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Abstract: Sustainable replication and evolution of genetic molecules such as RNA are likely requisites
for the emergence of life; however, these processes are easily affected by the appearance of parasitic
molecules that replicate by relying on the function of other molecules, while not contributing to
their replication. A possible mechanism to repress parasite amplification is compartmentalization
that segregates parasitic molecules and limits their access to functional genetic molecules. Although
extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple
geological processes could have provided compartmentalization on early Earth. In this review, we
summarize the current understanding of the types and roles of primitive compartmentalization
regarding sustainable replication of genetic molecules, especially from the perspective of the pre-
vention of parasite replication. In addition, we also describe the ability of several environments
to selectively accumulate longer genetic molecules, which could also have helped select functional
genetic molecules rather than fast-replicating short parasitic molecules.

Keywords: origins of life; compartments; replication; evolution; RNA; parasites

1. Introduction

Sustainable replication and evolution of genetic molecules are crucial steps for the
emergence of life. A major obstacle in these steps is the appearance of parasitic molecules
that replicate by exploiting the function of non-parasitic molecules, while not contributing
to their replication [1,2]. To our best knowledge, the only effective means to circumvent
the surge of parasites is compartmentalization that separates non-parasitic molecules from
parasitic ones, and hence enables selective replication of non-parasitic molecules [1,2]. The
question then is, what kind of compartments could have assisted the evolution of genetic
molecules by avoiding parasite amplification on early Earth? Although lipid membranes
serve as boundaries in all extant cells, more primitive materials or environments may have
provided a similar effect. To date, Monnard and Walde presented a general overview of
primitive types of compartmentalization, including non-lipid compartments that range
from completely inorganic structures to biomolecular vesicles [3]. They described the
sources, mechanisms of formation, and some functions of such compartments, but their
potential roles in sustainable replication of genetic molecules remain to be reviewed. More
recently, Wachowius et al. and Joyce and Szostak examined, albeit only briefly, the roles of
some non-lipid compartmentalization on sustainable genetic replication [4,5]. Here, we
specifically review theoretical and experimental advancements on how and what kind
of primitive compartmentalization could have allowed the early evolution of life in the
presence of parasitic molecules.

Contemporary cellular membranes mainly consist of phospholipids. However, due to
the complicated process of phospholipid synthesis and the impermeability of phospholipid
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membranes to charged molecules in the absence of transporter systems, it is plausible that
more ancient types of compartments preceded the advent of phospholipids in prebiotic
evolution [5–7]. Single hydrocarbon chain amphiphiles (SCA), including fatty acids, have
often been proposed as one of the first components of protocellular membranes, because
of their permeability to small molecules and relatively high availability on early Earth by
prebiotic chemical reactions or meteorites [5–7]. However, the SCA-based hypothesis is still
problematic because of protocell instability, uncertainty of a robust prebiotic pathway of
SCA synthesis, and the requirement of high SCA concentration for assembly [5,6]. Alterna-
tively, more accessible non-lipid organic compounds or simple geophysical environments
may have provided non-membranous compartmentalization. Some non-membranous com-
partments are advantageous over lipid membranes in that they can inherently concentrate
long genetic molecules.

This review focuses on the possible primitive types of compartmentalization, espe-
cially non-lipid compartments, that could facilitate sustainable replication and evolution
of genetic molecules. We also mainly focus on RNA, a likely candidate for a primitive
genetic molecule, as it could act as a catalyst while storing genetic information [8–10].
In Section 2, we first summarize the roles of compartments for sustainable replication of
genetic molecules by preventing parasite replication. Related to this, we also introduce
the common “survival of the shortest” problem; parasites would evolve to replicate faster
by losing unnecessary genetic regions for their replication and cause a problem even in
the presence of compartments. In Section 3, we review ancient environment candidates
that could allow the sustainable replication of genetic molecules. We describe nine types of
conceivable compartmentalization: mineral surfaces, active fluid environments, crowded
environments, ice eutectic phases, membranous compartments, membraneless cell-like
compartments, gas bubbles, atmospheric compartments, and porous structures of hy-
drothermal vents. We particularly delve into minerals, ice, membraneless compartments,
and hydrothermal vents, because a growing body of research has supported their validity
for not only promoting the selection of functional genetic molecules, but also supplying
RNA and possibly facilitating a relatively smooth transition to extant lipid-based compart-
mentalization. We review both experimental and theoretical studies. It should be noted
that most theoretical research assumed an abstract model of molecular replicators that do
not mimic detailed biochemical features of nucleic acids.

2. Parasitic Molecules and Prevention of Their Replication through
Compartmentalization

Here, as one of the simplest primitive genetic molecules, we consider an RNA that has
a dual role as a catalyst and a template. The RNA folds into a catalytic form (i.e., ribozyme)
to replicate other unfolded RNAs (i.e., template) through ligation or polymerization of
nucleotides (Figure 1a). During replication, mutations are introduced into RNA via ligation
or polymerization errors. Most mutations would abolish the catalytic activity of a functional
RNA, while maintaining its ability to act as a template, and therefore, the mutant RNA
becomes parasitic because it does not catalyze RNA replication but its replication relies on
the function of other RNAs (Figure 1b). Parasitic RNAs become a burden for the replication
of functional RNAs, because functional RNAs would have to catalyze parasite replication
together with their own replication. In addition, parasitic RNAs easily reduce their size by
deletion, recombination, or inaccurate termination, because they do not need to maintain
the information for catalytic activity anymore. Because short sequences typically replicate
faster than longer ones, short parasitic RNAs would quickly outcompete functional RNAs,
unless some kind of selection favors the catalytic activity (Figure 1b). This “survival of the
shortest” phenomenon was first observed more than 50 years ago by Mills et al. [11] and
has remained a major evolutionary problem in the field of the origins of life.
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selectively trap longer genetic molecules have an advantage for replication of functional molecules. 

A means to prevent the replication of parasites is compartmentalization of functional 

RNAs from parasitic ones, by which functional RNAs can catalyze their own replication 

without parasite amplification (Figure 1c). The replication of parasites is repressed regard-

less of their lengths if they are segregated from functional RNAs. This evolutionary role 

of compartments has been proposed since the 1970s [1,2,12], and experimentally verified 

recently by us and other groups using artificial RNA replicator systems combined with 

Qβ replicase (and a cell-free translation system in some cases) [13–15]. These compart-

mentalized RNA replicators further underwent rich evolutionary phenomena, including 

adaptation [16,17], diversification [17,18], coevolution between functional (protein-cod-

ing) and parasitic (non-coding) RNAs [15,18,19], and coevolution between cooperative 

(different protein-coding) RNAs and the reinforcement of cooperation [20]. The compart-

ment used in these experiments was a water-in-oil emulsion, a cell-like structure that was 

probably absent in ancient Earth. As described in Section 3, more rudimentary compart-

mentalization would have played a similar role and supported the replication of genetic 

molecules in the presence of parasites. 

In addition to the above effect of compartments, in some cases, mechanisms for se-

lecting longer RNAs would also be advantageous when short parasites appear. For exam-

ple, once a parasitic RNA becomes short and excessively replicates with a functional RNA 

in the same compartment, it would be difficult to separate them in different compart-

ments, except through strong dilution or degradation of RNAs (which we also discuss in 

Section 3). In this case, a mechanism that favorably traps longer RNAs in a compartment 

would help the replication of functional RNAs (Figure 1d). This would be particularly 

important for cooperative RNA replication because dilution of RNAs would separate not 

only a functional RNA from a parasite but also cooperative RNAs from each other. Previ-

ous research showed that even when compartments are introduced, a set of cooperative 

RNA replicators can survive only in limited concentration ranges with the appearance of 

Figure 1. Prevention of parasite replication through compartmentalization. (a) A possible scheme of RNA replication. A
functional RNA could either be a catalyst or a template through its folding or unfolding, respectively. A catalyst replicates a
template through polymerization of nucleotides. (b) Replication of parasitic RNAs. A parasitic RNA with a deleterious
mutation could replicate by exploiting the function of other RNAs, while not contributing to their replication. Parasite
replication would be severely faster if a parasite becomes short by losing unnecessary genetic regions. (c) If functional
and parasitic RNAs are separated into distinct compartments, only functional RNAs can replicate. (d) Compartments that
selectively trap longer genetic molecules have an advantage for replication of functional molecules.

A means to prevent the replication of parasites is compartmentalization of functional
RNAs from parasitic ones, by which functional RNAs can catalyze their own replication
without parasite amplification (Figure 1c). The replication of parasites is repressed regard-
less of their lengths if they are segregated from functional RNAs. This evolutionary role
of compartments has been proposed since the 1970s [1,2,12], and experimentally verified
recently by us and other groups using artificial RNA replicator systems combined with
Qβ replicase (and a cell-free translation system in some cases) [13–15]. These compart-
mentalized RNA replicators further underwent rich evolutionary phenomena, including
adaptation [16,17], diversification [17,18], coevolution between functional (protein-coding)
and parasitic (non-coding) RNAs [15,18,19], and coevolution between cooperative (different
protein-coding) RNAs and the reinforcement of cooperation [20]. The compartment used
in these experiments was a water-in-oil emulsion, a cell-like structure that was probably
absent in ancient Earth. As described in Section 3, more rudimentary compartmentalization
would have played a similar role and supported the replication of genetic molecules in the
presence of parasites.

In addition to the above effect of compartments, in some cases, mechanisms for select-
ing longer RNAs would also be advantageous when short parasites appear. For example,
once a parasitic RNA becomes short and excessively replicates with a functional RNA in
the same compartment, it would be difficult to separate them in different compartments,
except through strong dilution or degradation of RNAs (which we also discuss in Section 3).
In this case, a mechanism that favorably traps longer RNAs in a compartment would help
the replication of functional RNAs (Figure 1d). This would be particularly important for
cooperative RNA replication because dilution of RNAs would separate not only a func-
tional RNA from a parasite but also cooperative RNAs from each other. Previous research
showed that even when compartments are introduced, a set of cooperative RNA replicators
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can survive only in limited concentration ranges with the appearance of fast-replicating
short parasites [20]. Cooperation between distinct genetic molecules has been considered
crucial for an early replication system to gain multiple functions by circumventing exces-
sive mutation accumulation on one molecule [1,10,21]. As described in Section 3, many
types of primitive compartmentalization have an innate potential to select longer genetic
molecules.

3. Primitive Compartmentalization

Before the advent of lipid membranes, how were primitive genetic molecules sepa-
rated from parasitic molecules? Some ancient environments likely generated compartment-
like structures naturally or with primordial organic materials, whereas other environments
enabled compartmentalization by limiting the diffusion of molecules to restrict the inter-
action of replicators in nearby molecules. Here, we classify possible primitive compart-
mentalization into three classes depending on the absence, presence, or partial presence of
clear boundaries that separate individual compartments or groups of genetic molecules
explicitly, as shown in Table 1.

In the first class, without clear boundaries, molecular diffusion is limited by several
mechanisms; therefore, replicators form clusters that are spatially separated from each
other. This class includes mineral surfaces, active fluid environments, and crowding envi-
ronments. In the second class, with boundaries, groups of genetic molecules are separated
distinctly. In this case, the boundaries need to be semi-permeable or undergo repetitive
disruption and formation in order for genetic molecules to continuously access substrates
for replication. The types (and respective boundaries) of compartmentalization in this
class are ice eutectic phases (ice), membranous compartments (membranes), membrane-
less cell-like compartments (distinct aqueous phases), gas bubbles (aqueous phases), and
atmospheric compartments (atmospheric gas phases). The third class is an intermediate
of the first two classes, with incomplete boundaries, such as a solid boundary containing
pores. Incomplete boundaries allow for inter-compartmental, although limited, diffusion
of genetic molecules. This class includes the porous structures of hydrothermal vents with
mineral-based boundaries, in which porous structures separate individual compartments
(aqueous phases) in the vents. Such structures are distinguished from another mineral-
based environment, i.e., mineral surfaces in the first class, because the group of genetic
molecules could be separated without the limitation of molecular diffusion due to their
interaction with mineral surfaces.

Another important aspect of compartmentalization is how new clusters of replicators
or compartments could be generated. For sustainable replication of genetic molecules,
functional molecules keep accessing parasite-free locales because parasites are continuously
produced by mutations. This can be achieved by the continuous regeneration of new
compartments. Compartments may be constantly synthesized in some environments, as
briefly described in each subsection. However, even if the number of compartments (or
spatial locals) is unchanged, parasite-free locales could also be generated by the degradation
or dilution of parasites.
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Table 1. Possible primitive compartmentalization.

Class (and Major
Mechanism for

Separating
Non-Parasitic

Molecules from
Parasites)

Elements for
Compartmentalization Boundary

Additional
Mechanism that
Contributes to

Segregating
Parasitic Molecules

Mechanism of
Substrate Uptake

from Environments

Selective
Accumulation of
Longer Genetic

Molecules

Selective Replication of Non-Parasitic
Genetic Molecules

Possible Transition to
Lipid Vesicles

Using an
Analogous

Computational
Model

In a Laboratory
Experiment

1. Without
boundaries (limited

diffusion)

Mineral surfaces Diffusion Yes [22,23] Yes [24–33] Mineral-assisted [34–36]
Active fluid

environments
Apparent group

formation Diffusion Yes [37]

Crowded environments Apparent group
formation Diffusion Yes [38]

2. With boundaries
(group formation)

Ice eutectic phases Ice Limited diffusion Disruption and
reformation

Yes [20,29,39–47], but
mostly by using
general protocell
models that have

one or more features
of each compartmen-

talizaiton with
boundaries

Freeze-thaw-assisted
[48,49]

Membranous
compartments 1 Membranes

Diffusion through
semi-permeable

membranes

Membraneless cell-like
compartments 1

Distinct aqueous
phases

Diffusion through
semi-permeable

interfaces
Yes [50,51] Yes [52] Interface-assisted [53,54]

Gas bubbles Aqueous phases Diffusion Likely 2 [55] Interface-assisted [55]
Atmospheric

compartments 1
Atmospheric gas

phases
Disruption and

reformation Interface-assisted [56]

3. With incomplete
boundaries (limited

group formation)

Porous structures of
hydrothermal vents Minerals

Diffusion through
incomplete
boundaries

Yes [57] Yes [47,58] Thermal
gradient-assisted [59]

1 These compartments may reproduce. 2 Although the accumulation of the mixture of different lengths was not investigated, more effective accumulation was observed with longer sequences.
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3.1. Compartments without Boundaries

Separation of parasitic molecules from non-parasitic molecules can be achieved with-
out clear boundaries, if diffusion of genetic molecules is sufficiently slow (Figure 2a).
Several factors could limit diffusion of genetic molecules, including their attachment to
solid surfaces (e.g., mineral surfaces), active flows in aqueous phases, and highly crowded
environments.
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Figure 2. Primitive compartmentalization without boundaries. (a) If molecular diffusion is sufficiently fast, a functional
RNA catalyzes replication of any RNA molecules, including parasitic ones. With limited diffusion, however, a functional
RNA replicates only nearby molecules, such as its progeny. (b) Limited diffusion of genetic molecules can be achieved
on mineral surfaces, which can also inherently select for longer RNA molecules (left). Theoretical studies based on two-
dimensional surface models showed that the spatial clustering of replicators caused by limited diffusion sustained the
replication of clusters consisting of functional replicators (right). (c) Active fluids in aqueous environments could regulate
molecular diffusion especially by forming an apparently isolated region (dotted circle), supporting replication of functional
replicators in the presence of parasites. (d) In highly crowded environments, a pair of mutualistic replicators with different
replication rates and stability can be spatially separated from other sets, which prevents the spread of parasites.

3.1.1. Mineral Surfaces

Mineral surfaces were ubiquitous throughout early Earth and likely played diverse
roles in the origins of life [60]. More than 30 types of minerals, including clay, sulfide,
oxide, carbonate, and oxide minerals, have been shown to accumulate RNA molecules
on their surfaces (Figure 2b, left) [22,61,62]. Furthermore, in 1980, Gibbs et al. showed
that hydroxyapatite minerals selectively adsorbed longer oligoadenylates, from 2–22 nt
sequences [23]. We later showed that this phenomenon is general by demonstrating that a
wide variety of minerals with different chemical compositions (pyrite, pyrrhotite, magnetite,
calcite, and hydroxyapatite) favorably bind longer RNA molecules better than shorter ones
from a pool of 8–24 nt random sequences [22]. A mathematical model further showed that
enrichment of longer RNAs on mineral surfaces is thermodynamically favorable because a
longer RNA has a larger adsorption energy [22]. Such an inherent property of minerals
may help propagate RNA replicators in the presence of short parasites.

Although no research has successfully demonstrated RNA replication on mineral
surfaces, the potential of mineral surfaces (or equivalent two-dimensional surface structures
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that accumulate genetic molecules) to select functional genetic replicators has long been
studied theoretically, especially by the groups of Hogeweg, Szathmary, and Higgs [24–33].
These studies generally assumed a two-dimensional grid with each cell containing only
one or a few replicators (Figure 2b, right). In these models, the interaction and diffusion
of replicators occurred only in nearby sites, because the mobility of RNA bound onto
mineral surfaces is expectedly slow [63]. Such a limited dispersal causes sustainable
clustering of related replicators (as if they were compartmentalized), leading to selective
replication of non-parasitic replicators [24–33]. A set of distinct cooperative replicators can
also be selected [24,25,27,28,32]. Some of the research further demonstrated the evolution
of replicator-associated parameters in surface models [26,28,29,31].

Importantly, various minerals could also have helped supply RNA on early Earth by
several mechanisms. Minerals helped assemble activated nucleotides either with or without
template RNA [64–67] and protect RNA from degradation [62,68]. Minerals also supported
the synthesis of RNA components [69–72]. It has been further shown that several ribozymes
maintained their activities in the presence of mineral surfaces [22,68,73,74]. In addition,
diverse types of mineral surfaces assisted the formation of primordial lipid (fatty acid)
vesicles, some of which encapsulated RNA attached with mineral particles [34–36]. Thus,
it is conceivable that RNA replicators flourished on mineral surfaces first and were later
removed from these surfaces, perhaps in combination with the emergence of lipid vesicles.

3.1.2. Active Fluid Environments

Molecular diffusion can also be limited by processes other than surface adsorption.
Krieger et al. theoretically demonstrated that active fluids in aqueous environments (such
as based on winds near the surface of the ocean or ponds) could regulate the diffusion of
molecular replicators by trapping them in small spatial domains, known as Lagrangian
coherent structures (LCS) (Figure 2c) [37]. They demonstrated that apparently isolated LCS
slowed down the diffusion of trapped replicators and further behaved like distinct com-
partments as they underwent fusion and division, although some migrations of replicators
between LCS were also observed. Combining these mechanisms, the study showed that
LCS helped functional replicators to flourish in the presence of parasites. An experimental
model of LCS with RNA or other genetic molecules remains to be designed in the future.

3.1.3. Crowded Environments

In principle, the extent of molecular crowding also influences the diffusion of ge-
netic molecules [75]. Kamimura and Kaneko’s theoretical study considered two types of
replicators that catalyze the replication of each other and demonstrated the selection of
functional replicators in crowding environments (Figure 2d) [38]. If mutual replicators
have greatly different replication rates and stabilities, faster and less stable replicators
(X) would surround a slower and more stable replicator (Y), thereby forming multiple
molecular clusters. These clusters further behaved like compartments as they underwent a
fission-like phenomenon in synchronization with the replication of a slow replicator and
its Brownian motion; molecular clusters composed of only non-parasitic molecules can
continuously grow. A parasite of Y (with similar replication and degradation rate) could
also be selectively diffused out of the cluster as it does not contribute to the replication
of X. Further studies would be expected to test whether sufficient crowdedness for these
phenomena could be provided in prebiotic environments.

3.2. Compartments with Boundaries

This class of compartments has boundaries that can segregate non-parasitic molecules
from parasites explicitly, thereby enabling more facile selection of functional genetic
molecules. Various materials, such as ice, lipid membranes, and aqueous phases, can
be used as boundaries in primitive environments (Table 1). In contrast to the open environ-
ments described in Section 3.1., the presence of boundaries may prevent genetic molecules
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from accessing small substrates that are required for continuous replication. Therefore,
some mechanisms must support the inflow of small molecules in these compartments.

In addition, because boundaries prevent the outflow of genetic molecules, compart-
ments should grow and divide or undergo equivalent phenomena to avoid the accumu-
lation of too many parasites in a single compartment. In primitive compartments, these
processes could have occurred by at least three mechanisms: cycles of disruption and
formation (Figure 3a), fusion of multiple compartments and subsequent fission (Figure 3b),
and growth and division of compartments (Figure 3c). The first two processes were
often referred to as transient compartmentalization. Through these processes, genetic
molecules in each compartment can be randomly redistributed into new compartments,
by which functional genetic molecules could be separated from parasitic molecules if the
number of parasites is not large compared with the number of newly formed compart-
ments. Previous studies that used water-in-oil emulsions or theoretical models demon-
strated the sustained replication of genetic molecules with the appearance of parasites
through all three processes: cycles of disruption and formation (Figure 3a) [14,40–42], fu-
sion and fission (Figure 3b) [13,15,20,43,44], and growth and division (Figure 3c) [29,45–47]
of compartments.
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Figure 3. Primitive compartmentalization with boundaries. (a–c) Separation of functional genetic molecules from parasites
through compartmentalization could be facilitated by multiple mechanisms: cycles of disruption and formation (a), fusion
and fission (b), and growth and division of compartments (c). (d) Separated microstructures of eutectic phases could form
in ice crystals (left). Molecular diffusion is also limited within each compartment. A theoretical model based on such
fragmented compartments showed the selective replication of non-parasitic molecules (right). (e) Liquid–liquid phase
separation (LLPS) droplets (left) favorably accumulated longer genetic molecules (center) and prevented replication of short
parasitic molecules through compartmentalization (right). (f) Longer genetic molecules could accumulate in gas bubbles
more efficiently than shorter ones at air–water interfaces, and gas bubbles may function as separated compartments. (g)
Atmospheric compartments such as aerosols could also act as cell-like compartments.
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3.2.1. Ice Eutectic Phases

Ice structures were likely prevailing on early Earth [76,77]. When aqueous solu-
tions comprising ions or other solutes freeze, ice crystals grow and exclude solutes in an
interstitial brine, serving as a compartment-like structure known as the eutectic phase
(Figure 3d, left). Attwater et al. showed that the eutectic phase can be separated into
small disconnected microstructures scattered in ice crystals, depending on the type and
concentration of solutes (e.g., magnesium chloride) [39]. They also showed that diffusion
of a ~200 nt RNA polymerase ribozyme can be reduced by several orders of magnitude in
the eutectic phase, which would also contribute to the compartmentalization of primitive
genetic molecules. Attwater et al. further demonstrated in silico that fragmented structures
such as those seen in ice crystals supported the replication of self-replicating species by
neutralizing the effect of parasites that show faster replication and diffusion (Figure 3d,
right) [39].

Closed compartments in ice crystals would probably prevent inter-compartment
diffusion of solutes and genetic molecules, and hence, continuous genetic replication.
However, cycles of disruption and reformation of compartments (Figure 3a), which can
be caused by freezing and thawing (F-T) through day–night temperature cycling, could
induce uptake of substrates. Such transient compartmentalization would also help to
prevent accumulation of parasitic molecules in the compartments.

In addition, freezing or F-T cycles supported other important processes for the emer-
gence of life, such as synthesis of RNA through non-enzymatic polymerization of activated
nucleotides [78–80], formation of longer RNAs through non-enzymatic ligation and recom-
bination of short fragments [81,82], and assembly and catalysis of ribozymes [39,83–85].
F-T cycles have also been demonstrated to induce the encapsulation of genetic molecules
in phospholipid vesicles [48,49], their inter-vesicle exchange [86], and sustainable RNA
replication through fusion-division of vesicles [87]. Thus, ice environments seem to be
plausible sites for the development of early life.

3.2.2. Membranous Compartments

Both lipid and non-lipid membranes can also serve as boundaries that separate func-
tional genetic molecules from parasitic ones. In contrast to extant cellular membranes
with protein transporters, primitive membranes should have been semi-permeable, so
that encapsulated genetic molecules could access small substrates in the environment. As
reviewed extensively elsewhere [5–7], semi-permeable membranes based on fatty acids
or other simple hydrocarbon-based amphiphiles seem to be relatively promising candi-
dates, because they are compatible with various RNA-related reactions and could undergo
growth and division. Semi-permeable membranes can also form from diverse non-lipid
building blocks [88], including inorganic nanoparticles and proteins. One of the prebi-
otically relevant examples is based on natural clay minerals, created by the assembly of
clay nanoparticles on air-bubble surfaces and subsequent dissolution of the air phase [89],
which may add another selective advantage on genetic replicators to mineral surfaces that
by themselves could help evolve functional molecules, as described in Section 3.1.1.

3.2.3. Membraneless Cell-Like Compartments

Since the proposal by Oparin [90], droplets formed by liquid–liquid phase separation
(LLPS) (Figure 3e, left) have been considered as another candidate compartments before
the origins of life. These membraneless cell-like compartments enable the sequestration of
genetic molecules, while allowing free exchange of small molecules with the environment.
Genetic molecules in LLPS droplets can therefore easily access substrates in the environ-
ment. Two types of LLPS droplets, coacervates (typically generated from the association of
oppositely charged polyelectrolytes) and aqueous two-phase systems (ATPS, generated by
the segregation of multiple polymers), have been particularly studied in the context of the
origins of life [91–94], although coacervates may be more relevant to the origins of life, be-
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cause they can be made of prebiotically more accessible materials such as mononucleotides
and short peptides [95,96].

From the perspective of eliminating short parasitic molecules, Drobot et al. showed
that coacervates based on carboxymethyl dextran sodium salt and poly-L-lysine can selec-
tively accumulate 39-mer RNA molecules (a minimal hammerhead ribozyme) by prevent-
ing their diffusion into a surrounding environment, while permitting the exchange of 6- or
12-mer RNAs (substrates before or after cleavage by the ribozyme) with the environment
(Figure 3e, center) [50]. The selective accumulation of longer RNAs was probably the
result of their strong interactions with components of coacervates, and thus the selectivity
varied depending on the sequence of RNA and the composition of coacervates [50]. In
another study, Strulson et al. used an ATPS of polyethylene glycol (PEG) and dextran
(DEX) to demonstrate the length-dependent partitioning of a set of ≤ 40 nt RNA molecules
(generated by hydrolysis of a hammerhead ribozyme); the fraction of RNA localized in
droplets increased exponentially as the length of RNA molecules increased [51]. Thus, both
coacervates and ATPS have a certain advantage in selecting longer genetic molecules.

LLPS droplets seem to undergo all processes shown in Figure 3a, 3b, and 3c. Both coac-
ervates and ATPS were shown to undergo a cycle of formation and dissolution (Figure 3a)
by fluctuating environmental factors such as temperature, pH, and dryness [97–99]. In
addition, both types of droplets spontaneously coalesce with other droplets and could
undergo fission (Figure 3b), such as induced by a shear force (e.g., provided from the sea
current). Droplets may also form, grow, divide, or dissolute (Figure 3a,c) in association
with the generation or consumption of droplet materials [100,101]. These processes would
help functional genetic molecules to segregate from parasitic molecules.

Furthermore, our group recently showed that a PEG/DEX ATPS can support the self-
replication of a relatively long (2041 nt) artificial single-stranded RNA (with its encoded
Qβ replicase subunit) by preventing the appearance of short (>~220 nt) parasitic molecules
that lost a part of the replicase gene (Figure 3e, right) [52]. The suppressed replication of the
parasites was due to the prevention of inter-droplet exchange of encapsulated RNAs, while
another study showed that much shorter (15–50 nt) RNAs would be rapidly exchanged in
a different composition of PEG/DEX ATPS [102]. The permeability of the ATPS to small
molecules also enabled continuous RNA replication with the addition of nucleotides [52],
which is another advantage of LLPS droplets.

LLPS droplets are also compatible with prebiotic RNA-associated reactions and for-
mation of lipid vesicles. Multiple ribozymatic reactions and non-enzymatic RNA polymer-
ization were demonstrated in either or both coacervates and ATPS with some enhance-
ment [50,51,103,104]. Other studies also showed that fatty acid and phospholipid mem-
branes self-assembled at the surface of coacervates and ATPS droplets, respectively [53,54].
These LLPS droplets may have facilitated the transition from primitive compartmentaliza-
tion to lipid-based compartmentalization by acting as scaffolds for membrane formation.

Several other membrane-free compartments have also been proposed as primitive
compartments, because they can be potentially generated from prebiotic materials. These
examples include hydrogels [105,106], especially clay-based hydrogels [106], polyester-
based droplets [107], and a new class of coacervates based on liquid crystals [108]. Fur-
ther investigation regarding the usage of these compartments to select or evolve genetic
molecules is required.

3.2.4. Gas Bubbles

For the separation from parasitic molecules, genetic molecules should not necessarily
be distributed inside compartments. For example, air–water interfaces can accumulate
DNA [55,109,110] and RNA [55], and therefore, it is conceivable that gas bubbles dis-
persed in a water phase could act as distinct compartments that separate groups of genetic
molecules from each other (Figure 3f). Morasch et al. demonstrated that gas bubbles in a
hydrothermal environment favored the accumulation of longer (132 nt) single-stranded
DNA molecules compared to shorter (15 nt) ones [55], thereby potentially contributing to
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the elimination of short parasitic molecules. The favorable accumulation of longer DNA
molecules was attributed to their lower diffusion coefficients. They also showed that gas
bubbles enhanced ribozyme catalysis and facilitated the encapsulation of DNA and RNA in
lipid vesicles or vesicle aggregates by co-accumulating genetic molecules and lipid vesicles
at the air–water interface. Genetic molecules at air–water interfaces would freely access
substrates in the water phase. Bubbles probably do not last perpetually and would repeat
cycles of disruption and formation (Figure 3a). The next step in this research direction is to
demonstrate RNA replication at air–water interfaces.

3.2.5. Atmospheric Compartments

Compartments could also exist in the atmosphere as water droplets or aerosols. In
1979, Woose proposed the possibility that water droplets in the air acted as cell-like com-
partments on early Earth, especially when most of the water was vaporized due to the
high temperature of early Earth [111]. After formation of the ocean, lakes, or ponds, cell-
sized aerosols would also have formed near water surfaces by wind actions and provided
compartments (Figure 3g) [56,112]. An advantage of aerosols is the plausibility of the seam-
less transition to membrane-bound compartments, if lipid molecules are provided [56].
Aerosols can grow and divide into daughter particles through multiple mechanisms, while
compartments would also not last perpetually and would eventually be destroyed (such
as through deposition to the ocean) [112]. Although it should be experimentally tested
in the future, these processes of reorganizing internal contents could help to select for
non-parasitic genetic molecules.

3.3. Compartments with Incomplete Boundaries

This class of compartments has incomplete boundaries, such as solid phases con-
taining pores observed at hydrothermal vents. An incomplete boundary allows genetic
molecules to favorably interact with others in the same compartment, while limiting their
migration to other compartments. The incompleteness of the boundary may facilitate the
uptake of small substrates, which is an advantage over most compartments with complete
boundaries, as described in Section 3.2., although selection for functional genetic molecules
would be relatively difficult, because parasitic replicators could intrude the surrounding
compartments.

Porous Structures of Hydrothermal Vents

Hydrothermal vents would have prevailed in the deep sea of early Earth and provided
locales to initiate life-like processes [113,114]. Modern hydrothermal vents contain an
interconnected network of inorganic porous structures (Figure 4a) [115,116], and it has been
proposed that such naturally forming compartments could have functioned as protocellular
structures in ancient vents [117–119].

The role of interconnected compartments in the selection of non-parasitic replicators
has been investigated theoretically [47,58]. These models assumed a two-dimensional
grid, similar to the surface model discussed in Section 3.1.1., but each cell could contain
many replicators (Figure 4b). Each replicator can interact with others only in the same
compartment but can also migrate to neighboring cells. Studies have demonstrated that
restricted molecular diffusion allows the selection of functional replicators in the presence
of parasites [47,58]. Selection of a set of cooperative replicators with different replication
kinetics was also observed [58]. The number of successfully coexisting cooperators in the
interlinked compartments seemed higher than in the surface model, where interaction be-
tween replicators was too limited [58]. However, compared with a model with boundaries
described in Section 3.2., a lower mutation rate (lower frequency of parasite generation)
seemed to be required for sustainable genetic replication in compartments with incomplete
boundaries [47].
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structures were found at hydrothermal vents. (b) Theoretical models indicated that restricted
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thermal gradients around a pore could selectively trap longer genetic molecules within a pore for
amplification. An example of corresponding sites is indicated in panel a.

Moreover, the positive role of the compartment regarding the enrichment of longer
DNA and RNA in hydrothermal environments (Figure 4c) has been examined empirically,
especially by the Braun group. Thermal gradients generated by the temperature differ-
ence between a hot vent and cold water induce thermophoresis and convection through
a compartment, both of which could drive genetic molecules in different directions and
in combination concentrate them at a cold locale within the compartment, with higher
efficiency for longer sequences [120,121]. Theoretically, the efficiency of accumulation
scales exponentially with Soret coefficients (defined as thermodiffusion coefficients di-
vided by diffusion coefficients) of genetic molecules [120,121]. Thermal convection in
the compartment also provides genetic molecules with temperature cycling necessary for
efficient replication by an RNA polymerase ribozyme [122]. By applying these principles
to a hydrothermal open pore system, Kreysing et al. demonstrated the selective trapping
of longer DNAs among 20–200 bp strands as well as the selective DNA amplification of
75 bp strands over 36 bp strands in the pore [57], possibly contributing to the elimination
of short parasitic sequences. It should be noted, however, that these experiments were
performed using synthetic devices specifically designed for these experiments. Recent
progress in generating inorganic precipitate membranes that resemble those at hydrother-
mal vents [123] would allow us to explore whether the above findings are applicable to
natural geochemical structures.

In addition, simulated hydrothermal environments generated short RNA oligomers
from both activated and non-activated nucleotides [124,125], and facilitated the accu-
mulation of fatty acids followed by vesicle formation and the encapsulation of genetic
molecules [59]. These studies imply that hydrothermal vents are compatible with the
supplementation of genetic molecules as well as the formation of organic compartments.

4. Conclusions and Perspectives

In this review, we introduced possible primitive compartmentalization that could
allow the replication of RNA by segregating parasitic molecules, selecting longer sequences,
and yet supplying substrates. As summarized in Table 1, at least nine types of such com-
partmentalization could have been available based on simple geophysical environments
or primitive biological materials. To date, the effect of compartments on the evolution of
genetic molecules has been mainly studied theoretically, but several recent experiments
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have also demonstrated the selection of longer RNA molecules and even selective RNA
replication by preventing parasite amplification. The next key step is to demonstrate
sustained RNA replication in various primitive compartments.

The different types of compartmentalization discussed in this review could have
operated synergistically. For example, compartments of hydrothermal vents have mineral-
based boundaries and likely contain gas bubbles [55]. Mineral-bound compartments can
also form in other ways [89,126]. Upon the formation of compartments with fatty acid
membranes, mineral particles can be encapsulated [34]. To date, neither theoretical nor
experimental studies have investigated the influence of such combinatorial environments
on the evolution of genetic molecules. Future studies should address these possibilities to
better understand the roles of primitive compartmentalization in the early evolution of life.

Finally, the plausibility of each of the discussed environments on early Earth should
be evaluated in light of geochemical and astrochemical knowledge [3]. In fact, most
theoretical or experimental studies on the evolution of genetic molecules do not incorporate
all the details on natural environments, in part because it is impossible to do so with the
current computational or experimental resources. That said, the development of theoretical
and experimental models that resemble an ancient environment, at least partly, provides
insights into the early evolution of life and help refine ideas regarding likely sites for the
emergence of life. Future collaborations between different research communities should
lead to more plausible hypotheses for the origins and early evolution of life.
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