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ABSTRACT

Escherichia coli DNA polymerase III holoenzyme is
composed of 10 different subunits linked by nonco-
valent interactions. The polymerase activity resides
in the a-subunit. The e-subunit, which contains the
proofreading exonuclease site within its N-terminal
185 residues, binds to a via a segment of 57 addi-
tional C-terminal residues, and also to h, whose
function is less well defined. The present study
shows that h greatly enhances the solubility of e
during cell-free synthesis. In addition, synthesis of
e in the presence of h and a resulted in a soluble
ternary complex that could readily be purified and
analyzed by NMR spectroscopy. Cell-free synthesis
of e from PCR-amplified DNA coupled with site-
directed mutagenesis and selective 15N-labeling
provided site-specific assignments of NMR reso-
nances of e that were confirmed by lanthanide-
induced pseudocontact shifts. The data show that
the proofreading domain of � is connected to a via a
flexible linker peptide comprising over 20 residues.
This distinguishes the a : e complex from other
proofreading polymerases, which have a more
rigid multidomain structure.

INTRODUCTION

The DNA polymerase III (Pol III) holoenzyme is the
major chromosomal replicase in Escherichia coli (1). This
enzyme complex is composed of 10 different polypeptide
subunits. The catalytic core contains one each of the a
(130 kDa), e (27 kDa) and y (8.8 kDa) subunits encoded
by the dnaE, dnaQ and holE genes, respectively. The
a-subunit contains the 50–30 DNA polymerase active site
(2,3), the e-subunit is responsible for 30–50 proofreading

exonuclease activity (4) and the y-subunit has no identified
enzymatic activity (5). The a:e:y core complex is active
alone as a proofreading DNA polymerase, and copurifica-
tion of these three subunits demonstrates their tight phys-
ical association (6,7). Direct interactions between e and a
(8) and e and y (5) have been demonstrated using purified
subunits, but no interaction has been detected between
a and y.

The y-subunit is not essential, as a �holE mutant is
normally viable (9) and y has only a modest stimulatory
effect on the exonuclease activity of e on a mispaired
primer terminus (5). Genetic studies with the temperature-
sensitive dnaQ49 mutant allele indicated that y stabilizes
the structure of e (10), and this effect may also be achieved
by the y homolog HOT (homolog of theta) encoded by
bacteriophage P1 (11). Remarkably, the phage genome
(94 kb) relies on E. coli Pol III for its replication but,
with the exception of the Ban (DnaB analog) DNA helicase
and SSB (single-stranded DNA-binding protein), does not
encode any other replication proteins (12).

Two crystal structures of a have been determined: of a
C-terminally truncated version of E. coli a (13), and of
full-length Thermus aquaticus a (14). Structures are also
known of the N-terminal globular domain of e (e186),
both alone (15) and in complex with HOT (16,17). The
structure of the e186:y complex determined by nuclear
magnetic resonance (NMR) spectroscopy (18,19) is in
agreement with the e186:HOT structure. No structure
has been determined of full-length e but residues following
e186 within its C-terminal region (in the following referred
to as C-terminal segment (CTS) of e or eCTS; Figure 1)
are known to be responsible for binding of a (20,21). This
57-residue segment contains a Q-linker sequence proposed
to provide a flexible tether between domains (22), followed
by the C-terminal 40-residue segment that has been shown
to interact tightly with a when fused to maltose-binding
protein (21).

The present study was carried out to obtain structural
information about the a:e:y complex. By studying the e:y,
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a:e and a:e:y complexes and probing potential weak inter-
actions between a and e186 by a novel two-pronged NMR
assignment strategy, we show that residues in the eCTS
are flexible and that those in the Q-linker region remain so
even when assembled in the Pol III core complex. This
provides the first experimental evidence that e is indeed
tethered to a by a flexible peptide linker, suggesting a
mechanism for transition between polymerization and
proofreading modes in Pol III that is fundamentally dif-
ferent from those in other polymerases whose structures in
both modes are known. In addition, experiments to pro-
duce e by cell-free protein synthesis shed further light on
the function of y.

MATERIALS AND METHODS

Materials

L-[15N]Alanine and L-[15N]threonine were obtained from
Spectra Stable Isotopes. Synthetic oligonucleotides were
purchased from GeneWorks (Hindmarsh, SA, Australia);
sequences of oligonucleotides used are listed in Table S1.

Protein purification

For large-scale isolation of a, E. coli cells (BL21::�DE3
recA) harboring the plasmid pND517 encoding the dnaE
gene under control of a tac promoter (23) were grown
aerobically at 308C and in 20 l of Z medium of pH 7.3
(24) supplemented with 100mg/l ampicillin in a fermenter
with pH control (BIOSTAT C, B. Braun Biotech
International, Melsungen, Germany). Overexpression of
a was induced by addition of 0.5mM isopropyl-b,D-thioga-
lactoside atA595=1.5 and the induced culture was grown to
an A595 of �10 (4 h), yielding about 250 g of cells. The
a-subunit was purified from 54g of cells using a modified
version of the procedure ofWijffels et al. (23), with two steps
of chromatography on columns of DEAE-Toyopearl 650M
(2.5� 45 cm) and phosphocellulose (5.5� 22.5 cm). This
was followed by chromatography using a heparin–
Sepharose column (2.5� 17.5 cm) to concentrate the pro-
tein. About 96mg of purified a-subunit were obtained.
The preparation of a C-terminal truncation mutant of a,
a917 (13) is described in the Supplementary Data.

The Pol III y-subunit was purified as described (25),
except that cells were grown for 2 days at room temperature
in an autoinduction medium (26), and the French press
lysate was passed through a column of DEAE-Toyopearl
in 40mM Tris–HCl buffer, pH 7.6, prior to chromatog-
raphy on a phosphocellulose column. 15N-labeled y was
produced using minimal medium supplemented with

15NH4Cl (Cambridge Isotope Laboratories, Andover,
MA, USA) as described (27). T7 RNA polymerase (28)
and e186 (25) were as described. Concentrations of samples
of soluble pure proteins (a, e186 and y) were determined
spectrophotometrically at 280 nm, using calculated values
of e280 of 95440, 7680 and 8250/M/cm, respectively (29).

Cell-free synthesis of the e-subunit

S30 cell extracts from either E. coli strain Rosetta::�DE3/
pRARE (from Novagen, Gibbtown, NJ, USA) or
BL21Star::�DE3 (from Invitrogen, Carlsbad, CA, USA)
were prepared by the procedure of Pratt (24,30,31), fol-
lowed by concentration with polyethylene glycol 8000 as
described by Kigawa et al. (31,32), and were used inter-
changeably. Cell-free protein synthesis was carried out for
6–7 h either using an autoinduction system that uses plas-
mid pKO1166 to direct production of T7 RNA polymer-
ase in S30 extracts (33) at 378C, or a standard coupled
transcription/translation system with purified T7 RNA
polymerase at 30 or 378C as described previously
(28,31). The plasmid template pSH1017 (25) was used at
a concentration of 16 mg/ml for production of e. All reac-
tion mixtures containing expressed proteins were clarified
by centrifugation (30 000g, 1 h) at 48C.

Cell-free synthesis of selectively 15N-labeled e in complex
with h

Samples of the e:y complex containing 15N-Ala or 15N-Thr
labeled e were prepared by synthesis of e in the cell-free
system in the presence of separately purified unlabeled y
(0.5mg/ml), with 0.6ml reaction mixtures at 308C for 7 h.
Following centrifugation, the supernatant was dialyzed
against 2 l of NMR buffer (20mM Tris–HCl, pH 6.9,
1mM EDTA, 1mM dithiothreitol) and concentrated to
a final volume of about 0.5ml using Millipore Ultra-4
centrifugal filters (molecular weight cutoff 10 000). D2O
was added to a final concentration of 10% (v/v) prior to
NMR measurements.

Cell-free synthesis and purification of the a:e:h complexes
with selectively

15
N-labeled e

Samples of the a:e:y complex containing 15N-Ala or
15N-Thr labeled e were prepared by cell-free synthesis of
e in the presence of separately purified unlabeled y
(0.5mg/ml) and a (5.0mg/ml). Reaction mixtures (0.9ml)
were incubated at 308C for 7 h. Following centrifugation,
the supernatant was dialyzed against 2 l of buffer A
(50mM Tris–HCl, pH 7.6, 1mM EDTA, 1mM dithio-
threitol), then loaded onto a DEAE-Toyopearl 650M
column (2.5� 2.5 cm) pre-equilibrated with buffer A and
eluted with a linear gradient of 0–1M NaCl in 150ml of
buffer A. The combined fractions containing the a:e:y com-
plex (eluting at about 0.22M NaCl) were dialyzed against
2 l of buffer A, loaded onto a heparin–Sepharose column
(2.5� 17.5 cm) in buffer A and eluted with a linear gradient
of 0–1M NaCl in 300ml of buffer A. The a:e:y complex
eluted at about 0.25M NaCl and was subsequently dia-
lyzed against NMR buffer, concentrated and prepared
for NMR spectroscopy as described above for the e:y
complex. The purity of the a:e:y complex was assessed by

  1 MSTAITRQIV LDTETTGMNQ IGAHYEGHKI IEIGAVEVVN RRLTGNNFHV
 51 YLKPDRLVDP EAFGVHGIAD EFLLDKPTFA EVADEFMDYI RGAELVIHNA
101 AFDIGFMDYE FSLLKRDIPK TNTFCKVTDS LAVARKMFPG KRNSLDALCA
151 RYEIDNSKRT LHGALLDAQI LAEVYLAMTG GQTSMAFAME GETQQQQGEA
201 TIQRIVRQAS KLRVVFATDE EIAAHEARLD LVQKKGGSCL WRA

Figure 1. Amino acid sequence of full-length e. Residues 7–180 have a
defined conformation in the crystal structure of e186 (15). The 57
residues of the eCTS are highlighted in bold. Secondary structure pre-
diction suggests an a-helical segment in the eCTS with high propensity;
the corresponding residues are underlined. Alanine and threonine resi-
dues in the CTS of e are highlighted in red and yellow, respectively.
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15% SDS–PAGE followed by staining with Coomassie
brilliant blue; its concentration was estimated by the
method of Bradford (34).

Cell-free synthesis and purification of the e:h complex
containing 15N-labeled h

Cell-free synthesis of unlabeled e at 308C for 7 h in the
presence of separately purified uniformly 15N-labeled y
(0.5mg/ml) was done in a reaction volume of 0.9ml.
Following centrifugation, the supernatant was dialyzed
against buffer A, loaded onto a DEAE-Toyopearl
column and eluted as above for the a:e:y complex.
Excess y remained unbound, and the first protein peak
eluting at about 60mM NaCl contained the e:y complex.
Following dialysis against 2 l of NMR buffer and concen-
tration to a final volume of about 0.5ml as above, D2O
was added to a final concentration of 10% (v/v) for NMR
measurements. The purity was assessed by 15% SDS–
PAGE followed by staining with Coomassie brilliant blue.

Cell-free synthesis of mutant e:h complexes from
PCR-amplified DNA

Samples of the e:y complex containing site-specific
mutants of e were produced by cell-free protein synthesis
from linear PCR-amplified DNA with 50-phosphorylated
primers to promote ligation to circular DNA in the reac-
tion mixture (35). The DNA was prepared in two steps,
using Vent DNA polymerase (New England Biolabs,
Ipswich, MA, USA) for all PCR reactions. First, the
site-specific mutation was introduced using two separate
PCR reactions (50ml each) with 20–30 ng of pSH1017 tem-
plate, where the first reaction used primer 1133 and one of
the reverse primers of Table S1 (containing the desired
mutation) and the second reaction used one of the forward
primers of Table S1 and primer 1134. The PCR products
were mixed in an equimolar ratio and the residual primers
removed using the Qiaquick PCR purification kit (Qiagen,
Hilden, Germany). In the second step, the T7 promoter
and terminator sequences were added in two separate
PCR reactions (50 ml each) using the primer pairs 1131
and 1134, and 1132 and 1133, respectively (Table S1),
with 20–30 ng of purified PCR product from the first
step. The two PCR products were mixed in an approxi-
mately equimolar ratio and the residual primers removed
as above, denatured at 958C (5min) and reannealed at
room temperature (�5min). This generated DNA with
complementary single-stranded 8-nt overhangs suitable
for cyclization by the intrinsic ligase activity of the cell
extract (35). The reannealed PCR solution was used as
the template for subsequent cell-free protein synthesis at
a concentration of about 10 mg/ml of reaction mixture.
Four mutants of e (A186G, A188G, A200G and
A243G) labeled with 15N-Ala and two (T193A, T201A)
labeled with 15N-Thr were thus prepared in six parallel
reactions in the presence of unlabeled y.
Genes encoding two additional e mutants (the double

mutant S2A/T3S and the C-terminal deletion mutant
e217) were prepared using PCR reactions with appropriate
primer pairs (Table SI) and inserted between the NdeI and
EcoRI sites of the T7 expression vector pRSET-5b (36).

The resulting plasmids were used as templates to prepare
PCR-amplified DNA products by following the procedure
of the second step described above. The resulting purified
and reannealed mixtures of PCR products were used
directly as templates for cell-free protein synthesis of the
mutant e-subunits in the presence of y, as above.

NMR spectroscopy

All NMR spectra were recorded at 258C using a Bruker
800MHz NMR spectrometer equipped with a cryoprobe.
15N-HSQC spectra were recorded using 5mm sample
tubes (except for samples of the a:e:y complex which
were concentrated to 200 ml and measured in 3mm
sample tubes), t1max=32ms, t2max=102ms, and total
recording times between 1 h and 13 h.

RESULTS

Cell-free synthesis of full-length e in the presence
of y and/or a

Cell-free synthesis of full-length e at 378C produced simi-
lar yields in both the autoinduction system with coexpres-
sion of T7 RNA polymerase from plasmid pKO1166 (33)
and in our standard system with purified T7 RNA poly-
merase (28,31). Yields were about 3–4mg/ml at 378C and
2mg/ml at 308C. At both temperatures, the protein was
produced in insoluble form. Similarly, the protein was in
inclusion bodies when overexpression was carried out
in vivo at 30 or 378C, using standard expression protocols
in LB medium (25,37), or at room temperature using the
autoinduction medium described by Studier (26).

In an attempt to improve the solubility of full-length e,
its cell-free synthesis was carried out in the presence of
either purified a or y. At 378C, the presence of a alone
did not improve the solubility of e. Instead, a coprecipitate
of the a:e complex was obtained (Figure 2A), although a
alone remained soluble when added to the cell-free reac-
tion mixture. Expression at 308C produced mainly soluble
a:e complex (data not shown), suggesting that the effect is
caused by thermal instability of e. In contrast, cell-free
synthesis of e in the presence of 0.5–1.0mg/ml of y led
to a soluble e:y complex (Figure 2B) even at 378C, and
the simultaneous presence of a and y also gave a soluble
a:e:y core complex (Figure 2C). The yield of expressed e
was unaffected by the presence of y and/or a.

A similar set of experiments performed with C-
terminally truncated e, e217, and C-terminally truncated
a, a917 (13), also resulted in coprecipitation of e217 and
a917, indicating that the interaction with a does not
depend only on the C-terminal 26 residues of e (Figure S1).

15
N-HSQC spectra of

15
N-labeled e in complex with h

Cell-free synthesized samples of the 36 kDa e:y complex,
where e was selectively labeled with 15N-Ala or 15N-Thr,
were found to be adequate for the acquisition of
15N-HSQC NMR spectra without chromatographic puri-
fication (Figure 3). The cross-peaks of the N-terminal
domain of e were readily assigned by comparison with
the reported assignments of e186 (38,39). Conservation
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of their chemical shifts indicated that neither the structure
of the N-terminal domain nor its interface with y is signifi-
cantly affected by the presence of the eCTS, and provide no
indication that the eCTS interacts with portions of the
folded core of e186. The additional cross-peaks observed
must arise from Ala and Thr residues in the eCTS
(Figure 1). Their chemical shifts are characteristic of a
random-coil polypeptide chain. Many of them are also
more intense than the signals from the globular
N-terminal domain but their line widths are not sufficiently
narrow to indicate that the segment is completely free
in solution. In addition, the 15N-Ala labeled sample dis-
plays at least one more cross-peak than expected from the
amino acid sequence and peak doubling is observed also in
the 15N-Thr labeled sample (see below). This may be
explained by a heterogeneous chemical environment due
to nonspecific interaction with other components of the cell
extract, considering that the cell-free reaction mixture
inhibited the binding of the e:y complex to a (see below).

15N-HSQC spectra of 15N-labeled h in the e:h complex

The 15N-HSQC spectrum of uniformly labeled y in com-
plex with full-length e was indistinguishable from that of y
in complex with e186 (data not shown). This indicates that
y does not interact with the eCTS in the e:y complex.

Analysis of the a:e:h complex containing 15N-Thr or
15N-Ala labeled e

Initially, we attempted to form the a:e:y complex by the
addition of purified a to the NMR sample containing the

unpurified e:y complex. 15N-HSQC spectra of samples
containing 15N-Ala or 15N-Thr labeled e were, however,
indistinguishable from spectra in the absence of a even
after addition of a in 2-fold excess. This seemed to be
due to nonspecific association of e with other proteins
(or nucleic acids) in the cell-free reaction mixture since
after partial purification via a DEAE column, the e:y com-
plex readily bound to a (data not shown). Therefore, we
prepared the a:e:y complex by cell-free synthesis of e in the
presence of purified a and y. Subsequent purification of
the complex was straightforward, requiring only two steps
of chromatography (Figure 2C).
The 15N-HSQC spectra of the ternary complex con-

tained only a few cross-peaks (Figure 4A). Since nuclear
magnetization relaxes faster with decreasing molecular
tumbling rates, the high molecular weight of the complex
(about 165 kDa) leads to excessively fast nuclear relaxa-
tion for most residues and cross-peaks can be observed
only for residues located in polypeptide segments of
increased mobility.
We next set out to assign the cross-peaks observed for

the a:e:y complex containing 15N-Thr labeled e. The peaks
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Figure 3.
15N-HSQC NMR spectra of e in complex with y. The cross-

peaks are assigned with the residue numbers. (A) 15N-Ala labeled e in
complex with unlabeled y. The circle identifies a set of unassigned peaks
indicative of sample heterogeneity. They were not observed for the a:e:y
complex (Figure 5A, spectral region not shown). (B) 15N-Thr labeled e
in complex with unlabeled y. The asterisks label peaks which were not
observed in the spectra of e186 or the a:e:y complex, indicating sample
heterogeneity.

Figure 2. Subunit y solubilizes nascent e and a:e:y forms a soluble isol-
able complex when e is made in the presence of a and y. The e-subunit was
produced by cell-free synthesis. The gels were stained with Coomassie
brilliant blue. T, P and S denote the total reaction mixtures, the insoluble
fractions (pellet) and the supernatants, respectively. (A) The 10% SDS–
PAGE of e synthesized at 378C in the presence of 5mg/ml of a-subunit.
Nascent e coprecipitates a. (B) The 15% SDS–PAGE of e synthesized at
378C in the presence of 0.1mg/ml (lanes 1–3, labeled e) or 1mg/ml (lanes
4–6, labeled e+ y) of y-subunit. (C) The 15% SDS–PAGE of e synthe-
sized at 308C in the presence of 5mg/ml of the a-subunit and 0.5mg/ml of
the y-subunit. The left and right lanes show the soluble fraction of the cell-
free reaction mixture and the purified a:e:y complex, respectively.
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observed for a:e:y coincide with the most intense peaks
observed for the e:y complex (Figure 3B). Therefore, the
assignment could be obtained in the absence of a by ana-
lyzing appropriate e mutants in complex with y.
The crystal structure of e186 is missing electron density

for the first six and last six residues of the protein (15) and
NMR cross-peaks of these residues are narrower than
average, indicating increased mobility. (The 15N-HSQC
cross-peaks of the three N-terminal residues cannot be
observed in e186 (38,39), presumably due to line broad-
ening arising from hydroxide-catalyzed amide-proton
exchange rates near the amino terminus.) Assuming that
these segments are also highly mobile in the a:e:y complex,
the cross-peaks of Ala4, Thr6 and Thr183 would be
expected to appear at conserved positions in the
15N-HSQC spectrum of the a:e:y complex. This is indeed
the case (Figures 4A and 5). The conserved appearance of
the spectrum obtained for the e:y complex containing the
15N-Thr labeled S2A/T3S double-mutant of e (Figure 4C)

confirms that Thr3 remains unobservable in full-length e
and that the unassigned cross-peaks must arise from Thr
residues located in the eCTS.

In order to assign the cross-peaks of these additional
Thr residues, we synthesized e in the presence of y from
DNA that had been mutated and amplified by PCR.
Mutagenesis of Thr201 to Ala led to a much weaker
cross-peak at the 15N-chemical shift of 114 p.p.m.
(Figure 4E). Similarly, mutation of Thr193 led to a
much weaker cross-peak at the 15N-chemical shift of
115.3 p.p.m. (Figure 4D). The residual cross-peak intensi-
ties arise from the presence of small amounts of wild-type
protein due to residual amounts of wild-type plasmid
template in the cell-free reactions (35).

The cross-peak of Thr201 appears as two peaks in the
spectrum of the wild-type e:y complex (Figure 3B) and of
the a:e:y complex (Figure 4A), but not in the spectra of the
mutants. The origin of this peak doubling could be con-
formational heterogeneity or the inconsistent appearance

Figure 4. 15N-HSQC NMR spectra of a:e:y and mutant e:y complexes
containing 15N-threonine labeled e. For best comparison, the spectra
were Fourier transformed with the same parameters and scaled for
similar intensity of the cross-peak of Thr6 in all spectra. (A)
Spectrum of the a:e:y complex. (B–E) Spectra of samples of the e:y
complex prepared with mutant 15N-threonine labeled e. The mutations
are indicated.

Figure 5. 15N-HSQC NMR spectra of the a:e:y complex and PCS
induced by Dy3+, Er3+ or Tb3+ ions. Resonance assignments are
indicated for the cross-peaks observed in the absence of lanthanide
ions. Arrows identify PCS induced by paramagnetic lanthanide ions
bound to the active site of e. (A) 15N-Alanine labeled e in complex
with a and y. The spectra in the absence of lanthanide ion (black),
with Er3+ (blue) and with Dy3+ (brown) are superimposed. (B) 15N-
Threonine labeled e in complex with a and y. The spectra in the
absence of lanthanide ion (black), with Er3+ (blue) and with Tb3+

(red) are superimposed.
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of a cross-peak of the only unassigned threonine residue in
the eCTS, Thr218. This was examined by truncation of e
following Ala217 in the deletion mutant e217. The result
was inconclusive: the e217 sample did not show doubling
of the cross-peak assigned to Thr201 (Figure 4B), but
neither did the T193A mutant (Figure 4D). As expected
for a more mobile peptide segment, however, the trunca-
tion led to a more intense signal for Thr201.

Four 15N-HSQC cross-peaks could be observed in the
a:e:y complex prepared with 15N-Ala labeled e (Figure 5).
They were also present at conserved positions in the
spectrum of the e:y complex (Figure 3A). One of the
cross-peaks was assigned to Ala4 by virtue of its similar
position in the NMR spectrum of e186. For additional
assignments of the most intense peaks, mutant samples
of the e:y complex were prepared. Mutation of the
C-terminal residue of e (Ala243) to glycine did not
remove any of the intense Ala cross-peaks observed for
the wild-type protein (data not shown). In contrast, muta-
tions of Ala200 (Figure 6B) and Ala188 (Figure 6C)
enabled straightforward assignment of two of the cross-
peaks to these residues. Mutation of Ala186 resulted in
disappearance of one cross-peak (assigned to Ala186)
and significant change in chemical shift of the cross-peak
assigned to Ala188, as might be expected for a next-neigh-
bor residue (Figure 6D). Notably, most of the chemical
shifts were insensitive toward mutations in other residues,
in agreement with the random-coil nature of the eCTS
until at least Thr201.

To verify that these 15N-alanine and 15N-threonine
resonance assignments also apply to the a:e:y complex,
we added paramagnetic lanthanides to Pol III core com-
plexes containing appropriately labeled e (Figure 5). The
e-subunit has a natural metal-binding site that can bind a
single lanthanide ion, resulting in substantial pseudocon-
tact shifts (PCS) (40), which displace each 15N-HSQC
cross-peak by a chemical shift increment that is similar
in the 1H and 15N dimensions. PCS could indeed be mea-
sured in the a:e:y complex (Figure 5). The sign and mag-
nitudes of the PCS observed for Ala4, Thr6, Thr183
and Ala186 with Dy3+, Tb3+ and Er3+ were in agreement
with those measured previously for e186 (39). Along the
sequence Ala186, Ala188, Thr193, Ala200 and Thr201,
the PCS steadily decreased toward zero. This would be
expected for a flexible polypeptide chain for which positive
and negative PCS are averaged by extensive sampling of
the space around the metal ion.

In summary, we have demonstrated that the Pol III
a:e:y core complex is characterized by substantially
increased mobility of all Ala and Thr residues in the poly-
peptide segment between Thr183 and Thr201 of e, whereas
residues farther toward the C-terminus are immobilized by
binding to a.

Lack of interaction between e186 and a

The N-terminal domain of e, e186, has been shown pre-
viously to be incapable of forming an isolable complex
with a (21,41). If the e:y complex is tethered to a via a
long flexible linker involving the C-terminal residues of e,
weak binding of the globular N-terminal domain of e to

a may still be sufficient to put the exonuclease domain in a
defined location with respect to the polymerase subunit.
15N-HSQC spectra of the e186:y complex with uniformly
15N-labeled e186, however, were not affected by the pres-
ence of a (data not shown), indicating that any association
between e186 and a would involve a dissociation constant
Kd> 0.1mM. This lower limit for Kd is consistent with a
reported estimate from gel filtration data (21).

DISCUSSION

In contrast to the soluble N-terminal domain of the
e-subunit, e186, overexpression of full-length dnaQ
leads to insoluble protein which in the past could only
be solubilized by a denaturation and refolding protocol
(37). Cell-free synthesis circumvents this problem elegantly
by allowing the formation of protein–protein complexes
from nascently produced e in the presence of its natural
binding partners y and a. In addition, nascently synthe-
sized e readily formed the ternary a:e:y complex, whereas
the e:y complex was unable to bind to a in the reaction
mixture of cell-free synthesis. This effect appears to be due
to an engagement of the eCTS in nonspecific interactions
with other components of the cell-free reaction mixture, as
partial purification of the e:y complex by anion exchange
chromatography restored the binding capacity to a.
The nonspecific interactions also explain the apparent het-
erogeneity observed for the NMR signals from the
CTS (Figure 3).
Our experiments confirm the role of y as an important

factor for stabilizing the structure of e. The e186 domain is
prone to irreversible denaturation at 258C (42), whereas
the complex with y can be studied at 308C without
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Figure 6. Assignment of 15N-HSQC spectra of 15N-alanine labeled e:y
complexes by site-directed mutagenesis. � was labeled with 15N-alanine
and y was unlabeled. The four spectra are of samples prepared with e
where different alanine residues were mutated to glycine. (A) A243G
mutant. The asterisk identifies a cross-peak that was not observed in
the wild-type protein (Figure 3A). It may arise from a low-molecular
weight metabolite. (B) A200G mutant. (C) A188G mutant. (D) A186G
mutant. The arrow identifies the putative shift of the cross-peak of
Ala188 from its position in the wild-type protein.
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degradation of NMR signals over time (38). The tempera-
ture sensitivity of the N-terminal domain of e explains why
the presence of y is required during cell-free synthesis of e
to obtain the full-length e:y complex in soluble form. In
the absence of y, cell-free synthesis of e leads to precipita-
tion even in the presence of a. Precipitation is more pro-
nounced at higher temperatures, in agreement with the
sensitivity of the N-terminal domain to denaturation.
The fact that a coprecipitates with e highlights the inde-
pendent roles of the N- and C-terminal domains of e,
where binding to a via the eCTS is still possible if the
globular N-terminal domain unfolds and aggregates.
Whether y acts as a chaperone for e in vivo is not clear,

in view of the low cellular concentration of Pol III sub-
units (43). In any case, neither y nor the N-terminal
domain of e seem to act as a specific receptor of the
eCTS in the absence of a, as NMR spectra of e:y samples
containing selectively labeled e and uniformly labeled y
did not reveal significant differences from corresponding
spectra of the e186:y complex.
Among the C-terminal 57 residues of e, the segment

between Ala186 and Thr201 is much more mobile than
the residues closer to the C-terminus. Judging by the
signal intensities of the 15N-Ala residues (Figures 3A
and 5A), this holds both for the e:y and a:e:y complexes.
Therefore, the ‘sticky’ part of the eCTS is limited to resi-
dues following Thr201. In the complex with a, the con-
tacts must involve residues close to or even including the
C-terminal alanine residue of e, as no NMR signal could
be observed for this residue. This is consistent with prop-
erties of the dnaQ932 mutant allele, which encodes a ver-
sion of e lacking only the last three residues. Its recessive
phenotype suggests it is incapable of competing with wild-
type e for binding to a (44). Considering that e217 can
coprecipitate a C-terminally truncated form of a, a917
(Supplementary Data), at least some of the residues
between Thr201 and Thr218 seem to be involved in bind-
ing to a. This indicates a large binding epitope, which
would be difficult to explore by site-directed mutagenesis.
Residues 183–201 of e thus form the core of a highly

flexible tether in the a:e:y complex. Combined with the
absence of detectable interactions between the e186:y com-
plex and a, this means that the proofreading exonuclease
domain enjoys an extraordinary degree of positional and
orientational freedom with respect to the polymerase sub-
unit to which it is tethered.
Similar to e, the polymerase active site of the a-subunit

binds a divalent metal ion (Mg2+) in a similar coordina-
tion environment (13,14). It is likely that this ion can also
be replaced by a lanthanide ion, but there was no evidence
for PCS induced in e by a paramagnetic lanthanide bound
to a in any of our experiments, even though PCS induced
by Dy3+ can extend over distances >40 Å (45). As all PCS
were readily explained as intramolecular effects from a
lanthanide bound to the active site of e (Figure 5), it is
unlikely that the proofreading domain is positioned close
to a lanthanide ion in the polymerase active site of a in the
a:e:y complex. We do not know yet whether the presence
of primer-template DNA or of any of the other subunits
of the polymerase III holoenzyme complex would change
this; there has certainly been no indication in published

work of an interaction between e and any Pol III subunit
other than a and y.

Wieczorek and McHenry (46) reported that a 320-
residue N-terminal segment of a binds e with the same
affinity (Kd about 5 nM) as the 1160-residue full-length
a-subunit. In the crystal structures of a (13,14), the
N-terminal 270 residues fold into a globular (php)
domain of about 40 Å diameter. Considering that a
20-residue peptide in extended conformation can span
well over 60 Å, the flexible tether by which e is attached
to a could readily bridge the distance between almost any
attachment site on the php domain and the polymerase
active site.

The a:e:y Pol III core complex is distinctly different from
proofreading polymerases whose structures have been
determined in that the polymerase and exonuclease active
sites reside in different subunits. In examples of structures
of single-chain proofreading polymerases like DNA poly-
merase I (47,48) and RB69 DNA polymerase (49), the
proofreading domain shares a large and well-defined inter-
face with the polymerase domain, suggesting that both
domains are rigidly associated. Repair of a mismatched
template-primer DNA end thus involves translocation of
the DNA from the polymerase to the exonuclease active
sites which are located about 30 Å apart.

Our observations that neither e186 nor y interact to any
appreciable degree with the eCTS or with a, and that the
long linker between the catalytic domain of e and the
C-terminal region that is firmly bound to a is still flexible
in the Pol III core complex, suggests a fundamentally dif-
ferent mechanism for transition of Pol III from the poly-
merization to the editing mode. The transition might
involve conformational changes in a that expose a cryptic
binding site for the e186 domain, such that the two active
sites are brought closer together, rather than protein-
mediated transfer of the DNA substrate as occurs in
other enzymes. Since we have shown the exonuclease
domain to be relatively freely mobile in the a:e:y complex,
it might thus be able to swing in closer to the polymerase
active site to repair a mismatched terminus when this is
required.

CONCLUDING REMARKS

In this work, we have exploited several powerful new tech-
niques for structural biology in solution to study the struc-
ture of the Pol III core complex. The assignment of NMR
resonances by site-directed mutagenesis has long been
used in situations where resonance assignments by other
means are difficult (50). As mutations can change the
chemical shifts by perturbing the 3D protein structure,
this strategy is not always successful. While this problem
hardly occurs in random-coil polypeptide segments as in
the C-terminal region of e, chemical shift changes were
indeed induced by the mutation of Ala186 (Figure 6D).
In this situation, PCS induced by paramagnetic lanthanide
ions provided a conclusive second line of evidence. We
anticipate that the combination of mutation by PCR,
cell-free protein synthesis from PCR-amplified DNA (35)
and PCS induced by lanthanide tags (51) will become
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an attractive tool set for many hitherto difficult cases like
those examined here.

The present study also illustrates the power of cell-free
protein synthesis in the presence of separately purified
cofactors for the production of soluble protein–protein
complexes. In a similar manner, we were able to produce
the complex between the w- and c-subunits of E. coli Pol
III in soluble form by cell-free synthesis of c in the pre-
sence of separately purified w (33). In the w:c complex, the
N-terminal segment of 26 residues of c is unstructured in
the complex with w, but required for binding to the
g-subunit (33). Similarly, the Pol III t-subunit binds to a
via a C-terminal polypeptide segment which is unstruc-
tured in pure t (52,53). The emerging picture of the poly-
merase III holoenzyme is that of a machine composed of
globular building blocks that are linked by flexible tethers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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