base includes 13 546 representative protein domains, indexed by the

manually curated SCOP taxonomy classification.

We compare our proposed DeepFold with FragBag (Budowski-

Tal et al., 2010), the existing state-of-the-art alignment-free method.

With the goal of making a fair comparison, we set the dimensional-

ity of DeepFold representation to be 400, which is the same param-

eter used in the default setting of FragBag. Also, we also compare

our approach with two other previous alignment-free methods,

including SGM (Rogen and Fain, 2003) and SSEF (Zotenko et al.,

2006), which were introduced much earlier. Furthermore, to test

whether the long-range patterns are helpful, we also build a simpli-

fied local DeepFold model as a baseline, which only extracts frag-

mental features from consecutive residuals, the same as FragBag.

This method is denoted by DeepFold(L).

For assessment, we pick structures with TM-Scores that are no

less than 0.9 of the highest TM-Score achievable by structures in the

database as the True structural neighbors to a target structure. It is

natural to train and/or test DeepFold with other structural similarity

metrics such as GDT_TS (Zemla et al., 1999; Zemla, 2003),

MaxSub (Siew et al., 2000) and lDDT (Mariani et al., 2013). To

evaluate the accuracy of structural retrieval, we compute the

Receiver Operating Characteristic (ROC) curve for each method

and calculate the average area under ROC curve (AUROC) of all

query proteins in the validation set. A more effective algorithm

should have a larger AUROC. In addition to the ROC curve, we

also plot the hit@top-k curve, which has been widely used for evalu-

ating ranking performance in information retrieval (Zhai and

Massung, 2016). The hit@top-K is calculated as the percentage of

queries in which at least one positive template (i.e. TMscore

> 0:9 � TMmaxðqueryÞ) appear in the top-K retrieved list from the

dataset. We choose the top-K hit rate as the metric motivated by the

fact that if there is a very similar structural neighbor ranked within

top K, we can apply a structural alignment algorithm [such as TM-

align (Zhang and Skolnick, 2005)] to identify it with at most K pair-

wise alignments. Besides the curves mentioned above, we also report

the area under the precision-recall curve(AUPRC) along with

hit@top-1, hit@top-5, hit@top-10 in the table, providing alternative

metrics for comparison. In addition, we also compute hit@top-K ac-

curacy by the SCOP classification, i.e. whether two structures are

within the same family classification.

Results on SCOP data

Since DeepFold is trained by supervised learning, in contrast to

other unsupervised alignment-free structural comparison methods,

we firstly design a rigorous cross-validation scheme to evaluate the

performance on the SCOP structure database more robustly.

Specifically, we randomly split all structures from the SCOP data-

base into 5 subsets and perform a 5-fold cross-validation. In each

fold, we only use pairwise TM-scores between proteins from the

training set as ground truth to train DeepFold model, and for evalu-

ation, we utilize each protein in the validation set as the query to

search in the training set and report the retrieval accuracy. We show

ROC curves and Hit curves on cross-validation and the comparison

results in Figures 3, 4 and Table 1, respectively.

According to the average ROC Curve of these algorithms, our

method significantly outperforms other alignment-free methods.

Our algorithm achieves a much higher true positive rate at the same

level of the false positive rate. Also, our algorithm has a higher

AUPRC score, indicating DeepFold is better at ranking similar struc-

tures on the top. Moreover, according to the top-1, top-5, top-10 ac-

curacy, our algorithm has remarkable improvement compared with

the strongest baseline, FragBag. From Figure 4, we also observe the

significant improvement in the accuracies determined by the SCOP

family classification, indicating our method is consistently better

and not overfitted to the metric used for training. The improvement

we observed is probably because our algorithm could automatically

learn structural motif which is hard to be computed by human clus-

tering or there maybe consist of several unknown protein structures

which have not be explored by the human before. Furthermore,

FragBag treats each structural motif equally which is not consistent

with biological insights. Nevertheless, our DeepFold can learn the

weight for each filter automatically so that each motif is attached

with a weight. In addition, our DeepFold(L) outperforms FragBag

according to AUROC but slightly worse according to hit@top-k and

AUPRC. We think the possible reason is that Fragbag is constructed

on a set of representative protein folds, while DeepFold(L) is only

trained on a subset of protein fold space in the cross-validation.

Fig. 3. ROC curves and Hit@Top-k curves on SCOP data. The performance of

DeepFold is compared with FragBag and a simplified version of DeepFold

with only local backbone segmental features

Fig. 4. Hit@Top-k according to SCOP family classification. The performance

of DeepFold is compared with FragBag and DeepFold(L)
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Furthermore, we study whether long-range structural motifs are

useful for improving retrieval. Both FragBag and DeepFold(L) only

consider local structural motif representation, while DeepFold con-

siders both local structural motif and long-range protein contact

patterns at the same time, which is harvested by the convolutional

structure and non-linearity of the networks. The retrieval accuracy

of DeepFold is significantly better than both DeepFold(L) and

Fragbag, thus indicating that long-range structural motifs should be

considered for representing protein structures.

Results on searching recently released proteins in PDB

In addition to the cross-validation on SCOP, we hope to further

evaluate the generalization performance of DeepFold on the newly

release protein structures in PDB. We download all recently released

protein structures on the PDB website (Berman et al., 2000) from

March 1st 2016 to May1st as query proteins and filter them with se-

quence identity 40%. Furthermore, to avoid potential redundancy

between these proteins and the proteins from the SCOP database,

we also remove all queries with a sequence identity higher than 40%

to any protein in SCOP dataset. Then final query dataset we get has

757 proteins. By searching every query protein against all SCOP

protein domains as the database, we report the retrieval perform-

ance using the same evaluations as reported above. The final

DeepFold model is used by the ensemble of five models trained in

the earlier 5-fold cross-validation on SCOP.

The results are reported in Figure 5 and Table 2. The curves of

SGM and SSEF are not shown in the figure since their accuracies are

much worse than DeepFold and FragBag.

Similar to previous results on SCOP data, DeepFold achieves bet-

ter performance under all evaluation metrics on this independent

non-redundant dataset, which means that the learned structural

motif in our DeepFold actually can be generalized for newly released

proteins that are not included in the training data. As shown in

Figure 5, our Deepfold outperforms other methods by a significant

margin. We also discover the wide margin between our curve and

baselines in the hit@top-k rate. Note that though our DeepFold is

only slightly better than FragBag on hit@top-1 accuracy, we are still

able to obtain significant improvement on hit@top-5 and hit@top-

10, which further demonstrates the effectiveness of DeepFold on

protein structure search. The difference of the performance on

SCOP and newly release proteins may be caused by different distri-

butions of folds appearing in these two datasets.

Computational efficiency

For computational efficiency, we evaluate the runtime needed to

generate the representations of all 757 protein structures in the re-

cently released structures curated above. On average, FragBag, one

of the most efficient fingerprint algorithm before(Budowski-Tal

et al., 2010) took 553.202 s while DeepFold only took 20.128 s.

DeepFold is roughly 25� faster than FragBag. We argue that our al-

gorithm is faster because it does not need to perform the expensive

local structural alignments between the target protein and fragments

in the library. The other reason is that DeepFold fully utilizes the

GPU parallelization and the fast CUDA numerical library, even

though it has many parameters in the neural network model. On

CPUs, DeepFold took 282.801 s, which is still faster. It is worth not-

ing that we tried to implement Fragbag to run on GPUs, but the

structure of local structural comparison algorithm makes it tough to

fully exploit the parallelism of GPU cores to outperform the imple-

mentation running on CPU.

4.2 Why does DeepFold work so well?
To interpret the superior performance DeepFold achieves in protein

structure search, we analyze the representation learned by the deep

neural network model and intend to understand the structural mean-

ing of the representation. To do so, we develop a quantitative

Table 1. Performance comparison on the SCOP data

Algorithm Dimension AUROC AUPRC Top1 Acc Top5 Acc Top10 Acc

SGM (Rogen and Fain, 2003) 30 0.768*** 0.062*** 0.000*** 0.001*** 0.002***

SSEF (Zotenko et al., 2006) 1500 0.807*** 0.004*** 0.001*** 0.006*** 0.016***

FragBag (Budowski-Tal et al., 2010) 400 0.904*** 0.359*** 0.496*** 0.610*** 0.653***

DeepFold (L) 400 0.958*** 0.341*** 0.443*** 0.596*** 0.662***

DeepFold 400 0.979 0.498 0.587 0.736 0.784

Note: *denotes p-value < 5e-3, **denotes p-value < 1e-5 and ***denotes p-value < 1e-10.

Table 2. Performance comparison on the recently released proteins

Algorithm Dimension AUROC AUPRC Top1 Acc Top5 Acc Top10 Acc

SGM (Rogen and Fain, 2003) 30 0.698*** 0.048*** 0.0*** 0.0*** 0.003***

SSEF (Zotenko et al., 2006) 1500 0.800*** 0.008*** 0.004*** 0.009*** 0.021***

FragBag (Budowski-Tal et al., 2010) 400 0.876*** 0.301* 0.450 0.558* 0.587**

DeepFold (L) 400 0.925* 0.228** 0.315*** 0.408*** 0.468***

DeepFold 400 0.967 0.375 0.456 0.605 0.663

Note: *denotes p-value < 5e-3, **denotes p-value < 1e-5 and ***denotes p-value < 1e-10.

Fig. 5. ROC curves and Hit@Top-k curves on the recently released proteins
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approach to visualize the structural motifs learned in this deep neur-

al network. In detail, we first obtain the activation values of filters

in each convolutional layer for each protein in a non-redundant

protein structure dataset. Then for each filter, we obtain the top pro-

teins with the highest activation values and extract the correspond-

ing protein substructures. These substructures are aligned together,

and a central substructure is picked to represent the motif learned by

the filter.

To visualize structural motifs in a well-organized way, we utilize

t-SNE (Maaten and Hinton, 2008) to perform a nonlinear dimension

reduction, projecting these motifs into a 2D space. Figure 6 illustrates

the structural motifs we learned in DeepFold, where each point

denotes a learned structural motif. The left plot presents all local con-

tiguous structural motifs, while the right one presents long-range

interacting motifs. We annotate each point with a specific color indi-

cating the secondary structure composition of the corresponding

motif, where blue indicates a-helix, red indicates b-strand and the

purple one indicates loop. From the left plot, we could observe the

local structural motifs include not only a-helix, b-strand, but also

some mixture of short a=b structures. In addition, the long-range

structural motifs are mainly b-b interacting patterns, under the com-

plicated environment with b-strand, a-helix or even loop structure.

Furthermore, we observe that the low-level motifs learned by

DeepFold can be organized to represent high-level structural motifs

by composing local and long-range motifs together. From this visual-

ization, it is clear that DeepFold extracts not only meaningful

contiguous backbone fragments but also the long-range interacting

motifs, which are entirely ignored in FragBag. It is worth noting that

FragBag can be seen as a special case of DeepFold if we only consider

the near-diagonal region of the pairwise distance matrix as input.

To compare the structural motifs against the fragment library

used by FragBag. We visualize the carbon backbones of the motifs

and fragments in Figure 7. We observe that the local structural

motifs learned by DeepFold are similar to the fragments utilized by

FragBag. Also, the DeepFold preserves long-range contacts in the

original structures, which contribute to a more powerful structural

representation.

In addition to visualizing the structural motifs learned by

DeepFold, we also check what are the ‘false-positive’ hits found by

DeepFold. From the Figure 8, we observe that the ‘wrongly’ pre-

dicted top structures also share substantial structural similarity with

the query proteins, indicating that our DeepFold is potentially cap-

able of finding remotely related structural neighbors which contain

similar motif composition.

Fig. 6. Structural motifs learned by DeepFold. The left figure shows the local backbone-segment motifs, and the right figure shows the long-range interacting con-

tact motifs. Ten representative motifs are shown with their structures. Each motif is annotated with a specific color indicating the secondary structure

composition

Fig. 7. Comparison of motifs used by DeepFold and FragBag. The left panel

shows fragments used by FragBag. The upper right panel shows local struc-

tural motifs, and the bottom right shows long-range contact motifs discov-

ered by DeepFold

Fig. 8. Some ‘False Positive’ examples discovered by DeepFold. The left panel

represents the query structure while the right panel represents some ‘Top

False Positive’ structures found by DeepFold
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5 Conclusion

In this paper, we present DeepFold, a deep-learning approach to

building structural motif presentations for better alignment-free pro-

tein structure search. We develop DeepFold, a deep convolutional

neural network model to extract effective structural patterns of a

protein structure from its Ca trace. Similar to the previous FragBag,

we represent each protein structure/fold using a vector of the learned

motifs and perform the structure search by only computing vector

similarity. This neural network is trained in a supervised manner by

discriminating similar template structures from dissimilar structures

in a database. We demonstrate that DeepFold greatly outperforms

FragBag on protein structure search on SCOP database and a set of

newly released PDB structures, regarding both search accuracy and

efficiency for computing structural representations. Remarkably,

after visualizing the motifs learned by DeepFold, we find that it not

only extracts meaningful backbone segments but also identifies im-

portant long-range interacting structural motifs for structural com-

parison. Furthermore, given that the retrieval accuracy of DeepFold

is outstanding, we can combine it with structural alignment algo-

rithms in the compressive genomics manner by first applying

DeepFold as a ‘coarse search’ step to identify a very small subset of

putative similar template structures that are ranked very top, and

then performing structural alignment algorithms as a ‘fine search’

step to refine the ranking and obtain more informative residue-level

structural alignments for downstream analysis (Yu et al., 2015).

Finally, we expect that the structural motifs extracted by DeepFold

will provide new insights into the evolution and hierarchical organ-

ization of protein structure.

Acknowledgements

We thank the members of Peng Lab for insightful discussions and support.

We also thank the reviewers for thoughtful reviews and comments. This work

was funded by an NCSA faculty fellowship, a PhRMA Foundation Award in

Informatics (2017–2018), a Sloan Research Fellowship and the NSF Career

Award 1652815.

Conflict of Interest: none declared.

References

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28,

235–242.

Brooks,B.R. et al. (1983) Charmm: a program for macromolecular

energy, minimization, and dynamics calculations. J. Comput. Chem., 4,

187–217.

Budowski-Tal,I. et al. (2010) Fragbag, an accurate representation of protein

structure, retrieves structural neighbors from the entire pdb quickly and ac-

curately. Proceed. Natl. Acad. Sci. USA, 107, 3481–3486.

Camacho,C. et al. (2009) Blastþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Duchi,J. et al. (2011) Adaptive subgradient methods for online learning and

stochastic optimization. J. Mach. Learn. Res., 12, 2121–2159.

Eskin,E. et al. (2002) Mismatch string kernels for svm protein classification.

In: Advances in Neural Information Processing Systems, pp. 1417–1424.

Fox,N.K. et al. (2014) Scope: structural classification of proteins–extended,

integrating scop and astral data and classification of new structures. Nucleic

Acids Res., 42, D304–D309.

Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems,

pp. 1097–1105.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and compar-

ing large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658–1659.

Luo,Y. et al. (2016) Low-density locality-sensitive hashing boosts metage-

nomic binning. In: RECOMB Research in Computational Molecular

Biology: Annual International Conference, RECOMB: Proceedings.

(Conference: 2005). Vol. 9649. NIH Public Access.

Maaten,L.v.d. and Hinton,G. (2008) Visualizing data using t-sne. J. Mach.

Learn. Res., 9, 2579–2605.

Mariani,V. et al. (2013) lddt: a local superposition-free score for

comparing protein structures and models using distance difference tests.

Bioinformatics, 29, 2722–2728.

Menke,M. et al. (2008) Matt: local flexibility aids protein multiple structure

alignment. PLoS Comput. Biol., 4, e10–e12.

Rogen,P. and Fain,B. (2003) Automatic classification of protein structure by

using gauss integrals. Proc. Natl. Acad. Sci. USA, 100, 119–124.

Schroff,F. et al. (2015) Facenet: a unified embedding for face recognition and

clustering. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 815–823.

Shindyalov,I.N. and Bourne,P.E. (1998) Protein structure alignment by incre-

mental combinatorial extension (ce) of the optimal path. Protein Eng., 11,

739–747.

Siew,N. et al. (2000) Maxsub: an automated measure for the assessment of

protein structure prediction quality. Bioinformatics, 16, 776–785.

Sillitoe,I. et al. (2015) Cath: comprehensive structural and functional annota-

tions for genome sequences. Nucleic Acids Res., 43, D376–D381.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

Theano Development Team (2016) Theano: a Python framework for fast com-

putation of mathematical expressions. http://deeplearning.net/software/the

ano/citation.html#citation.

Wang,L. et al. (2016) Learning deep structure-preserving image-text embed-

dings. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition pp. 5005–5013.

Wang,S. et al. (2013) Protein structure alignment beyond spatial proximity.

Sci. Rep., 3, 1448.

Weiner,P.K. and Kollman,P.A. (1981) Amber: assisted model building with

energy refinement. a general program for modeling molecules and their

interactions. J. Comput. Chem., 2, 287–303.

Ye,Y. and Godzik,A. (2003) Flexible structure alignment by chaining aligned

fragment pairs allowing twists. Bioinformatics, 19, ii246–ii255.

Yu,Y.W. et al. (2015) Entropy-scaling search of massive biological data. Cell

Syst., 1, 130.

Zemla,A. (2003) Lga: a method for finding 3d similarities in protein struc-

tures. Nucleic Acids Res., 31, 3370–3374.

Zemla,A. et al. (1999) Processing and analysis of casp3 protein structure pre-

dictions. Proteins Struct. Funct. Bioinf., 37, 22–29.

Zhai,C. and Massung,S. (2016) Text Data Management and Analysis: A

Practical Introduction to Information Retrieval and Text Mining.

Association for Computing Machinery and Morgan &#38; Claypool, New

York, NY, USA.

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment

of protein structure template quality. Proteins Struct. Funct. Bioinf., 57,

702–710.

Zhang,Y. and Skolnick,J. (2005) Tm-align: a protein structure alignment algo-

rithm based on the tm-score. Nucleic Acids Res., 33, 2302–2309.

Zotenko,E. et al. (2006) Secondary structure spatial conformation footprint: a

novel method for fast protein structure comparison and classification. BMC

Struct. Biol., 6, 12.

i780 Y.Liu et al.

http://deeplearning.net/software/theano/citation.html#citation
http://deeplearning.net/software/theano/citation.html#citation

	bty585-TF1
	bty585-TF2

