
Research Article
Stress Classification by Multimodal Physiological Signals Using
Variational Mode Decomposition and Machine Learning

Nilima Salankar ,1 Deepika Koundal ,1 and Saeed Mian Qaisar 2,3

1Department of Virtualization, School of Computer Science, University of Petroleum & Energy Studies (UPES), Dehradun, India
2Electrical and Computer Engineering Department, Effat University, Jeddah 22332, Saudi Arabia
3Communication and Signal Processing Lab, Energy and Technology Research Centre, Effat University,
Jeddah 22332, Saudi Arabia

Correspondence should be addressed to Saeed Mian Qaisar; sqaisar@effatuniversity.edu.sa

Received 6 June 2021; Revised 22 July 2021; Accepted 12 August 2021; Published 26 August 2021

Academic Editor: Siti Anom Ahmad

Copyright © 2021 Nilima Salankar et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this pandemic situation, importance and awareness about mental health are getting more attention. Stress recognition from
multimodal sensor based physiological signals such as electroencephalogram (EEG) and electrocardiography (ECG) signals is a very
cost-effective way due to its noninvasive nature. A dataset, recorded during the mental arithmetic task, consisting of EEG+ECG
signals of 36 participants is used. It contains two categories of performance, namely, “Good” (nonstressed) and “Bad” (stressed)
(Gupta et al. 2018 and Eraldéır et al. 2018). )is paper presents an effective approach for the recognition of stress marker at frontal,
temporal, central, and occipital lobes. It processes the multimodality physiological signals. )e variational mode decomposition
(VMD) strategy is used for data preprocessing and for the decomposition of signals into various oscillatory mode functions. Poincare
plots (PP) are derived from the first eight variational modes and features from these plots have been extracted such asmean, area, and
central tendencymeasure of the elliptical region.)e statistical significance of the extracted features with p < 0.5 has been performed
using the Wilcoxson test. )e multilayer perceptron (MPLN) and Support Vector Machine (SVM) algorithms are used for the
classification of stress and nonstress categories. MLPN has achieved the maximum accuracies of 100% for frontal and temporal lobes.
)e suggested method can be incorporated in noninvasive EEG signal processing based automated stress identification systems.

1. Introduction

Short-term mental fatigue results in reduced efficiency in
workspace, whereas long-term mental fatigue may result
into brain damage. )erefore, timely awareness about rea-
sonable rate of mental fatigue is very crucial. Stress man-
agement is very necessary for successful and happy leading
life. )e population who can easily manage stress does
exhibit their behavior in brain as well and can be easily
captured by noninvasive approach. Acquisition of data in
real time environment is very tough; thus, induced tech-
nique plays a very important role in behavioral study. )ree
levels of mental arithmetic tasks that are mostly used in
literature are easy, medium, and hard and it is an appropriate
technique for inducing the stress in virtual environment [1].

Nowadays, in every work domain and culture, performance
setting is marked and stress management is a key to succeed
and nonmanagement of stress not only leads to failure but is
a major reason of depression, frustration, and negative
approach towards life. )us, stress management is an im-
portant skill to learn and to help this fraternity by early
identification of markers which is very essential.

In literature, lot of attempts have been made in this
direction. Firstly, in order to understand the markers of
fraternity stress and nonstress, various types of studies have
been conducted where arithmetic test is the most common
technique which has been widely adopted. However, mental
arithmetic task is an appropriate stress inducing technique
but it has certain limitation and according to age it has
shown different impact [2]. To capture the response from
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different types of subjects in response to various stress in-
duced techniques, multimodality approach has exhibited
significant role and its impact is noteworthy [3]. Various
types of studies have been carried out in this domain and
quite interesting study has been carried out on the arithmetic
task where experimentation has been done on numbers with
respect to ordered and unordered [4]. As brain has various
lobes and it gives response to various activities, sometimes, it
might be subject dependent and independent and this
correlation has been identified by studying different regions
of brain while performing activity abacus [5] and hemi-
sphere activation has been studied [6].)inking also acts as a
vital role in the generation of brain signals; thus, silent text
reading and study of brain signals in response to silent text
reading have been carried out [7–9].

For capturing the physiological signals in response to
induced techniques, electroencephalogram (EEG), electro-
myography (EMG), electrooculography (EOG), and elec-
trocardiography (ECG) have mostly been used whereas
photoplethysmography (PPG) also serves a very important
role in capturing physiological signals [3, 10]. Single channel
study though focuses on single task whereas multimodal
ones focus and capture the responses from various parts;
thus, multimodality signals and their correlation with
mental workload have been studied [11, 12]. Every signifi-
cant activity contains the significance of various brain re-
gions and its association details are presented [13]. Even
though behavioral impact is available all over, certain lobes
have shown prominent changes; majorly frontal region
exhibits prominent changes in signals while performing
mental arithmetic task [14]. Data acquisition by inducing
relevant technique/protocol and its systematic analysis lead
to designing of an appropriate study protocol and popularly
used methods are appropriate selection of channels [15].
Analysis of an EEG signal from only visualization is an
empirical science and needs expertise in neurological do-
main and thus, it is very time-consuming and tedious
process [16]. As there are stress induced techniques, simi-
larly stress relieving techniques and their cognitive impact
are also great to understand [17]. Stress has significant
impact to invoke and subsidize emotions [18] and generate
different behavioral response in epilepsy patients [19, 20].
Physiological signals also help to learn behavioral pattern in
special category [21]. In order to better visualize signals
decomposition method, feature extraction plays very crucial
role. Decomposition of signals in empirical way has been
widely used [22], but high frequency study is well supported
by VMD; thus authors have proposed the use of VMD
technique to better visualize the signal in time domain while
retaining its frequency components.)is method has proven
its significant role in area of seizure [23, 24]. Understanding
of connectivity among brain regions gives clear insight about
origin and exit of electrical connectivity between regions
[20]. However, convolution techniques have been used [21]
for reading EEG signals but they have no flexibility of
reading signals in time-frequency domain and sometimes
because of nonstationary behavior of the EEG signal they
need to compromise on accuracy [25]. )ere are unlimited
areas where stress gets evoked and reason for it could be

noise trigger or unpleasant vision [26]. As it is said every task
is time bounded and it is proven in studying correlation of
activity and time in [24]. Mere clean data acquisition does
not solve the purpose unless relevant features have been
extracted and its importance is viable [1, 23]. Capturing of
signal from throughout brain region is very tedious; thus,
study of only frontal region has been carried out in [27]. EEG
signals are very effective in carrying correlation between
various rhythmic signals [28]. Activation of specific region
and band is dependent upon types of activities performed by
subjects [29, 30]. Because of scarcity of professional auto-
mation and semiautomation, the analysis of multimodal
signals such as EEG+ECG is very important [31]. In real life,
time requirement to induce stress and analyze its resistant
capability has various constraints [32–34].

)e main objective of this work is to extract relevant
features from the multimodality physiological signals and to
design a classifier which can easily detect the stress (bad) and
nonstress (good) performer where signals have been cap-
tured while subjects have performed silent math activity as
well as during getting acquainted with an environment.
)erefore, key contributions of this research work are as
follows:

(i) Proposing an effective method for the automated
classification of stress resistant capability while
conducting short time mental arithmetic task.

(1) )e VMD is used for decomposing the multi-
modal physiological signals.

(2) )e PPs plots are derived from the first eight
variational modes.

(3) )e discriminating features have been identified
such as area, mean, and central tendency measure
from each PP.

(4) )e extracted features are passed to the consid-
ered classifiers for automated identification of
good and bad classes.

Remainder of the paper is organized as follows: Section 2
describes materials and methods, Section 3 discusses the
results, and conclusion is presented in Section 4.

2. Materials and Methods

)is section has contributed for the discussion of meth-
odology which consists of four components: (i) description
of dataset used for an experimentation, (ii) selection of
channels for an experiment purpose, (iii) VMD, (iv) PPs and
features extraction, (v) classifiers, and (vi) evaluation
measures.

)e suggested work flow is shown in Figure 1. Different
stages are described in the following subsections.

2.1. Dataset. In this work, dataset used for the purpose of
an experimentation and evaluation of stress classifier is
available publicly [15]. For each subject, two trails have
been conducted where physiological signals (EEG + ECG)
have been captured. Trail 1 is baseline activity for
180 seconds to get subjects acquainted with an
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environment and 60 seconds’ data for actual cognitive
task performance. Sampling rate for data acquisition is
516 Hz. )us, each subject cognitive task has raw file with
data dimension (21 channels x 516 samples x time du-
ration results) into (21 × 516 × 60 � 650160) data points
and (21 × 516 ×180 �1950480) data points for baseline
activity. Independent component analysis (ICA) has been
done for the purpose of noise removal. However, dataset
is captured while subjects were performing silent math
activity where no muscle movement was expected but
noise generally get introduced and elimination of arti-
facts like eyes movement and cardiac overlapping of
cardiac position has been done. Tasks which was per-
formed by the subjects include subtraction of two
numbers without making any movement. Each trial has
been commenced with the communication orally of 2-
digit (subtrahend) and 4-digit (minuend) numbers like 42
and 3141, respectively. More details of the dataset can be
found in [15]. As a ground truth labelling of dataset is
done on the basis of performance report card which is
available in the form of excel sheet with dataset. During
data acquisition subjects were asked to perform arith-
metic activity and nonstressed performer has performed
21 subtractions approximately and stressed performer
has performed 7 subtractions in the given time. Number
of nonstress performers in dataset is 26 and that of stress
performers was 10. Dummy participants have been added
to the dataset for nonstress category by replicating the
data channelwise for an experimentation purpose with
goal of balancing data for both categories. Age group of
subjects is in range of 16–26; both male and female
categories were included.

)e total data of 36 subjects has been evaluated and has
been given to the classifier by a robust and appropriate
feature extraction approach. For labels in documentation for
dataset [1], in the performance report of subjects with no-
tation subject 0 to subject 35 which consist of name, age,
gender, number of subtractions, and count quality “G”
indicates good and “B” indicates bad, as mentioned in the
excel file. Joining subject file with EEG data and name at-
tribute created a labelled dataset file and those labels have
been used as a ground truth for binary classification.

2.1.1. Channel Selection. Channels included into study cover
complete skull hemisphere ranging from frontal to occipital
region: frontal position, 6 + 1 channels; temporal position, 4
channels; central position, 2 + 1 channels; parietal position,
2 + 1 channels; occipital position, 2 channels; behind the ear,
1 channel; and 1 ECG channel. Channel selection is done
with objective in mind to investigate the affected areas so
that precise marker can be identified in each category which
definitely helps for identification of discrimination purpose
of stress and nonstress biomarkers. Channel positions
considered are illustrated in Figure 2.

2.2. Variational Mode Decomposition (VMD). )is decom-
position method is robust for noise handling [35]. It is a
process of decomposition of real valued input signal f into
discrete number of subsignals also known as mode uk. Each
mode is densely oriented towards its central frequency wk,
which is determined during decomposition process. Each
mode has a sparsity property which is being used while
reconstructing the signal. Before decomposition sparsity of

Performance Evaluation

Poincare Plots of Modes 

Feature Extraction (Area; Mean; Central tendency Measure)

Statistical significance (Wilcoxon Test) with p<0.5

Data division 70:10:20 for Training, Validation and Test

Labelling of data “1” (Good Performer)“0” (Bad Performer) ground truth for 21 channels

Variable mode decomposition of signal (VMD) 

Short Time Silent Arithmetic 
Activity Dataset 36 subjects (0-35) 20 EEG channels; 1 ECG 

channel

Figure 1: )e overall workflow of proposed method.
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each mode has to be determined by bandwidth in spectral
domain. To identify the bandwidth, three steps need to be
followed which are given as follows:

(1) From each mode, Hilbert transform has been used to
obtain the unilateral frequency domain.

(2) Subsequently, shift the frequency spectrum which
has been obtained in step 1 to the baseband by in-
tegrating with an exponential tune to the respective
centre frequency.

(3) Afterwards, apply H1 Gaussian smoothness to the
demodulated signal for obtaining bandwidth given
in

min
uk􏼈 􏼉, wk􏼈 􏼉

􏽘
k

zt z(t) +
j

πt
∗ uk(t)􏼔 􏼕e

− jwkt
⎧⎨

⎩

⎫⎬

⎭, (1)

where uk � u1, . . . , uk􏼈 􏼉 and wk � w1, . . . .􏼈

wk}􏽐kuk � f.

)e detailed behavior of variational mode decomposi-
tion (VMD) is as shown in Algorithm 1.

2.3. Poincare Plots (PPs). PP of the modes obtained after
VMD of EEG signals can provide favourable characteristic
patterns for the classifications purpose. )e PP of signal is
defined as given in the equation below:

x (t) is a plotting of X(t) against Y(t) as shown in the
following equations:

X(t) � x(t + 1) − x(t), (2)

Y(t) � x(t + 2) − x(t + 1). (3)

)is plot indicates the successive proportions against
each other [36]. )e resultant elliptical shape of plots
portrayed from mode signifies the strong positive associa-
tion between the consecutive data points, variability, and
stochastic nature. As modes derived from signal are deviated
towards central frequency, asymmetric area coverage is
visible in PPs. Region coverage for the plot of the first eight
modes is significantly higher than that of the other modes.

Ten modes are obtained from the signal and evaluated but
only first eight modes are considered for experimentation
and the remaining two are excluded on the basis of sig-
nificant area coverage as compared to the rest at central
modes.

2.4. Features Extraction. Owing to the no stationary be-
havior of captured physiological signals, features obtained
from the PPs are the area of the elliptic region, mean dis-
tance, and central tendency measure. PPs are designed from
each mode obtained from variational mode decomposition,
and for the calculation of area coverage of the elliptic shape
of plots, the equations used are as follows:

SX �

�����������

1
N

􏽘

N�1

i�0
X(t)

2

􏽶
􏽴

, (4)

SY �
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1
N

􏽘
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i�0
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2

􏽶
􏽴

, (5)

SXY �
1
N

􏽘 X(t)Y(t), (6)

AreaEllipse � πab, (7)

where a � major radius of poincare plots(
����������

S2X + S2Y + D

􏽱

),

b � minor radius of poincare plots (

����������

S2X + S2Y + D

􏽱

), and

D �
��������������������
(S2X + S2Y)4(S2XS2Y + S2XY)

􏽱
.

Area computed from the PPs of EEG and ECG signals is
used as a discriminative feature with 95% confidence. )e
details of area computation includes calculation of mean
values X(t) and Y(t) as mentioned in equations (2) and
(3).To compute plot parameter D compute mean values
from equations (4)–(6). Ellipse area can be computed by
equation (7). Mean and central tendency measure (CTM) of
the PPs have been derived.

2.5. Classifier Used in Study. For the analysis of the ro-
bustness of the proposed approach, two classifiers have been
tested which are multilayer perceptron neural network
(MLPN) and support vector machine (SVM). First experi-
mentation has been carried out with SVM. It is of category
supervised learning and can be used for the purpose of data
classification either at binary or at multiclass type. Each data
point is indicated as ni and requires n-dimensional space for
plotting all data points in consideration. For classification
purpose objective of an algorithm is to find an appropriate
hyperplane where discrimination and segregation of correct
data points are possible. In the condition where classification
is not easily achievable kernelling is an option opted by
SVM, which is a method to elevate lower dimensional input
space to higher level. Unlike SVM MLPN has a capability of
performing more complex operations and it had a tendency
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Figure 2: Channel positions considered in study: F �Frontal,
C�Central, P�Parietal, O�Occipital, and T�Temporal.
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to approximate the input as it is integrated with nonlinear
activation function.

As data is not separable linearly all the time MLPN
does the error correction by using a backpropagation
approach where initial set weights and biased get cor-
rected in order to reduce the difference level between
obtained and expected results. It is very useful for image
classification approach as well. Authors have converted
the data into labelled version by using the ground truth
value as described in Section 2. Different numbers of
layers have been experimented and suitable layers fixed
are 10 neurons and 3 hidden layers at each level. Acti-
vation function employed is rectified linear unit (ReLU),
various learning parameters are set to regularization, and
alpha is decided to be at value 0.0001 as most studies have
reported this value and it deems fit for our experimen-
tation purpose as well. Number of iterations is set to 200.
Adam optimizer is used for an optimization purpose and

it has helped us to reach to the expected accuracy level for
most of the subsets. In order to avoid very fast and very
slow learning process we have selected the value 0.001 and
kept it constant for experimentation. For SVM details the
parameters selected are CostC � 0.90, Epsilon � 0.1,
RBF kernel � exp(− g|x − y|2), g � 0.02, Iteration limit �

100, and Numerical Tolerance � 0.0010.

2.6. Performance Evaluation Measures. Performance evalua-
tors mostly used are sensitivity, specificity, and accuracy which
gives insight about training, validation, and testing phase in
order to compute the variance and bias level of the classifier. In
this work, performance of the proposed classifier has been
evaluated by using three evaluation metrics such as accuracy,
specificity, and sensitivity as represented in the following
equations:

sensitivity(SEN) �
TP

TP + FN
∗ 100, (8)

specificity(SPE) �
TN

TN + FP
∗ 100, (9)

accuracy(ACC) �
TTP + TN

TP + TN + FP + FN
∗ 100, (10)

F1measure �
TP

TP +(1/2)(FP + FN)
, (11)

Kappa statistics �
(percent agreement observed) − (percent agreement expected by chance alone)

100 − (percent expected by chance alone)
, (12)

where TN and TP are the indicators to notify about how
many data points have been correctly predicted by the
classifier andFP and FN are the indicators to notify about
how many data points have been incorrectly classified by the
proposed classifier.

3. Results and Discussion

In this work, dataset used for the purpose of an experimentation
and evaluation of stress classifier is available publicly [15].)ese

are recordings of EEG signals while performing the mental
arithmetic task of finite duration. Figure 3 shows the decom-
position of signal by using VMD approach and its modes which
are deviated towards the central frequency of the original input
signal that proves the significance of an approach for better
noise handling and its appropriateness for handling the lower
frequency as compared to higher frequency components.

)e PPs of first eight variational modes are shown in
Figure 4. Plots for modes are clearly representing the varying
area covered and it is more inclined towards lower frequency

Initialize 􏽢u1
k􏼈 􏼉, 􏽢w1

k􏼈 􏼉, 􏽢λ
1
, n⟵ 0

Repeat
n⟵ n + 1
for k � 1: K do
update 􏽢uk for all ww≥ o: 􏽢u

(n+1)
k (w)⟵ (􏽢f(w) − 􏽐i<k􏽢u

(n+1)
i (w) − 􏽐i>k􏽢un

i (w) + 􏽢λ
n
(w)/2/1 + 2∝ (w − wn

k)2)

Update wkbw
(n+1)
k ⟵ (􏽒

∞
0 w|􏽢u

(n+1)
k (w)|2dw/􏽒

∞
0 |􏽢u

(n+1)
k (w)|2dw)

End for
Dual ascent for all w≥ 0􏽢λ

(n+1)
(w)⟵ (w) + τ(􏽢f(w) − 􏽐k􏽢u

(n+1)
k (w))

Until convergence 􏽐k􏽢u(n+1)
k − 􏽢un

k
2
2􏽢ukn

2
2 < ∈

ALGORITHM 1: Variational mode decomposition (VMD).
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component mode as compared to higher frequency com-
ponent mode. )ese are PPs of an EEG signal, for subject 1
(female, good performer) recorded for channel FP1, while
performing mental arithmetic activity of 1minute duration.

Features extracted described in Section 2, “Materials and
Methods,” contributed for the designing of feature space.
Extracted features from PPs contributed for the design of
feature space and it is provided as an input to the SVM and
multilayer perceptron neural network. Statistical signifi-
cance of the extracted feature has been performed with
Wilcoxon statistical significance test with p< 0.5. Extracted
features are central tendency measure, mean distance, and
area. )e data generated for trail 1 and trail 2 for good
performer female for channels FP1 and FP2 as listed in
Table 1. Area coverage is the highest for middle modes as
compared to initial and end position.

)e Wilcoxon signed-rank test has been performed to
verify the statistical significance of the features extracted
with a confidence interval of 95%.

To check robustness and more reliable performance
evaluation of classifier data is provided to classifier in two
ways for the first time, where 70%, 10%, 20% training, val-
idation, and testing have been used by the split strategy to
split the data and later k-fold data where value of k� 10 is
selected. Only first eight modes have been used for the
extraction of results. By considering all three features on 20%
of test data from 36 subjects, the first to eight modes, binary
classification results according to group selection of chan-
nels are listed in Table 2. Table 3 summarizes results for the
case of k-fold cross validation.

Modes extracted from EEG signals have displayed var-
iable frequency behavior and because of tendency towards
central frequency modes are fluctuating from lower to
higher and vice versa. )e central mode exhibited higher
frequency components in comparison to initial and ending.
Initial signal is decomposed into 10 modes but after 8th
mode it has stopped exhibiting any variation in behavior and
appears to be static in nature. )us, only first 8 modes have
been considered for an experimentation purpose. Remaining
8 nodes also exhibited some grouping characteristics; thus 3
groups with combination of 1–4 modes, 5–8 modes, and 1–8
modes are created and processed accordingly. As each
subject consists of 21 channels decomposition has been done
subjectwise and trialwise. For the decomposition of signals
into modes it took approximately 2-3mins and for designing
PPs of mode it took approximately 3-4mins for each subject.
)e range mentioned is because of different size of data
points for trial 1 and trial 2 as explained in Section 2. For
classification purpose two algorithms have been used, SVM
and MLPN. )e time taken for SVM is much more as
compared to MLPN for binary classification of different
subsets. By using k-fold, performance of classifier is im-
proved compared to the intended percentage split base
study. It is particularly notable for modes 1–4 and 1–8 but
marginal for modes 5–8 except for the first set, good per-
former vs. bad performer. )e better performance, in the
case of k-fold cross validation, is attained because a higher
percentage of data is used for the training purpose compared
to the percentage split case. Authors main objective were to

identify specific region of brain which exhibits significant
behavior and can be used as marker for discrimination and
thus subsets have been designed accordingly.

First subset is good vs. bad (combination of 20 EEG and
1 ECG channel) and subsequently 4 subsets are at regions
frontal, temporal, central, and occipital. In addition to these
five subsets 2 more subsets were tested for good vs. bad male
and female but have not achieved any good classification
accuracy as per gender and thus concluded that gender
discrimination for performance is not possible through the
designed approach and needs some other approach for the
same as what also happened in case of subset for parietal
region and has been excluded from an experimentation.
Extracted modes exhibited the inconsistent and abrupt
upsurge and/or fall, which can be taken care of by detection
and removal of outliers before determining the PPs. Elliptic
nature of plots varies/diminishes for different modes but
only those modes have been considered for which plots have
shown good elliptic curve and the rest were excluded for an
experimentation purpose. Area covered by plots emerges as
a combination of real imaginary numbers and we treated it
in a form of absolute version.)e reason for complex nature
emerge is correct as plots of equations (4)–(6) involve root
function and it is quite possible that the root results into
negative number which emerges as a complex number.

Dataset consists of 21 channels but for an experimen-
tation purpose initially only frontal channels were consid-
ered and subsequently temporal, central, and parietal ones
were evaluated. At the end 20 EEG channels and 1 ECG
channel were considered for experimentation. )e feature
map consists of channel, trail, mode, area, mean, and CTM
of dimension 8× 3 for each channel and subject. )e first
eight modes and their plots were generated for each of the
undertaken channels. Later 3 features have been extracted
from each consecutive plot. Wilcoxson signed-rank test has
been performed to validate the statistical significance of the
derived features with p< 0.5. )e plot area has been con-
siderably reduced at initial and end position of mode, which
is a sign of less frequency contents of the underlying signal.

Table 1: Format of the feature map used in experimentation for
channels FP1 and FP2 for trail 2.

Channel Mode Area m (r� 0.5) ctm (r� 0.5) Target
EEG Fp1 1 2.53 0.93 0.19 1
EEG Fp1 2 37.39 0.20 0.26 1
EEG Fp1 3 63.25 0.13 0.29 1
EEG Fp1 4 11.44 0.31 0.25 1
EEG Fp1 5 4.78 0.41 0.24 1
EEG Fp1 6 48.82 0.16 0.28 1
EEG Fp1 7 12.03 0.28 0.28 1
EEG Fp1 8 33.35 0.22 0.26 1
EEG Fp2 1 3.19 0.85 0.21 1
EEG Fp2 2 4.70 0.56 0.24 1
EEG Fp2 3 22.77 0.26 0.25 1
EEG Fp2 4 27.51 0.28 0.24 1
EEG Fp2 5 27.43 0.23 0.25 1
EEG Fp2 6 22.22 0.24 0.26 1
EEG Fp2 7 29.60 0.21 0.28 1
EEG Fp2 8 1.77 0.42 0.27 1
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In comparison, the mean derived from the PPs has shown
even rise and steadiness that can be visible in case of central
tendency measure.

)e experimental results are noticeable for approxi-
mately all the subsets utilized for the classification. Most
stress related studies reported for specific/limited
channels [37–39]. )e proposed approach for the stress
classification has outperformed other existing methods
[3, 40–43] by achieving 100% accuracy with minimum
time of mental arithmetic activity and has also given an
insight for the identification of marker lobewise (frontal,
temporal, central, and occipital) rather than selection of
channels in a generalized way. Our brain activity consists
of interchange of ions between neurons which results into
current flow through synaptic mode. Stress and emotions
either generated naturally or in induced environment
have a tendency to retain in the form of current flow. EEG
device is meant to measure the voltage fluctuation that
occurs because of the movement of the neuron and as it
has tendency to retain some time; this is very effective way

for the measure of positive and negative impact of any
environmental situation on human brain [44–46].
)erefore, in this research work, an efficient and accurate
classifier has been proposed with exceptional results for
stress classification from EEG signals employing VMD,
SVM, and multilayer perceptron. )e maximum accuracy
achieved at temporal and frontal lobe and in [47] was
reported as category activation and discriminating area is
observed at temporal lobe which is closely related with
speech and nonspeech activity and as dataset [15] used
study prototype which includes silent mental counting
activity without any movement; the extracted results are
relevant. Extracted results are more prominent at frontal
and temporal region which is closely associated with
concentration and focused mode of nature. )e approach
works nice for the intended dataset. In future the per-
formance of the proposed method will be tested for other
biomedical signals. )e incorporation of event-driven
methods can improve the performance of suggested so-
lution in terms of computational effectiveness,

Table 2: Classification results for the percentage split.

Sets Statistical parameters MPLN SVM MPLN SVM MPLN SVM
Modes 1-4 Modes 5-8 Modes 1-8

Good performer vs. bad performer

Sensitivity 97.2 61.23 98 68.67 98 70.65
Specificity 96.3 65.12 98 68.67 98 70.65
Accuracy 97.2 61.23 98 68.67 98 70.65
F-measure 0.95 0.65 0.97 0.57 1 0.69

Kappa statistics 0.94 0.63 0.98 0.56 0.99 0.69

Good performer vs. bad performer (female)

Sensitivity 78.56 62.34 81.67 68.67 83.78 69.67
Specificity 78.9 62.37 82.23 68.67 83.67 69.67
Accuracy 76.56 62.78 81.78 68.67 83.67 69.67
F-measure 0.67 0.64 0.82 0.65 0.87 0.67

Kappa statistics 0.68 0.63 0.82 0.65 0.88 0.69

Good performer vs. bad performer (male)

Sensitivity 79.56 63.43 80.21 68.67 82.67 70.02
Specificity 78.78 63.56 80.12 68.67 82.56 70.02
Accuracy 78.67 63.56 80.32 68.67 82.67 70.02
F-measure 0.87 0.65 0.79 0.68 0.83 0.69

Kappa statistics 0.87 0.65 0.79 0.67 0.83 0.69

Good performer vs. bad performer (frontal region)

Sensitivity 98 70.78 98.45 70.67 99 72.67
Specificity 98 78.78 98.45 70.67 99 72.67
Accuracy 98 67.89 98.45 70.67 99 72.67
F-measure 0.98 0.74 0.99 0.69 1 0.71

Kappa statistics 1 0.78 1 0.7 1 0.71

Good performer vs. bad performer (temporal region)

Sensitivity 99.8 67.78 99.99 61.23 99.99 75.56
Specificity 97.78 67.78 99.99 65.12 99.99 75.56
Accuracy 99.8 67.78 99.99 61.23 99.99 75.56
F-Measure 0.99 0.74 0.99 0.59 1 0.72

Kappa statistics 1 0.74 1 0.59 1 0.76

Good performer vs. bad performer (occipital region)

Sensitivity 78.56 60 80.23 62.34 89.34 76.7
Specificity 78.9 60 80.34 62.37 89.43 76.7
Accuracy 76.56 60 80.32 62.78 89.34 76.7
F-measure 0.88 0.58 0.89 0.62 0.85 0.74

Kappa statistics 0.85 0.58 0.86 0.62 0.85 0.74

Good performer vs. bad performer (central region)

Sensitivity 75.78 64.67 79.78 63.43 80.56 68.78
Specificity 76.89 64.67 79.56 63.56 80.56 68.78
Accuracy 78.67 64 79.34 63.56 80.56 68.78
F-measure 0.76 0.67 0.75 0.62 0.83 0.56

Kappa statistics 0.78 0.65 0.78 0.62 0.83 0.56
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compression, and power consumption [48–51]. Investi-
gation of this approach is another prospect.

4. Conclusions

In this work, an attempt has been made to propose and
explore the VMD approach and its Poincare plots for the
classification of stress managing capability from the silent
mental arithmetic activity. )e VMD is a promising method
for extracting the relevant features from the EEG+ECG
signals. )e resultant region of the Poincare plots has
exhibited discriminating nature and varies widely for stress
and nonstress category. Only the first six or seven modes
provided the better classification accuracy for the compar-
ative analysis of the stress. Signals accompanying with the
activity have shown significant variability in comparison to
the baseline activity for good performer while it has shown
stability in case of bad performer and thus had a straightway
more extensive influence on the Poincare plots. )e area of

good performer female has been significantly higher. )e
devised method has achieved the maximum accuracies of
100% for frontal and temporal lobes. )e proposed scheme
can be beneficial for the clinical identification of low- and
high-dominance regions in the subjects. In future scope, the
proposed method can be extended to study the classification
of other brain conditions such as epilepsy, Alzheimer’s, and
depression. Because of the identified marker in frontal and
temporal lobe this approach can be used as promising ap-
proach to implement in real time situation.
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)e dataset used in this paper is publicly available at https://
physionet.org/content/eegmat/1.0.0/.
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Table 3: Classification results for the k-fold cross validation.

Sets Statistical
parameters

K-fold
MPLN

K-fold
SVM

K-fold
MPLN

K-fold
SVM

K-fold
MPLN

K-fold
SVM

Modes 1-4 Modes 5-8 Modes 1-8

Good performer vs. bad performer

Sensitivity 98.12 65.45 98.1 69 99.12 72.34
Specificity 97 66 98 69 99 72.34
Accuracy 97.56 63 98 69 99 72.34
F-measure 0.98 0.7 0.97 0.59 1 0.7

Kappa statistics 0.97 0.66 0.98 0.56 1 0.71

Good performer vs. bad performer
(female)

Sensitivity 79.01 63.12 81.67 68.67 85.56 71.34
Specificity 79.12 63.34 82.23 68.67 84 70
Accuracy 77.45 63.45 81.78 68.67 84.02 71.78
F-measure 0.69 0.68 0.82 0.65 0.89 0.68

Kappa statistics 0.7 0.65 0.82 0.65 0.89 0.7

Good performer vs. bad performer
(male)

Sensitivity 80.01 64.34 80.21 68.67 83 71
Specificity 79.9 65.67 80.12 68.67 84 72
Accuracy 79.12 64 80.32 68.67 84 71.34
F-measure 0.89 0.65 0.79 0.68 0.86 0.72

Kappa statistics 0.88 0.66 0.79 0.67 0.85 0.72

Good performer vs. bad performer
(frontal region)

Sensitivity 98.23 71.01 98.45 70.67 100 75.23
Specificity 98.45 79.23 98.45 70.67 100 73.23
Accuracy 99.12 69 98.45 70.67 100 73.12
F-Measure 0.99 0.76 0.99 0.69 1 0.72

Kappa statistics 1 0.79 1 0.7 1 0.76

Good performer vs. bad performer
(temporal region)

Sensitivity 99.82 68 99.99 61.23 100 76
Specificity 98 68 99.99 65.12 100 78
Accuracy 100 68 99.99 61.23 100 78
F-measure 1 0.78 0.99 0.59 1 0.75

Kappa statistics 1 0.76 1 0.59 1 0.78

Good performer vs. bad performer
(occipital region)

Sensitivity 79.12 62.67 80.23 62.34 90 77
Specificity 79 62 80.34 62.37 90 77
Accuracy 77 61 80.32 62.78 90 77
F-measure 0.9 0.6 0.89 0.62 0.87 0.78

Kappa statistics 0.87 0.6 0.86 0.62 0.89 0.76

Good performer vs. bad performer
(central region)

Sensitivity 76 65 79.78 63.43 82.12 69
Specificity 77.78 65 79.56 63.56 82 69.12
Accuracy 79.23 65 79.34 63.56 82 69
F-measure 0.79 0.68 0.75 0.62 0.87 0.59

Kappa statistics 0.79 0.66 0.78 0.62 0.86 0.59
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