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Abstract

Background & methods

The ICONIC project has developed an automated high-throughput pipeline to generate HIV

nearly full-length genomes (NFLG, i.e. from gag to nef) from next-generation sequencing

(NGS) data. The pipeline was applied to 420 HIV samples collected at University College

London Hospitals NHS Trust and Barts Health NHS Trust (London) and sequenced using an

Illumina MiSeq at the Wellcome Trust Sanger Institute (Cambridge). Consensus genomes

were generated and subtyped using COMET, and unique recombinants were studied with

jpHMM and SimPlot. Maximum-likelihood phylogenetic trees were constructed using RAxML

to identify transmission networks using the Cluster Picker.

Results

The pipeline generated sequences of at least 1Kb of length (median = 7.46Kb, IQR =

4.01Kb) for 375 out of the 420 samples (89%), with 174 (46.4%) being NFLG. A total of 365

sequences (169 of them NFLG) corresponded to unique subjects and were included in the

down-stream analyses. The most frequent HIV subtypes were B (n = 149, 40.8%) and C

(n = 77, 21.1%) and the circulating recombinant form CRF02_AG (n = 32, 8.8%). We found

14 different CRFs (n = 66, 18.1%) and multiple URFs (n = 32, 8.8%) that involved recombi-

nation between 12 different subtypes/CRFs. The most frequent URFs were B/CRF01_AE

(4 cases) and A1/D, B/C, and B/CRF02_AG (3 cases each). Most URFs (19/26, 73%)
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lacked breakpoints in the PR+RT pol region, rendering them undetectable if only that was

sequenced. Twelve (37.5%) of the URFs could have emerged within the UK, whereas the

rest were probably imported from sub-Saharan Africa, South East Asia and South America.

For 2 URFs we found highly similar pol sequences circulating in the UK. We detected 31

phylogenetic clusters using the full dataset: 25 pairs (mostly subtypes B and C), 4 triplets

and 2 quadruplets. Some of these were not consistent across different genes due to inter-

and intra-subtype recombination. Clusters involved 70 sequences, 19.2% of the dataset.

Conclusions

The initial analysis of genome sequences detected substantial hidden variability in the Lon-

don HIV epidemic. Analysing full genome sequences, as opposed to only PR+RT, identified

previously undetected recombinants. It provided a more reliable description of CRFs (that

would be otherwise misclassified) and transmission clusters.

Introduction

Human immunodeficiency virus type 1 (HIV-1) shows a great genetic diversity [1], which

causes the emergence of multiple viral strains. HIV-1 is classified in four groups: M, O, N and

P. HIV-1 group M drives the global pandemic, and includes 9 subtypes (A-D, F-H, J, K), at

least 88 circulating recombinant forms (CRFs) [2] and countless unique recombinant forms

(URFs), generated when cells are superinfected by HIV-1 virions from different subtypes/

CRFs. CRFs are defined as inter-subtype recombinant lineages that derived from the same

common ancestor, and for which at least three epidemiologically unlinked variants are mono-

phyletic and share an identical genetic structure along their full genome. URFs are recombi-

nants with different recombination breakpoints than those found in CRFs, and emerge after

localised, isolated recombination events. URFs are responsible for at least 20% of HIV-1 infec-

tions worldwide–a proportion that reaches 40% in some African countries [3].

HIV-1 subtype B is the prevalent variant in high-income areas like North America and

Western Europe [3], and the most studied strain despite only accounting for 12% of global

infections. However, in the last decade, the remaining subtypes and recombinants (“non-B

variants”, responsible for the remaining 88% of infections worldwide) have increased in preva-

lence and heterogeneity in developed countries [4]. The UK is no exception, and viral genetic

diversity (especially involving novel recombinants) markedly increased in the UK HIV-1 epi-

demic between 2002 and 2010 [5]. This new heterogeneity has resulted in the description of

an increasing number of CRFs in Western Europe, which traditionally were restricted to

regional hotspots with great co-circulation of variants–like sub-Saharan Africa, South-East

Asia and parts of South America. These new European recombinants include CRF47_BF and

CRF73_BG in Spain and Portugal [6, 7], CRF50_A1D in the UK [8], CRF56_cpx in France [9],

and CRF60_BC in Italy [10], as well as second-generation complex recombinant strains [11].

The genetic variability derived from the presence of non-B variants could affect manage-

ment of HIV-1 infection [12], including the antiretroviral response [13], the efficacy of viral

load and resistance assays [14], the speed of disease progression [15, 16], the emergence of

drug resistance mutations [17] and the vaccine development [18]. Additionally, HIV-1 recom-

bination is a powerful evolutionary force that occurs ten times more frequently than base sub-

stitutions [19] and produces and maintains further variability by shuffling and combining viral
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genetic material. HIV-1 recombination can accelerate the adaptation to the host [20], improve

viral replication [21] and provide mechanisms to escape both the immune response and antivi-

ral treatments [22–24]. At the same time, gene reshuffling derived by recombination can com-

pensate the loss in viral fitness derived from these adaptations [20] HIV will continue to evolve

and diversify, which will bring new challenges to prevention and treatment efforts.

Thus, the proper detection and description of HIV-1 variants in representative cohorts

is essential, especially considering the worldwide emergence and transmission of recombi-

nants. The coincidence of the increasing HIV-1 complexity in Western countries with the

rapid development of next-generation sequencing (NGS) technology [25] highlights the

potential of applying these techniques to routine surveillance of HIV-1 molecular epidemi-

ology. Here, we aimed to identify URFs in a dataset consisting on HIV-1 nearly full-

genome sequences obtained through NGS of samples taken in two major hospitals in Lon-

don, UK. We describe their recombination patterns using a combination of bioinformatics

tools, which include bootscanning and phylogenetic analysis of sequence sub-segments,

considered the reference methodology for detecting HIV-1 variants since its first use

[26, 27].

Methods

Pipeline and study subjects

Within the ICONIC project, we have developed an automated and customisable high-through-

put analysis pipeline to generate HIV clinical whole genomes, quantify minority variants and

identify drug-resistance mutations (DRMs). Via de novo assembly of contigs, concatenation

and correction by alignment to reference and subsequent remapping of reads, this pipeline

derives a consensus sequence and minority variants across each genome [28].

In order to generate HIV consensus genomes, the pipeline was applied to 420 HIV sam-

ples, collected between 2012 and 2014 at two major London clinics: University College Lon-

don Hospitals (UCLH) NHS Trust (n = 332) and Barts Health NHS Trust (n = 88). UCLH

NHS Trust specimens were from a cohort of 4,700 patients under follow-up in London of

which 75% of patients are men, 65% are men-having-sex-with-men (MSM) with a median

age of 44 years and 20% are over 50. Almost all (97%) were already on treatment and the

majority of tests (80%) were performed at virological failure or during treatment interrup-

tion pre restarting. Only 10–20% of specimens included baseline samples at diagnosis. Spec-

imens from Barts Health NHS Trust came from a cohort that includes 1,200 HIV genotypic

resistance tests each year from a North East London patient cohort. The catchment area

includes Barts Health NHS trust, the Homerton trust, and Barking, Havering and Redbridge

trust with a prevalence of HIV ranging from 1.6 to 7.4 per 1,000 adults. North-East Lon-

don’s population is diverse: Tower Hamlets and Hackney have large MSM populations and

Newham has the highest number of black Africans living with HIV in London. Most of the

patients in the cohort are men (64%), with a median age of 41 years and 22% aged over 50.

Approximately one fifth of samples tested are at baseline, the remainder tested because of

viral escape or non-compliance.

Viral RNA was extracted from plasma samples using a QIAamp Viral RNA Minikit (Qia-

gen). RNA extracted from plasma samples was reverse transcribed and amplified by one-step

RT-PCR using a set of 4 pan-HIV-1 primer set designed for the amplification of HIV-1

genomes of all groups and subtypes [25]. Amplicons were pooled for Illumina library prepara-

tion and sequenced applying next-generation sequencing on the Illumina MiSeq at the Well-

come Trust Sanger Institute (Cambridge) as previously described [29].
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Subtyping and recombination analyses

The consensus genomes were preliminary subtyped using a local implementation of COMET

version 1.1.4 [30], which included reference sequences of subtypes A1-H, J and K; CRFs 01–

29, 31–40, 42–47 and 49; and HIV-1 groups N, O and P. This method was applied to the full

dataset but also independently to the principal structural genes (gag, pol and env), extracted

using GeneCutter (https://www.hiv.lanl.gov/content/sequence/GENE_CUTTER/cutter.html).
This approach was followed in order to detect putative recombinant, i.e. those cases in which

different genes disagreed in subtype or any of them yielded an unassigned result. Those cases

were analyse in more depth using the jpHMM [31] online tool, which is capable of detecting

and locating recombination breakpoints in HIV-1 sequences.

In those sequences where these tools confirmed the presence of recombination events, fur-

ther analyses were applied using the program SimPlot version 3.5.1 [32], which applies a boot-

scanning method. This consists of a sliding-window phylogenetic bootstrap analysis of the

query sequence (using a window size of 300bp moving in 10bp increments) aligned against a

set of reference strains to reveal breakpoints, which was later confirmed by performing phylo-

genetic analysis using RAxML (GTR+Γ substitution model with 1000 bootstrap replicates) of

the inter-breakpoint segments. For these, we incorporated sequences from the 2010 HIV sub-

type reference alignment downloaded from Los Alamos National Laboratory HIV database

website [1].

In addition, to study the most likely geographical origin of the parental variants that gener-

ated the URF detected, we looked for genetically similar sequences from GenBank (retrieved

using HIV BLAST (https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.
html)) for each recombinant segment.

Finally, we extracted the ‘clinical’ PR+RT pol segment (covering the protease and the first

235 codons of the reverse transcriptase) of the URF sequences that presented breakpoints in

this coding region to retrospectively find highly genetically similar sequences within the UK

HIV Drug Resistance database (UKHDRD, http://www.hivrdb.org.uk/) through BLAST–these

sequences could represent recombinant lineages already circulating in the UK.

Analysis of intra-subtype recombination

Whereas inter-subtype recombination can be detected relatively easily, intra-subtype recombi-

nation is much more difficult to identify due to a greater sequence similarity between sequences

of the same subtype/variant, and the lack of standardised methodology. For the largest pure sub-

type datasets, we aimed to detect intra-subtype recombination using the program RDP version

4 [33] following the approach described by Kiwelu and colleagues [34]. In short, RDP4 uses 7

non-parametric recombination detection methods: RDP, GENECONV, modified Bootscan,

MAXCHI, CHIMAERA, SISCAN and 3SEQ. For each of these methods, the default RDP4 set-

tings were used. The recombination events considered definitive were those with statistically

significant support (p<0.05 after Bonferroni correction for multiple comparisons) for at least 3

out of the 5 algorithms. RDP4 screens all possible sequence triplets/quartets to find recombi-

nants and potential parents, which makes possible the analysis without reference sequences.

Analysis of phylogenetic clusters

In order to identify potential transmission clusters in the full dataset, we constructed maxi-

mum likelihood trees with RAxML (with the GTR+Γ substitution model) and applying the

Cluster Picker with a cutoff of 90% for node statistical support and�6% for the intra-cluster

genetic diversity. In order to minimise the effect of recombination in the detection of clusters,

further Cluster Picker analyses of the genes gag (1.5Kb), pol (3Kb) and env (2.5Kb) were
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performed, using genetic diversity cutoffs of�5.5%,�4.5% and�9%, respectively. These lev-

els were chosen taking as reference the value commonly used for pol [35] and adjusting the

rest of the genes according to their different evolutionary rates.

Ethics statement

The ICONIC project (IRAS project ID 131373) was approved by the NHS Research Ethics

Committee (13/LO/1303). ICONIC was also included in the Portfolio Database of the UK

Clinical Research Network (UKCRN ID: 15776). The ICONIC study does not require written

informed consent by study participants as it only uses pseudonymised residual diagnostic

material and no patient genetic material.

Results

Sequence dataset

The pipeline generated sequences of at least 1Kb of length (median = 7.46Kb, IQR = 4.01Kb)

for 375 out of the 420 ICONIC samples (89%), with 174 of the 375 (46.4%) sequences covering

the full ‘clinical’ genome (i.e. from gag to nef). The rest of sequences (n = 201) had variable

coverage.

The 375 assembled genomes were deposited in GenBank under the accession numbers

MF109352 to MF109726 (see Table A in S1 File). All the raw paired-end short reads were

deposited in the European Nucleotide Archive (ENA) under the study accession number

PRJEB6008. The Figure A in S1 File shows the alignment of the 375 sequences and the posi-

tions of the four primers used for amplification. Most of the sequence gaps corresponded to

amplification failure of the 2nd and 4th amplicons. An in-depth analysis of the impact of miss-

ing nucleotide characters in NGS sequence data generated with the same sequencing protocol

followed with the ICONIC samples has been previously published [36].

A linear regression analysis showed a statistically significant positive correlation between

the HIV-1 viral load and the sequence length (i.e., genomic coverage), yielding a correlation

value of R2 = 0.05 (p = 0.0026) (Figure B in S1 File).

Of the 375 sequences to be analysed, 365 corresponded to unique patients and were

included in the subsequent analyses.

HIV-1 subtype distribution

The HIV strains found were, ordered by frequency: subtype B (n = 149, 40.8%), subtype C

(n = 77, 21.1%), CRF02_AG (n = 32, 8.8%), subtype A1 (17, 4.7%),CRF01_AE (n = 15, 4.1%),

subtype G (10, 2.7%), CRF06_cpx (8, 2.2%), subtype D (7, 1.9%), subtype F1 (7, 1.9%) and 11

other CRFs (03_AB, 07_BC, 09_cpx, 13_cpx, 14_BG, 18_cpx, 19_cpx, 25_cpx, 43_02G, 49_cpx

and 60_BC) of which one case (0.3% each) was found. In total, we found 14 different CRFs

(n = 66, 18.1%). The remaining samples corresponded to multiple URFs (n = 32, 8.8%) that

involved recombination between 12 different parental variants: 7 subtypes (A1, B, C, D, F1, G

and J) and 5 CRFs (CRF01_AE, CRF02_AG, CRF06_cpx, CRF22_01A1 and CRF50_AD). The

most frequent URFs were B/CRF01_AE (4 cases) and A1/D, B/C, and B/CRF02_AG (3 cases

each). Their recombination patterns are shown in Figure C in S1 File.

Importantly, we generated new sequences of several CRFs that remain poorly (n<10) repre-

sented in public sequence databases, providing full-genome each of the following recombinants:

CRF03_AB (only 3 genome sequences available in GenBank), CRF13_cpx (8), CRF18_cpx (5),

CRF25_cpx (6) and CRF43_02G (4). Also, we provide partial genomes of CRF09_cpx, CRF19_cpx,
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CRF49_cpx and CRF60_BC (one each), which will provide new and invaluable material for the

study of these recombinant lineages.

Subtype distribution using partial pol
In order to explore the implications of using only the PR+RT partial pol sequence to study the

HIV-1 subtype distribution, we extracted the 277 sequences (out of the total 365 sequence

dataset, 75.9%) that covered this region and applied the COMET and SCUEAL subtyping

tools. SCUEAL was used to make the results comparable to those from the UKHDRD reports

[5]. The prevalence of pure subtypes in the pol gene (74.4% for COMET and 73.0% for

SCUEAL) was similar to that found in the full-length ICONIC dataset (73.2%), with the only

exception of an overestimation of subtype G by SCUEAL (7.0% using pol versus 2.7% in the

definitive results; chi-square test p = 0.01). Differences found in the proportion of recombi-

nants (CRFs and/or URFs) were also not significant.

Focusing on the 32 URF sequences, 26 covered the 1.3Kb PR+RT pol region, of which only

7 (7/26, 26.9%) presented a breakpoint in that region and were consequently identified as

recombinants by both COMET and SCUEAL. The remaining 19 (19/26, 73%) URFs were

therefore mostly considered as pure subtypes/CRFs when only the PR+RT pol sequence was

analysed. As the PR+RT fragment represents only ~15% of the size of the genomes analysed

here, it is in fact detecting more recombinants than expected (26.9% versus 8.8% when analys-

ing the genome data; chi-square test p = 0.008).

Unique recombinant forms (URFs)

The 32 URF sequences were further explored by analysing the parental lineages that generated

them and their closest sequences in public sequence databases identified by BLAST. For those

URF presenting breakpoints in the PR+RT pol region, genetically similar pol sequences were

searched within the UK HIV Drug Resistance database (UKHDRD). In the following para-

graphs we provide a detailed explanation for the most frequent and/or complex URF. The rest

of the URF analyses are detailed in the Supporting Results in S1 File.

B/CRF50_A1D pair (accession numbers MF109354and MF109527, respectively). These

two URF_50B sequences that formed a phylogenetic pair (genome-wide similarity = 96.2%)

were classified as an A1/B/D recombinant by jpHMM, but after phylogenetic analysis of the

recombinant segments, those assigned to A1 and D clustered with the recombinant

CRF50_A1D (previously described in the UK [8]), and shared the same breakpoints between

A1 and D found in this CRF (Fig 1). Therefore, they were reclassified as B/CRF50_A1D. The

subtype B segment that covered the PR+RT region in pol presented high similarity (>98%) to

UK “pure” subtype B sequences in both the UKHDRD dataset and GenBank, which suggests

that these recombinants originated in the UK. A different URF_50B, presenting different

breakpoints as those reported here, was already described in Foster et al. [8] (see below for

more information on this recombinant sequence), suggesting that this CRF of Eastern African

origin is actively recombining with local sequences.

A1/B. Two URF_A1B were identified, with one of them (MF109544) presenting a long

gap between the A1 and B portions. The A1 segment was closest to sequences from Kenya

(similarity = 93%), whereas no close GenBank sequences to the subtype B portion could be

found. The other URF_A1B found (MF109371) presented a small A1 fragment in pol (694bp-

long) in a background of subtype B. Whereas the latter did not present high similarity close to

any GenBank sequence in gag or env, the A1 fragment was intimately related to CRF50_A1D

in the phylogenetic analysis, and particularly (similarity = 95%) to a B/CRF50_A1D recombi-

nant sequence (accession number JN417238, see above) also described in the article by Foster

High HIV-1 strain variability in London, UK
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Fig 1. A) Recombination pattern (according to jpHMM) of the two URF_50B (accession numbers MF109354 and MF109527) discovered in the ICONIC dataset and the

GenBank full-length sequence JN417236, prototype of the recombinant CRF50_A1D. B) Bootscanning analysis of the URF_50B performed using SimPlot and diagram

showing the definitive recombination pattern.

https://doi.org/10.1371/journal.pone.0192081.g001
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and colleagues [8] where this CRF is described. JN417238 and this newly described URF_A1B

shared common A1/B breakpoints in the PR+RT region although the latter presented addi-

tional breakpoints absent in the URF_A1B; however, they did not cluster together in their

common subtype B fragments. The PR+RT pol portion of both the URF_A1B described here

and, especially, of JN417238 were genetically similar (98%) to an A1/B cluster already

described in Canada that was identified through BLAST; we also found 5 GenBank A1/B

sequences sampled in the UK which were very similar. Within the UKHDRD, we identified 13

more PR+RT pol sequences circulating sharing breakpoints with this URF_A1B according to

jpHMM. These 13 UKHDRD sequences were mostly sampled on 2011–2012 but the oldest

one was sampled in 2006; and in all cases with available information, the patients had been

born in the UK. According to the ML tree (Fig 2), this A1/B lineage (and particularly

JN417238, the URF_50B previously described) initiated the Canadian cluster that affected

men-having-sex-with-men (MSM) population [37]. The clade also included 2 GenBank

sequences from Albania and Korea, respectively, which lied basal to the UK/Canadian cluster,

and points to a further international spread of this clade.

A1/D. We detected three URF_A1D sequences (MF109466, MF109548 and MF109564)

with different recombination patterns. In all cases, the closest sequences in GenBank were

sampled in Eastern Africa (Uganda, Kenya and/or Tanzania). Only one of them (MF109466)

presented a recombination breakpoint in the PR+RT pol region, for which through BLAST we

identified 27 pol sequences in the UKHDRD and 21 in GenBank (from Kenya, Uganda and

Tanzania, up to 96% of similarity) which showed a very similar A1/D breakpoint in the PR

+RT region. The 27 UKHDRD sequences corresponded exclusively to patients born in

Uganda, Kenya and Zimbabwe, and their samples were taken from 2001 to 2011. Both sets of

sequences sampled in the UK and GenBank sequences sampled in Eastern African countries

were interspersed in the tree (Fig 3) suggesting multiple introductions to the UK. One of the

GenBank sequences from Kericho, Kenya (accession number KT022394) had a full-length

sequence available which showed a recombination pattern that was very similar to that of this

URF_A1D across the genome in the overlapping regions, only different at the 3’ end of the env
gene. The presence of two sequence gaps in our sample prevented further exploration of the

relatedness of these 2 sequences.

CRF06_cpx/CRF22_01A1. We found 1 URF_0622 (MF109682) which was initially

identified as a recombinant between subtypes A1, G and J and CRF01_AE by jpHMM.

However, further analysis with SimPlot, which was confirmed by phylogenetic analysis of

the recombinant segments, revealed that segments ascribed to subtype J and G that partially

covered from vif to env actually corresponded to CRF06_cpx, and that the segments classi-

fied as A1 and CRF01_AE in gag, vif and nef clustered very closely to CRF22_A101 –a

recombinant lineage detected in Cameroon [38] (Fig 4). Unfortunately, this URF_0622

sequence lacked the PR+RT pol region, which prevented from identifying more cases of this

recombinant in the UKHDRD.

Fig 2. Panel A) Recombination pattern (according to jpHMM) of the URF_A1B (accession number MF109371) discovered in the ICONIC

dataset, the URF_50B full-length sequence (accession number KT022394) described by Foster and colleagues and a member of the A1/D

Canadian cluster described by Brenner and colleagues (accession number GU592197). These 3 which presented high similarity in the PR+RT

pol region. B) Maximum-likelihood tree of the PR+RT pol region (1,000bp) of the A1/B cluster of sequences with high similarity to the

ICONIC URF_A1B. Tips corresponding to the UKHRD are in orange. Tip names show, for the GenBank sequences: subtype, sampling

country, accession number and sampling year (not available for the Canadian sequences); for UKHDRD sequences: country of birth, ID and

sampling year. Branches corresponding to the A1/B cluster are shown in blue. The ICONIC URF_A1B sequence is highlighted with an arrow.

The tree is rooted to subtype A1 reference sequences. The diagram at the right shows the recombination pattern shown by the sequences in

the cluster, according to jpHMM.

https://doi.org/10.1371/journal.pone.0192081.g002

High HIV-1 strain variability in London, UK

PLOS ONE | https://doi.org/10.1371/journal.pone.0192081 February 1, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0192081.g002
https://doi.org/10.1371/journal.pone.0192081


High HIV-1 strain variability in London, UK

PLOS ONE | https://doi.org/10.1371/journal.pone.0192081 February 1, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0192081


CRF02_AG/CRF06_cpx (MF109687). This URF presented segments of subtypes A1, G,

C and J that corresponded in ML trees and SimPlot to the recombinant CRF06_cpx (which is

made up by subtypes A1, C, G and J). Interestingly, subtype A1 fragments in this URF clus-

tered within CRF02_AG and not CRF06_cpx (Fig 5). In fragments in which both CRFs corre-

spond to subtype G (in this case, the beginning of pol and env genes) the presence of further

breakpoints cannot be ruled out. Recombinants between CRF02_AG and CRF06_cpx have

already been discovered in Western Europe [39] probably introduced from Western Africa, a

region where both CRF frequently co-circulate. Indeed, the closest GenBank sequences to this

URF’s PR+RT pol region were “pure” CRF06_cpx sequences from Mali, Burkina Faso and Sen-

egal (96%).

Intra-subtype recombination

We analysed the largest ‘pure’ subtype datasets (i.e. subtypes B and C with 149 and 77

sequences, respectively) for evidence of intra-subtype recombination using RDP4. A sequence

was considered an intra-subtype recombinant if the recombination signal was statistically sig-

nificantly supported by at least 3 of the methods implemented in RDP4. We found 20 subtype

B sequences (13.4%) that were identified as recombinants with enough statistical support. For

subtype C, 7 sequences (9.1%) were intra-subtype recombinants. This difference was not statis-

tically significant.

Analysis of phylogenetic clusters

We detected 31 phylogenetic clusters using the full sequence dataset. Of them, 25 were pairs

(corresponding mostly to subtypes B (n = 11) and C (n = 4)), 4 were triplets (1 each for A1, B,

F1, and CRF06_cpx) and 2 quadruplets (CRF02_AG and CRF06_cpx). These clusters involved

70 sequences, 23.5% of the dataset. In order to explore the consistence of these clusters across

different genes, we also examined clusters analysing the main HIV-1 genes independently: gag,

pol and env. Seventeen (54.8%) of the 31 clusters detected in the full dataset were also found in

the individual analyses of gag, pol and env. Their intra-subtype maximum genetic distance and

bootstrap support values for each gene is shown in the Table B in S1 File. The average genetic

distance across the 17 clusters was 2.06% for the genome-wide analysis (range: 0.08–5.27%),

1.75% (0–5.19%) for gag, 1.33% (0.03–2.96%) for pol and 3.05% (0–8.92%) for env.

Most of the inter-gene cluster disagreements (6/14, 43%) were due to the fact that not all

sequences in a given cluster completely covered the 3 genes. In 4 (29%) cases the sequences

were too divergent (above the genetic distance cutoff) in one of the genes: gag and pol in 2

cases (genetic distances of 6.0–7.6%), gag alone (7.9%) in one case, env alone (12.9%) in the

last one. The last disagreement (7%) was due to the fact that the statistical support of the node

was below the cutoff (boostrap = 88%) in the gag gene tree. Finally, there were 3 cases (21%) in

which certain sequences showed entirely different tree topologies according to the gene ana-

lysed. One of them involved a phylogenetic pair of pure F1 sequences that clustered very

closely with a URF_02BF1 (MF109637, whose recombination pattern is described in Support-

ing Results in S1 File and shown in Figure C in S1 File) only in the gag gene, which suggests

Fig 3. Panel A) Recombination pattern (according to jpHMM) of the URF_A1D (accession number MF109466) discovered in the ICONIC

dataset and the GenBank full-length A1/D sequence KT022394, which presented high similarity in the PR+RT pol region. B) Maximum-

likelihood tree of the PR+RT pol region (1,000bp) of the A1/D cluster of sequences with high similarity to the ICONIC URF_A1D. Tips

corresponding to the UKHRD are in orange. Tip names show, for the GenBank sequences: subtype, sampling country, accession number

and sampling year; for UKHDRD sequences: country of birth, ID and sampling year. Branches corresponding to the A1/D cluster are shown

in blue. The ICONIC URF_A1D and the GenBank sequence KT022394 are highlighted with arrows. The tree is rooted to a subtype B

sequence. The diagram at the right shows the recombination pattern shown by the sequences in the cluster, according to jpHMM.

https://doi.org/10.1371/journal.pone.0192081.g003
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that the former could represent the parental lineage involved in the generation of that URF.

The other 2 cases of phylogenetic inconsistence corresponded to subtype B clusters in which

presumably, as the RDP analysis suggested, intra-subtype recombination had modified their

clustering pattern.

Conclusions

The analysis of HIV-1 nearly full-genome sequences generated by the ICONIC project

detected substantial variability in the London HIV-1 epidemic. The HIV-1 subtype distribu-

tion in our dataset is generally consistent with that reported in the last update (corresponding

to 2010) for the whole UK based on analysis of pol sequences [5]. The main difference lies on

the prevalence of CRFs, which was 6.2% in that report in contrast to the 18.1% (3-fold higher)

presented here. We demonstrate here how using the pol sequence alone, in this case using

SCUEAL as Dolling and colleagues did, underestimated the proportion of CRFs–other subtyp-

ing tools, such as COMET, will face other limitations depending on the exact subtyping algo-

rithm. This highlights that analysis of nearly full-genome sequences is key to identifying

already established recombinant lineages. In addition, CRF lineages that are traditionally very

infrequent in Western countries but were identified in the present study (e.g. CRF19_cpx,

CRF49_cpx, CRF43_02G and CRF60_BC) are generally absent in the reference sequence data-

sets that are used by automatised HIV-1 subtyping tools.

Conversely, the use of longer sequences allowed for a more refined description of novel

recombinants (URFs), since the accuracy on their detection using pol sequences relies on the

presence of breakpoints within this short (~1Kb) genomic region. The 32 URFs that were

detected using the full dataset involved recombination between 12 different parental strains,

and some of them presented a very complex recombination pattern. Interestingly, 18 (56%) of

the URF contained segments corresponding subtype B, the prevalent variant in Western coun-

tries. Four of these URFs (URF_01B) could have been introduced from South East Asia, where

many similar recombinants have been described, and another 2 (a URF_BF1 transmission

pair) from South America, where B/F1 recombinants represent a substantial proportion of the

HIV-1 infections [3]. However, the remaining 12 URFs involving subtype B probably emerged

in the UK (or at least in Western Europe) after introduction of non-subtype B variants which

recombined with the local subtype B. The rest of the URFs (n = 14, 44%) were recombinant

between HIV-1 variants that co-circulate in sub-Saharan Africa, so they could have been gen-

erated before been introduced to the UK. Some of them were particularly complex, and

implied further recombination between recombinant lineages (the so-called “second-genera-

tion” recombinants), a phenomenon already detected among African migrants in Western

Europe [11, 39].

Matching the ICONIC sequences to the PR+RT pol sequences stored in the UK Drug Resis-

tance Database allowed us to uncover new lineages of unique recombinants already circulating

in the UK. Specifically, we detected an A1/B recombinant lineage circulating among UK-born

patients whose oldest sequence was sampled in 2006. Another example was a larger A1/D

clade that mostly involved patients born in Uganda and Kenya and sampled as far back as

2001, but also included many sequences from GenBank sampled in those Eastern African

countries–which might indicate several introductions in the UK as opposed to local spread

from a single one.

Fig 4. A) Recombination pattern (according to jpHMM) of the URF_0622 (accession number MF109682) discovered in the ICONIC dataset and the

sequences AF064699 and EU743963, prototypes of the recombinants CRF06_cpx and CRF22_01A1, respectively. B) Bootscanning analysis of the

URF_0106G performed using SimPlot and diagram showing the definitive recombination pattern.

https://doi.org/10.1371/journal.pone.0192081.g004
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Unfortunately, we did not have patient epidemiological data available for these samples to

confirm whether subjects infected by URFs came from areas with co-circulation of HIV-1

strains or were infected in the UK. However, the HIV-infected population attended in the clin-

ics included in the study mainly corresponded to men-having-sex-with-men (MSM), who tra-

ditionally have been mostly infected in the UK (e.g. 68% of MSM in 2015 [40]).

The analysis of phylogenetic clusters did not identify large HIV-1 transmission networks,

but the largest ones discovered here corresponded to recombinant variants (2 quadruplets of

CRF02_AG and CRF06_cpx respectively). We found disagreements between clusters detected

using different viral genes (i.e. gag, pol and env) that in some cases highlight the fact that

recombination can obscure the genetic relationships between sequences belonging to the same

transmission network. This also evidences the lack of standardisation in the cluster definition

when analysing genes other than pol, and that will be needed with the increasing generation of

full-genome datasets. In an attempt to help developing genetic distance cutoffs, we provide in

Table B in S1 File the values found for the clusters that were consistent across genes.

Recombination between different subtypes/CRFs happens frequently and its detection is

relatively straightforward. However, the detection of recombinants between different virions

of a same subtype is much more challenging due to their lower genetic diversity, and therefore

remains understudied. We applied the methodology used by Kiwelu and colleagues [34] to the

largest pure subtype datasets in ICONIC (subtypes B and C) and found similar intra-subtype

recombination frequencies in subtypes B (13.4%) and C (9.1%).

Unfortunately, the low availability of HIV-1 full genomes in public databases prevented

deeper exploration of the linkage between our dataset and non-UK epidemics, and also to pro-

vide more insights into the evolutionary history of the unique recombinants described here.

Another limitation was the fact that not all our sequences were full-length genomes due to an

unequal efficacy of the sequencing primers. In addition, although the study of HIV-1 strain

distribution can provide valuable insights due to the different biological properties of certain

subtypes, the growing heterogeneity of the viral epidemics will challenge the current HIV-1

strain classification.

In conclusion, the use of nearly full-genome sequences, as opposed to only PR+RT, pro-

vided a more reliable description of CRFs (that would be otherwise misclassified) and permit-

ted the detection of novel recombinants circulating in London. Whereas it is likely that some

of the URFs were imported from abroad, our work suggests that a large proportion of them

could have been generated locally.

Supporting information

S1 File. Supporting information. Includes Supporting Results, Figuress A, B and C, and

Tables A and B.

(PDF)
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