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Abstract 47 
 48 
Background: 49 
Physical activity is essential for preventing cognitive decline, stroke and dementia in older 50 
adults. A new cardiovascular diagnosis offers a critical window for positive lifestyle changes. 51 
However, sustaining physical activity behavior change remains challenging and the underlying 52 
mechanisms are poorly understood.  53 
 54 
Methods: 55 
To identify the neural, behavioral and contextual predictors of successful longer-term behavior 56 
change after a new cardiovascular diagnosis, we used support vector machine learning to predict 57 
changes in moderate-to-vigorous physical activity over four years in 295 cognitively unimpaired 58 
older adults from the UK Biobank, testing three models that incorporated baseline: (i) 59 
demographic, cognitive, and contextual factors, (ii) baseline resting-state functional connectivity 60 
alone, and (iii) combined multimodal features across all predictors.  61 
 62 
Results: 63 
The combined multi-modal model had the highest predictive power (r=0.28, p=0.001). Key 64 
predictors included greenspace access, social support, retirement status, executive function, and 65 
between-network functional connectivity within the default mode, frontoparietal control and 66 
salience/ventral attention networks.  67 
 68 
Conclusions: 69 
These findings underscore the importance of social and structural determinants of health and 70 
uncover neural mechanisms that may support lifestyle modifications. In addition to furthering 71 
our understanding of the mechanisms underlying successful physical activity behavior change, 72 
these findings help to guide the design of interventions and health policy with the ultimate goal 73 
of preventing cardiovascular disease burden and late-life cognitive decline. 74 
 75 
 76 
Keywords: Behavior change, physical activity, resting-state functional MRI, social determinants 77 
of health, cardiovascular disease, dementia prevention, machine learning, translational 78 
neuroscience 79 
 80 
  81 
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1. Introduction 82 
Cardiovascular diseases substantially elevate the risk of dementia and stroke due to 83 

shared pathophysiological mechanisms across the heart–brain axis1. Indeed, mixed dementia, 84 
comprised of combined vascular and Alzheimer pathological changes, is the most prevalent 85 
etiology of dementia in older age2. With the global dementia burden projected to rise to 132 86 
million by 20503, there is an urgent need for targeted strategies to mitigate the vascular 87 
contributions to late-life cognitive decline. Physical activity is highly effective in lowering 88 
dementia risk and all-cause mortality among individuals with cardiovascular disease4,5. Thus, 89 
targeting physical activity engagement as a strategy for dementia prevention following a 90 
cardiovascular diagnosis, is essential6,7,8,9. 91 

Despite the well-established benefits of physical activity, physical inactivity remains 92 
prevalent, with approximately 27.5% of the global population not meeting recommended activity 93 
levels10. The prevalence is high among older adults and has escalated since the COVID-19 94 
pandemic, especially among older adults with chronic conditions11-13. Moreover, motivating and 95 
maintaining long-term behavior change is difficult. Observational studies report that only 4.3% 96 
of individuals adopt lifestyle modifications within six months following a cardiovascular event, 97 
with adherence rates dropping to 3–11% after five years14. Understanding why and when 98 
individuals engage in initiation of physical activity is crucial for designing effective 99 
interventions. 100 

To move towards a precision medicine approach to behavior change, it is important to go 101 
beyond group-level statistical approaches to identify individual differences and contextual 102 
factors at the level of the individual28,71. Prior behavioral research applying group-level statistics 103 
has highlighted factors such as self-efficacy17, self-regulation18, and biological sex, where males 104 
generally show higher adherence rates than females19 in influencing physical activity 105 
engagement. Psychological factors, including depression, fatigue, and executive function have 106 
also previously been shown to influence adherence20,21. Furthermore, social and structural 107 
determinants of health, which refers to the environmental conditions in which individuals are 108 
born, live, learn, work, play, and age have a cumulative impact on physical, mental, and brain 109 
health22,23. Factors such as access to greenspace and neighborhood walkability25, social support26, 110 
socioeconomic status24 are strongly associated with physical activity levels. Critically however, 111 
whether these factors also support physical activity behavior change remains unknown. These 112 
determinants may not only shape physical activity behavior but also act as upstream contributors 113 
to disparities in health outcomes, including incidence of dementias27. Further, neuroimaging 114 
provides insights into individual differences in brain organization and highlights neurodiversity, 115 
that is, how brain functions vary across individuals based on multilevel factors non-modifiable 116 
factors (e.g., genetics, biological sex) and differential life exposures to social and structural 117 
determinants of health29.  118 

Functional connectivity offers a promising avenue for characterizing complex brain-119 
behavior relationships72,73. Predictive modeling based on functional connectivity72 leverages the 120 
most relevant features of functional connectivity to predict behavioral outcomes. By mapping the 121 
brain’s intricate connections and integrating them with data on individual behaviors, it offers a 122 
window into the neural basis of highly complex phenomena. Indeed, prior research supports the 123 
utility of functional brain connectivity for behavioral prediction72,74, and shows that it can 124 
outperform the predictive power of structural features for lifestyle adherence76. This is in line 125 
with the Stern theoretical framework of cognitive reserve (the ability to maintain function in the 126 
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face of age- and disease-related brain changes) that suggests functional measures might best 127 
capture the “neural implementation” of cognitive reserve77.  128 

To better understand the drivers of physical activity behavior change among older adults who 129 
stand most to benefit, the current study adopts a precision medicine framework combined with a 130 
whole-brain machine learning approach. Specifically, we examine the roles of sociodemographic 131 
factors (e.g., age, sex, socioeconomic status), behavioral characteristics (e.g., retirement status, 132 
general health, pain, depression), cognitive function (e.g., attention, executive function), social 133 
factors (e.g., networks and support), environmental context (e.g., access to green spaces), and 134 
baseline resting-state functional connectivity (RSFC) on future physical activity behavior change 135 
after physically inactive older individuals receive a new cardiovascular diagnosis. This 136 
comprehensive approach is designed to uncover tangible targets for future interventions, 137 
including public policy changes, tailored to individual needs for those at a heightened risk of 138 
cognitive decline. By employing a rigorous data-driven machine learning approach, the current 139 
study aims to uncover the neurobehavioral mechanisms driving successful physical activity at the 140 
individual level29. 141 

 142 
2. Methods 143 
2.1 Participants 144 

295 (mean age = 63.13 years ± 7.5, 188 women) cognitively unimpaired and physically 145 
inactive older adults from the UK Biobank, a large-scale population-based longitudinal cohort 146 
were included in this study. Inclusion criteria were: 1) cognitively unimpaired at enrollment; 2) 147 
reported a new cardiovascular diagnosis (i.e., hypertension, type II diabetes, dyslipidemia, 148 
cardiac angina or myocardial infarction) between baseline (T1; 2014) and follow-up over four 149 
years later (T2; 2019) (mean duration 4.2 years, SD 1.1); 3) did not meet the World Health 150 
Organization recommendation of 150 minutes/week of moderate-to-vigorous physical activity 151 
(MVPA) at baseline3; and 4) age >= 60. These criteria yielded a final sample size of 295 after 152 
removing four participants for having poor quality brain imaging data. Unimpaired cognition 153 
was defined as follows: performance scores on each cognitive test were converted into a 154 
percentile rank, and the raw score corresponding to the 5th percentile (or 95th, on tests where 155 
higher scores represented worse performance) was identified as the cut-off for impairment54. An 156 
illustration of the study timeline is shown in Fig. 1. The brain imaging visit (Instance 2 of the UK 157 
Biobank) was considered the baseline timepoint, and the first repeat imaging visit (Instance 3 of 158 
the UK Biobank) was considered the follow-up timepoint. Demographic variables including age, 159 
sex, years of education, household income, and socioeconomic status (as measured through 160 
Townsend deprivation index)55 were included as covariates of non-interest. Average total 161 
household income before tax was divided into five groups (<�£18,000, £18,000 to 30,999, 162 
£31,000 to 51,999, £52,000 to 100,000, and�>�£100,000). MRI data were obtained at baseline, 163 
before participants had received a new cardiovascular diagnosis, and moderate-to-vigorous 164 
physical activity (MVPA) self-reported data and cognitive indices were obtained for the two 165 
time-points: at baseline and in follow up after 4 years (mean duration 4.2 years, SD 2.1; ranging 166 
from 8 months to 4.8 years). The distribution of cardiovascular conditions was as follows: 183 167 
individuals with hypertension, 20 with diabetes, 161 with high cholesterol, and 10 with cardiac 168 
angina or myocardial infarction. Inventories used to measure physical activity, psychosocial, 169 
cognitive, and environmental factors in the current study are briefly described below. Please 170 
refer to the Supplementary materials for further details. Medication use was measured at follow-171 
up. Medication use was prevalent in this cohort, with 141 individuals taking cholesterol-lowering 172 
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medication, 162 taking blood pressure medication, and 85 using both. Participant demographic173 
characteristics are summarized in Table 1. 174 
 175 
Demographic Factor (n = 295) Mean±SD 
Age at baseline (years) 63.13 years ± 7.5 
Female sex (count and %) 188 women (63.72%) 
Household income (£, most frequent range) 18,000 to 30,999 (61%) 
Education (years) 15.4±3.2 
Townsend deprivation index score -1.3±3.2 
MVPA at baseline (min/week) 101.62±4.5 
MVPA at follow-up (min/week) 109.10±6.8 
Frequency of friends and family visits at 
baseline  

4.2±1.03 

Able to confide at baseline  3.8±1.67 
Greenspace proximity at baseline (%) 34.1±20.59 
Coastal proximity at baseline (%) 0.89±2.88 
Depression score at baseline 2.1±1.02 
Anxiety score at baseline 1.8±0.88 
Number retired at baseline (count and %) 111 retired (37.64%) 
 176 
Table 1: Participant baseline demographic information for the UK Biobank sample. SD =177 
Standard Deviation. MVPA = Moderate to Vigorous Physical Activity. 178 

179 
Fig. 1. Study Timeline: Older participants received a new cardiovascular diagnosis (i.e.,180 
hypertension, type II diabetes, dyslipidemia, cardiac angina or myocardial infarction) between181 
the baseline and follow-up periods (mean 4.2 years), with no cardiovascular diagnoses reported182 
prior to baseline. Assessments included self-reported moderate-to-vigorous physical activity183 
(MVPA), cognitive function, neurobehavioral factors (such as depression, anxiety, general or184 
pain), social and structural determinants of health (including social support, retirement status and185 
greenspace access). Resting-state functional connectivity (RSFC) MRI was assessed at baseline.  186 
 187 
2.2 Data analysis overview of behavioral and contextual factors 188 
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Participants completed a comprehensive battery of psychosocial, behavioral, cognitive, and 189 
environmental assessments at both baseline and follow-up (Fig. 1). These assessments are briefly 190 
outlined below. To investigate the relationship between physical activity and cognition, we first 191 
examined whether baseline cognitive function predicted future physical activity behavior. We 192 
then assessed whether increases in physical activity at follow-up were linked to cognitive gains. 193 
Next, we evaluated whether social and structural health determinants at baseline predicted 194 
successful future engagement in physical activity. Resting state functional connectivity (RSFC) 195 
was assessed at baseline only, prior to any cardiovascular diagnosis, thereby reducing potential 196 
confounding effects related to blood flow alterations56,57 (Makedonov et al., 2013; Tsvetanov et 197 
al., 2021). A full list of input variables used in the prediction models is available in 198 
Supplementary Table 1. 199 
 200 
2.2.1 Townsend deprivation index 201 
The Townsend Deprivation Score is an area-based score of social deprivation aggregated from 202 
percentage of unemployment rate, non-car ownership rate, non-home ownership rate and 203 
household overcrowding (proportion of households with more people than rooms). This indicator 204 
was determined immediately prior to the participant joining the Biobank and was based on data 205 
from the preceding national census58. The Townsend Deprivation Index is a composite, 206 
standardized score with higher positive values indicating greater socioeconomic deprivation and 207 
lower (negative) values indicating less deprivation. Each participant was assigned a score 208 
corresponding to their postal code area. 209 
 210 
2.2.2 Physical activity questionnaires 211 
Successful future physical activity engagement, the primary behavioral outcome of interest, was 212 
defined as the difference between the overall MVPA in minutes per week measured at follow-up 213 
compared to the overall MVPA in minutes per week measured at baseline. This change in 214 
MVPA was assessed using the Lifetime Total Physical Activity Questionnaire59, which captures 215 
self-reported MVPA by recording the frequency and duration of each physical activity type 216 
performed weekly. The total time spent on moderate and vigorous activities was then calculated 217 
to derive the overall MVPA in minutes per week. This total score served as an indicator of each 218 
individual's physical activity engagement. The scale was administered at both baseline and 219 
follow-up timepoints to assess changes over time.  220 
 Leisure-time physical activity was also measured through items capturing activities such 221 
as walking for pleasure, light and heavy do-it-yourself (DIY) tasks (e.g., pruning, watering the 222 
lawn, carpentry, digging, weeding), and recreational activities (e.g., swimming, cycling, 223 
bowling). The total time spent on these activities was then calculated to derive the overall leisure 224 
time physical activity in minutes per week. 225 

Occupational physical activity was assessed with questions adapted from the UK 226 
Biobank, including “Does your work involve heavy manual or physical work?” and “Does your 227 
work involve walking or standing for most of the time?” These questions helped capture physical 228 
activity levels related to participants' work environments. Scores ranged from 1 (Never/rarely) to 229 
4 (Always) and were treated as a continuous measure.  230 
 231 
2.2.3 Cognitive assessments 232 
A computerized cognitive battery was administered using a touchscreen tablet. The tests were 233 
specifically developed for the UK Biobank and have been validated54, while sharing features 234 
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with established cognitive assessments. The battery included the following tasks: Reaction time, 235 
Numeric memory, Prospective Memory, Fluid intelligence, Matrix pattern completion, Tower 236 
rearranging, and Trail making. A detailed description of these tasks can be found in 237 
Supplementary materials Appendix A.   238 
 239 
2.2.4 Social support 240 
The measures available in the UK Biobank for social support come from the items “How often 241 
do you visit friends or family or have them visit you?” and “How often are you able to confide in 242 
someone close to you?” Participants rated each item on a Likert scale from 0 (Never or almost 243 
never) to 6 (Almost daily). For the frequency of visits, the categories “never or almost never” 244 
and “no friends or family outside the household” were combined into a single category, “never.” 245 
This adjustment was made because these responses were similar, and there were only a few 246 
participants with no friends or family outside the household (n = 16). Scores ranged from 0 to 6 247 
and were treated as a continuous measure. Loneliness was also assessed using the item “Do you 248 
often feel lonely?". Responses were recorded as yes (1) or no (0).  249 
 250 
2.2.5 Greenspace and coastal proximity assessment 251 
Environmental indicators included in this study were the proportion of green space and water 252 
within 300 m of residential addresses, using the 2005 Generalised Land Use Database for 253 
England and Centre for Ecology and Hydrology 2007 Land Cover Map data for Great Britain60. 254 
The buffer size of 300m was decided based on relevant health evidence and public policy on 255 
both density and accessibility. Coastal proximity was estimated using Euclidean distance raster61. 256 

2.2.6 Psychosocial and mental health factors  257 
Psychosocial factors were assessed through self-reported experiences, including depression, 258 
anxiety, general pain, and lifestyle factors such as retirement status. Depression was evaluated 259 
using two items: “Feeling down, depressed, or hopeless” and “Little interest or pleasure in doing 260 
things.” Participants rated their experiences on a four-point scale, ranging from 0 (Not at all) to 4 261 
(Nearly every day). Anxiety was assessed similarly, with two items: “Feeling nervous, anxious, 262 
or on edge” and “Not being able to stop or control worrying.” General pain was measured using 263 
a single item: “Have you had pains all over your body for more than 3 months?” Responses were 264 
recorded as yes (1) or no (0). Participants also rated their overall health perception on a scale 265 
from 1 (Excellent) to 4 (Poor). Additionally, participants indicated their retirement status with a 266 
simple yes (1) or no (0) response. These assessments were conducted at both baseline and 267 
follow-up timepoints. 268 
 269 
2.3 MRI Data Acquisition 270 
Details of image acquisition and processing are available in the UK Biobank Protocol 271 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367), and Brain Imaging Documentation 272 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977). Briefly, all brain MRI data were 273 
acquired on a Siemens Skyra 3T scanner with a standard Siemens 32-channel RF receiver head 274 
coil, using the following parameters: TR = 2000 ms; TI = 800 ms; R = 2; FOV = 208 × 256 × 275 
256 mm; voxel size = 1 × 1 × 1 mm. For resting-state fMRI scans, two consecutive functional 276 
T2*-weighted runs were collected with eyes closed using a blood oxygen level dependent 277 
(BOLD) sensitive, single-shot echo planar imaging (EPI) sequence with the following 278 
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parameters: TR = 735 ms; TE = 39 ms; flip angle = 52°; FOV 88 x 88 x 64 matrix; resolution = 279 
2.4 × 2.4 × 2.4 mm; 490 volumes; and acquisition time = 6 minutes per run. 280 
 281 
2.4 Resting-State Functional MRI Data Preprocessing 282 
Preprocessing of raw functional images from the UK Biobank was done using the fMRIprep 283 
pipeline (version 20.2.4)62. For each of the BOLD runs per participant, the following 284 
preprocessing was performed: First, the T1w reference was skull-stripped using a Nipype 285 
implementation of the antsBrainExtraction.sh (ANTs) tool. A B0-nonuniformity map (or 286 
fieldmap) was estimated based on a phase-difference map calculated with a dual-echo gradient-287 
recall echo (GRE) sequence, which was then co-registered to the target EPI reference run and 288 
converted to a displacements field map. A distortion-corrected BOLD EPI reference image was 289 
constructed and registered to the T1-weighted reference using a boundary-based approach (using 290 
bbregister, Freesurfer). Rigid-body head-motion parameters with respect to the BOLD EPI 291 
reference were estimated (using mcflirt, FSL 5.0.9)63 before spatiotemporal filtering was 292 
performed. BOLD runs belonging to the single band acquisition sessions were slice-time 293 
corrected (using 3dTshift, AFNI 20160207). The BOLD time series were resampled into their 294 
original, native space by applying a single, composite transform to correct for scan-to-scan head 295 
motion and susceptibility distortions. Functional scans were spatially smoothed using a 6 mm 296 
full width at half maximum Gaussian smoothing kernel. 297 

Additional preprocessing steps were undertaken to remove physiological, subject motion, 298 
and outlier-related artifacts, which were implemented using the nilearn package. Non-neuronal 299 
sources of noise from white matter and CSF were estimated and removed using the anatomical 300 
CompCor method64 to allow for valid identification of correlated and anticorrelated 301 
networks65,66. Temporal band-pass filtering (0.008–0.09 Hz) was then applied. Additionally, 302 
scan-to-scan mean head motion (framewise displacement) was used as a covariate of non-interest 303 
in all second-level analyses (mean head motion = 0.2 mm, SD = 0.1 mm). Head motion is a 304 
known important potential confound as it produces systematic and spurious patterns in 305 
connectivity and is accentuated in Alzheimer’s disease (AD) and cognitively typical aging 306 
populations67. Critically, we did not identify a relationship between the mean head motion 307 
parameter and the primary behavioral variable of interest, physical activity change (all p > 0.05). 308 
The framewise displacement timeseries was determined by calculating the maximum shift in the 309 
position of six control points situated at the center of a bounding box around the brain, computed 310 
independently for each scan. Four participants were removed from the UK Biobank sample final 311 
analysis for having >30 scan volumes flagged, leading to the final sample size of 295 312 
participants. This cut off was determined based on preserving at least 5 minutes of scanning 313 
time68. 314 
 315 
2.5 Machine Learning Modelling 316 
To predict future successful physical activity (MVPA) behavior change as a continuous measure 317 
following a new cardiovascular diagnosis, we used the support vector machine (SVM) algorithm 318 
from the scikit-learn (v0.21.3) library, utilizing the pydra-ml (v0.3.1) toolbox. Three separate 319 
models were trained: (1) combined demographic, cognitive and contextual features only (2) 320 
neuroimaging features only, and (3) multimodal model combining all demographic, cognitive, 321 
contextual and neuroimaging features. Contextual features encompass many factors influencing 322 
responses to interventions and overall clinical outcomes, including but not limited to the personal 323 
characteristics, and social and structural determinants of health14,19,23. This multilevel, complexly 324 
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interacting framework is essential for understanding physical activity behavior change in 325 
individuals with cardiovascular disease and optimizing the effectiveness of preventive strategies 326 
and interventions.  327 

The SVR works by placing constraints to ensure only a small number of observations 328 
(support vectors) are used. SVR works with the goal of constructing a regression line that fits the 329 
data within some chosen level of error. We used the default parameters, which include the radial 330 
basis function kernel to capture non-linearities in the data. To assess the robustness of our 331 
findings, we repeated our analysis using additional machine learning algorithms of increasing 332 
complexity, defined by the computational resources required for model simulation. Specifically, 333 
we examined linear regression, random forest, and multi-layer perceptron algorithms, using 334 
default parameters unless otherwise specified. Further details on these algorithms are available in 335 
the supplementary materials Appendix B. 336 

We investigated model performance using four features selection strategies for all the 337 
prediction models we tested (Linear Regression, SVM regression, Random Forest regression, 338 
and multi-layer perceptron): (1) using all features, (2) removing redundant neuroimaging 339 
features, (3) selecting only the top 20 features, and (4) excluding the top 20 features to assess 340 
their necessity for predictive performance. To generate independent test and train data splits, we 341 
used a bootstrapped group shuffle split sampling scheme. For each iteration of bootstrapping, a 342 
random selection of 20% of the participants, balanced between the two groups, was designated as 343 
the held-out test set. The remaining 80% of participants were used for training. This process was 344 
repeated 50 times, fitting and testing the four classifiers for each test/train split. We used the 345 
default of 50 bootstrapping splits from pydra-ml toolbox. We provide several interpretable 346 
measures of model performance based on the observed vs predicted values; Pearson’s r 347 
correlation, the squared correlation, R2, root mean squared error (RMSE), which measures the 348 
average prediction error as the average difference between the observed and predicted values and 349 
the mean absolute error (MAE) as the average absolute difference between the observed and 350 
predicted values. RMSE and MAE are related with MAE being less sensitive to outliers and the 351 
lower the value the better the model performance. The p-value for each model is derived by 352 
comparing the correlation coefficient between the observed and predicted values to a null 353 
distribution derived from 1000 non-parametric permutations. Age, sex, years of education, and 354 
medication use were controlled as covariates in all prediction models. 355 

We employed Kernel SHAP (SHapley Additive exPlanations)69 to assess the significance 356 
of baseline RSFC features in predicting successful engagement in physical activity. We 357 
computed the average absolute SHAP values across all predictions, weighted by the model's 358 
median performance, and calculated mean SHAP values across splits for each model. This entire 359 
pipeline, encompassing machine learning models, bootstrapping, and SHAP analysis, was 360 
implemented using pydra-ml toolbox. 361 
 362 
2.6 Reducing collinearity using Independence Factor to enhance model interpretability  363 
Collinearity among features can significantly affect model generation and interpretation, 364 
particularly in resting state fMRI - analyses. To address this, we employed the Independence 365 
Factor method69, which iteratively removes features with strong dependence above a set 366 
threshold, ensuring a consistent set of features across models. Using distance correlation, which 367 
accommodates non-monotonic relationships, we systematically increased the threshold to 368 
eliminate redundant features while preserving model performance within a narrow margin. 369 
Importantly, reducing distance correlation enhances statistical independence among features, 370 
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thereby improving model interpretability. We applied thresholds ranging from 1.0 (keeping all 371 
features) to 0.2 (removing features with distance correlation above 0.2). Our goal was to identify 372 
a feature set that maintained model performance within three percentage points of using all 373 
features, resulting in a more parsimonious and interpretable model without compromising 374 
accuracy, essential for clinical applicability. 375 
 376 
2.7 Performance using most important and least important features  377 
To address the question of why certain features are important, we evaluated model performance 378 
under two scenarios: one using only the top 20 features and another excluding these features. 379 
This method mitigates the common pitfall in brain-behavior prediction analyses, where the 380 
significance of the top features may not reflect their true impact on model performance. By 381 
comparing performance metrics in both scenarios, we can gain a more nuanced understanding of 382 
the highlighted features’ contributions and derive mechanistic insights into the neural correlates 383 
of successful behavior change. 384 
 385 
This article was prepared according to the guidelines outlined in TRIPOD + AI statement: 386 
updated guidance for reporting clinical prediction models that use regression or machine learning 387 
methods83. The checklist is available in supplementary materials.  388 
 389 
3. Results 390 
3.1. Behavioral Results 391 

Following a new cardiovascular diagnosis, participants demonstrated a significant 392 
average increase in physical activity engagement of 7.48 min/week ± 1.23, reflecting a 7.36% 393 
increase in moderate-to-vigorous physical activity (MVPA) (r=0.38. p < 0.01). A positive trend 394 
was observed between higher baseline MVPA and change in MVPA at follow-up among inactive 395 
older adults (r = 0.51, p = 0.12). No significant associations were identified between medication 396 
use (cholesterol-lowering or blood pressure) and either baseline MVPA or change in MVPA 397 
following a new cardiovascular diagnosis. Baseline cognitive function across multiple domains, 398 
including processing speed and executive function, was not significantly associated with baseline 399 
MVPA. Moreover, changes in cognitive function (i.e., follow-up minus baseline scores/baseline) 400 
were not associated with either change in MVPA or baseline MVPA. 401 

 402 
3.2. Prediction Modeling Results 403 
 Prediction of future change in physical activity (MVPA as a continuous variable) among 404 
295 cognitively unimpaired older adults, was conducted separately across three support vector 405 
machine (SVM) learning models with inputs that included baseline neuroimaging, behavioral or 406 
combined features as predictors: (Model 1) demographic, cognitive, and contextual features, 407 
(Model 2) RSFC MRI inputs, and (Model 3) a multimodal model integrating all behavioral and 408 
neural features. As shown in Table 2, the model based solely on demographic, cognitive, and 409 
contextual features did not significantly predict changes in MVPA at follow-up (r=0.17, 410 
p=0.056). In contrast, the neuroimaging model (r=0.25, p=0.004, FDR-corrected) and the 411 
multimodal model combining all features (r=0.28, p=0.001, FDR-corrected) significantly 412 
predicted MVPA change. SVM models consistently outperformed other machine learning 413 
algorithms, including linear regression, random forest, and multi-layer perceptron (performance 414 
metrics for the other algorithms described in Supplementary Table 2). 415 
 416 
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Model r R2 RMSE MAE p-value 
Behavioral and 
SSDoH 

0.17 0.02 0.13 0.11 0.058 

Neuroimaging 0.25 0.07 0.11 0.09 0.004 
Multimodal 0.28 0.08 0.11 0.09 0.001 
 417 
Table 2: Performance metrics derived from SVM regression models. R and R2 represent the 418 
Pearson correlation and the squared correlation between the predicted and observed values, 419 
respectively. Root mean squared error (RMSE) represents the average difference between the 420 
observed and predicted values (average prediction error).  Mean squared error (MAE) represents 421 
the absolute mean difference between the predicted and observed values. SSDoH represents the 422 
social and structural determinants of health. 423 
 424 

A predictive model that generalizes to different settings has greater clinical utility than a 425 
model that only works under specific conditions. The SVM model demonstrated robust 426 
performance across all scenarios (Supplementary Table 3). Given the high dimensionality of 427 
resting state fMRI data, Independence Factor Analysis69 was applied to neuroimaging features, 428 
resulting in an optimal subset of 250 features for subsequent analyses. After removing highly 429 
dependent features, based on distance correlation, from the original 400 neuroimaging features, 430 
the final model included 250 neuroimaging features and 19 demographic, cognitive, and 431 
contextual features, for a total of 269 features.  432 

Mean SHAP (SHapley Additive exPlanations) values illustrating feature importance 433 
across the three models are summarized in supplementary table 4. In the multimodal model, 434 
neighborhood greenspace percentage, social support (i.e., frequency of visits from friends and 435 
family), retirement status, and occupational physical activity showed a significantly positive 436 
association with MVPA change, indicating that higher greenspace exposure, more frequent 437 
friend and family visits, not being retired, and greater occupational physical activity predicted 438 
greater improvements in MVPA (p < 0.05, FDR-corrected). For cognitive features, improved 439 
higher executive function (the Tower Rearranging task) emerged as a significant predictor of 440 
future increase in MVPA (supplementary Table 4), while no other behavioral, cognitive, or 441 
contextual features showed significant prediction effects. 442 

Figure 2 highlights the most significant baseline RSFC MRI features from the highest-443 
performing multimodal prediction model. These features were primarily located within the left 444 
hemisphere and spanned multiple large-scale networks, with critical nodes in the default mode 445 
network (e.g., temporal lobe and medial prefrontal cortex), frontoparietal control network (e.g., 446 
lateral prefrontal cortex), and salience/ventral attention network (e.g., frontal operculum) (Figure 447 
2b). Of the top RSFC nodes, 7 were within the default network, 7 were within the frontoparietal 448 
control network, 6 were within the salience ventral attention network. Enhanced RSFC within 449 
the default mode network was associated with increased physical activity at follow-up. 450 
Moreover, increased MVPA was associated with greater positive RSFC between frontoparietal 451 
control network and the default mode network.  452 
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Figure 2. Baseline RSFC features that predict future increase in MVPA after a new453 
cardiovascular diagnosis in aging. (a) Neuroanatomical depiction of significant features from454 
the multimodal model and their corresponding importance values: Node size (spheres) depicts455 
the frequency of that brain region among predictive features, while edge thickness (line456 
connecting two nodes) represents the weight or importance of a predictive RSFC feature. Purple457 
signifies positive RSFC whereas grey signifies negative RSFC associated with enhanced458 
physical activity at follow up compared to baseline. (b) The summary of frequency and459 
distribution of predictive nodes grouped by location within canonical neural networks (i.e., Yeo460 
7 networks). 461 
 462 
4. Discussion 463 

In this study, we systematically evaluated whether neural, cognitive, behavioral or social464 
and structural determinants of health (SSDoH) predict successful long-term physical activity465 
behavior change among inactive older adults newly diagnosed with a cardiovascular illness. Our466 
findings highlight the importance of SSDoH, particularly access to greenspace, social support,467 
occupational physical activity and retirement as key predictors of positive changes in physical468 
activity (i.e., MVPA) following cardiovascular disease diagnosis in aging. From a cognitive469 
standpoint, improved performance on the tower rearranging task, a measure of executive470 
function (i.e., goal-directed planning) was significantly associated with positive physical activity471 
behavior change. We found that a multimodal model incorporating behavioral, contextual, and472 
neuroimaging features provided the strongest predictive value. Functional connectivity analyses473 
revealed that sustained increases in MVPA were linked to greater within-network connectivity in474 
key regions of the default mode network and enhanced between-network connectivity between475 
the default mode and frontoparietal networks.  These predominantly left-lateralized connections476 
localized primarily within heteromodal cortices, underscoring the role of large-scale brain477 
networks in facilitating behavior change.  478 

The critical windows theory suggests that successful behavior change may be facilitated479 
by an external threat from a major life event or circumstance (e.g., receiving a diagnosis of a new480 
chronic illness such as a cardiovascular disease, pregnancy, or menopause), which might481 
catalyze the reassessment of goals and increase motivation for change presenting a ‘teachable482 
moment’ in life15. For example, individuals with chronic conditions, including diabetes and other483 
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cardiovascular diseases are often more likely to maintain or increase their leisure-time physical 484 
activity levels16. Consistent with this, our study observed increased physical activity behavior 485 
among older adults who reported a new cardiovascular diagnosis. Thus, life transitions may 486 
serve as critical windows for intervention, offering opportunities to promote long-term physical 487 
activity engagement. 488 

Our findings build on the growing body of literature demonstrating the influence of 489 
SSDoH on age-related health outcomes; for example, the influence of upstream factors on 490 
downstream protective behaviors such as physical activity engagement. Consistent with prior 491 
research, proximity to greenspace and social support were linked to increased physical activity 492 
behavior change25, 33. Similarly, high social support from friends and family was significantly 493 
associated with enhanced MVPA23,28. However, we found that quantitative aspects of social 494 
support (e.g., frequency of visits from family and friends) were stronger predictors of behavior 495 
change than qualitative aspects (e.g., ability to confide in others or perceived loneliness). There 496 
is likely a complex, bidirectional relationship between social contact frequency and emotional 497 
support in influencing physical activity34.  498 

Contrary to prior research suggesting that retirement can increase leisure-time physical 499 
activity35, we observed a decline in physical activity over a five-year follow-up period after 500 
retirement. This reduction may be partially attributed to diminished social interactions post-501 
retirement. Furthermore, catalysts for retirement, such as health issues or caregiving 502 
responsibilities can impact an individual's motivation, financial capacity, and physical ability to 503 
remain active36. Indeed, retirement due to disability is associated with a decline in physical 504 
activity levels35. This finding highlights the importance of life milestones (e.g., parenthood, 505 
death of a loved one) as critical windows for behavior change and potential opportunities for 506 
dementia prevention70.  507 

Even modest increases in MVPA can yield substantial health benefits for individuals with 508 
cardiovascular risk factors32. However, comorbid conditions may necessitate personalized 509 
activity targets due to variability in clinically meaningful responses. By identifying individual 510 
differences in key factors influencing long-term behavior change, spanning behavioral, 511 
cognitive, neural, social, and structural determinants, our findings contribute to the growing 512 
evidence base that can be leveraged to develop scalable and effective personalized physical 513 
activity interventions. Despite mixed prior findings suggesting that antihypertensives and 514 
cholesterol lowering medications such as beta-blockers and statins can impair exercise capacity 515 
due to muscle fatigue or reduced endurance32, we did not identify a relationship between 516 
medication use and behavior change, suggesting these medications may not limit long-term 517 
MVPA engagement.  518 

We identified neural markers that predicted successful physical activity behavior change 519 
among older adults following a cardiovascular risk diagnosis. Future increases in physical 520 
activity were associated with enhanced positive functional connectivity between the default 521 
mode network and frontoparietal network, as well as greater within-network connectivity in the 522 
default mode network. These findings align with prior research showing that network 523 
connectivity of regions within the default mode network, especially the prefrontal cortex, support 524 
compensatory mechanisms in aging73,74. Prior age-related neuroimaging research has shown that 525 
default mode network is associated with complex decision-making processes critical for adaptive 526 
behavior in aging37-39. Moreover, our finding of increased default mode to frontoparietal network 527 
coupling with enhanced physical activity behavior change supports the default-executive 528 
coupling hypothesis of aging37-47: This model suggests that goal-directed cognition in older 529 
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adults increasingly relies on accumulated knowledge (semanticization of cognition) to offset 530 
declining cognitive control resources for successful behavior37,80. Default-executive coupling has 531 
been associated with positive behavioral outcomes including creative problem solving78 and 532 
autobiographical memory37,79. Our findings point to a possible large-scale network connectivity 533 
fingerprint as a marker of resilient aging and of individuals who may be the most receptive to 534 
changing their lifestyle behavior. 535 

Finally, our observation that combining multimodal brain and behavioral features leads to 536 
an increase in model performance suggests that these features provide independent and relevant 537 
information for predicting changes in physical activity. Previous studies48,49 have also 538 
demonstrated that multimodal prediction models outperform unimodal ones. This improvement 539 
in prediction performance may arise because individual features capture distinct aspects of 540 
complex behaviors related to physical activity behavior change—insights that unimodal features 541 
alone may fail to capture. 542 

Despite these contributions, several limitations of this work should be noted. First, self-543 
reported measures of MVPA were used rather than objectively-measured physical activity 544 
measured using wearables. This choice was made due to the availability of accelerometry data at 545 
only one of the timepoints, making it impossible to measure behavior change. Self-reports should 546 
be interpreted with caution due to potential reverse causation effects, and significant variance 547 
between objectively measures and self-reported estimates of physical activity82. Second, 548 
objective measures such as accelerometers can differentiate between sedentary behavior, light 549 
activity, and moderate/vigorous activity, and can also provide physiological metrics for 550 
estimating cardiorespiratory fitness50. Finally, the correlational nature of functional connectivity 551 
analyses prevents us from determining causality in the brain behavior relationship 552 
identified51,52,53. 553 

Nonetheless, our study has several notable strengths. It represents the largest and most 554 
comprehensive assessment of the brain, behavioral and contextual factors predicting successful 555 
longer-term physical behavior change after cardiovascular diagnosis in aging. This study 556 
highlights the importance of going beyond individual-level factors and considering structural 557 
factors such as greenspace and social support to promote physical activity behavior change, 558 
evidence that is critical to guide policy decision-making and urban planning. Future research 559 
must adopt a life course perspective to identify factors in younger or midlife adults and build a 560 
comprehensive understanding of physical activity behavior change across the lifespan.  561 
 562 
5. Conclusion 563 

This study demonstrated that individual differences in brain, cognition, behavior, and 564 
contextual factors, including social and structural determinants of health, drive a complex human 565 
behavior: Future engagement in physical activity among older adults that are newly diagnosed 566 
with a cardiovascular illness. Leveraging mechanistic predictors of future physical activity and 567 
adopting a precision medicine framework will potentially lead to targeted interventions that 568 
result in sustained behavioral change and dementia prevention.  569 
 570 
6. Data and Code Availability: 571 

The individual-level UK Biobank data can be obtained from 572 
https://www.ukbiobank.ac.uk/. The code required to run the analyses is available through Github 573 
(https://github.com/nagatv11/cvd_MVPA.git).  574 
 575 
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