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Abstract: Disaster management systems require accurate disaster monitoring and prediction services
to reduce damages caused by natural disasters. Digital twins of natural environments can provide
the services for the systems with physics-based and data-driven disaster models. However, the
digital twins might generate erroneous disaster prediction due to the impracticability of defining
high-fidelity physics-based models for complex natural disaster behavior and the dependency of data-
driven models on the training dataset. This causes disaster management systems to inappropriately
use disaster response resources, including medical personnel, rescue equipment and relief supplies,
to ensure that it may increase the damages from the natural disasters. This study proposes a digital
twin architecture to provide accurate disaster prediction services with a similarity-based hybrid
modeling scheme. The hybrid modeling scheme creates a hybrid disaster model that compensates for
the errors of physics-based prediction results with a data-driven error correction model to enhance
the prediction accuracy. The similarity-based hybrid modeling scheme reduces errors from the data
dependency of the hybrid model by constructing a training dataset using similarity assessments
between the target disaster and the historical disasters. Evaluations in wildfire scenarios show
that the digital twin decreases prediction errors by approximately 50% compared with those of the
existing schemes.

Keywords: digital twin; hybrid modeling; disaster spread simulation; disaster prediction; wildfire
spread simulation

1. Introduction

The need for dependable disaster management systems is increasing as climate
changes due to global warming resulting in more hazardous natural disasters such as
wildfires, typhoons, and flooding than in previous decades [1]. For example, in the case of a
wildfire, the scale of burned lands for the last decade has increased by 15% compared with
those of the previous decade [2]. Disaster management systems prevent or mitigate dam-
ages after disasters by efficiently organizing disaster response resources, including medical
personnel, rescue equipment, relief supplies and maintenance facilities. Since resources are
limited, improper organization of the resources cannot mitigate the damages and might
lead to worse results than other responses [3]. Therefore, the disaster management system
should be operated based on an accurate analysis about where a disaster occurs and how it
spreads to deploy the right resources at the right time and place.

Digital twins can provide disaster monitoring and spread prediction services for
disaster management systems to support the efficient operation of the systems. Digital
twins are virtual replicas of physical systems and natural environments [4]; they provide
the services for the system with various computing features, including IoT, AI, big data,
and simulation with physics-based and data-driven disaster models. The monitoring and
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prediction services are the most important features for effective disaster response of the
disaster management systems [5]. Therefore, it is necessary to use models that can precisely
simulate the natural disasters for the digital twin to provide accurate services.

The physics-based models for the digital twin are implemented with explicit expres-
sions based on natural science about the disasters [6]. The physics-based models might
have prediction errors because it is impractical to define a high-fidelity model with explicit
expressions for complex and dynamic natural disaster behaviors, including fuel model rep-
resentation, and dynamic weather changes [7]. Data-driven models are designed without
explicit expression by extracting disaster behaviors from observation data using machine
learning algorithms [8]. With the disaster behavior model, the data-driven model can
perform more accurate disaster spread prediction than the physical-based model. However,
the model can cause unexpected errors in the untrained disaster conditions because the
data-driven models depend on the training data. The errors by the models of the digital
twins can accumulate during prediction. This makes it difficult for the disaster management
systems to effectively respond to the disaster.

Recently, hybrid modeling schemes have been proposed to develop a high-fidelity
hybrid model by fusing the physics-based model and the data-driven model [9]. The hybrid
model can make high-accuracy predictions by complementing each other’s limitations.
The physics-based model of the hybrid model prevents unexpected prediction errors from
the data-driven model by providing stable reference prediction results. The insufficient
fidelity of the physics-based model is supplemented by the data-driven model. In disaster
prediction services, the data-driven models can compensate for the error caused by the
inaccurate expression of the physics-based models for the disaster behaviors. However, the
accuracy of the hybrid model might decrease in harsh disaster conditions where the digital
twins have difficulties in acquiring observation data for training the hybrid model.

In this study, we propose a digital twin software architecture with similarity-based
hybrid modeling. The hybrid modeling scheme creates a hybrid disaster model by converg-
ing a physics-based disaster spread model with a data-driven error correction model. The
digital twin can provide accurate disaster spread prediction services using the hybrid model
by compensating for prediction errors of the physics-based model with the data-driven
model. The similarity-based hybrid modeling technique trains the model with dataset by
similarity assessments of the target disaster with the historical disasters. This technique
enables the digital twin to find historical data with similar features to the disaster, and to
utilize the historical data as training data for the high precision hybrid model. The stored
observation data of the historical disasters are used to train a hybrid model for the target
disaster. In addition, a model update procedure using the observation data from the target
disaster is adopted to continuously improve the prediction performance.

The remainder of this study is organized as follows. In Section 2, we review the
existing research about the disaster digital twin. Section 3 describes the proposed digital
twin architecture. Section 4 evaluates the digital twin. Section 5 concludes this study.

2. Related Works
2.1. Digital Twin Software Architecture

In the existing research, the digital twin has been defined in various ways, from a
representation model for the physical system and natural environments to an independent
computing process that provides optimization services for the physical systems with
various ICT technologies [10].

In the early stages of digital twin technologies, digital twins were defined as only a
model for physical systems, such as visualization, design, and analysis models. Schleich
defined a digital twin with a design model for a physical system [11]. He devised a method
to use IoT data in the design model as an input for the system development stage. Boschert
defined the digital twin as a sophisticated simulation model [12]; a sophisticated simulation
technique for performing state prediction was presented by synchronizing a simulation
model for a vehicle with IoT data collected from a running vehicle. In these approaches,



Sensors 2022, 22, 4774 3 of 16

each digital twin was defined as a model used in application systems. Since digital twins
are strongly coupled with application service logic, it is difficult to utilize digital twins in
various applications.

Recently, the existing research defined digital twins as independent computing pro-
cesses that can be utilized in various domains and applications. Zhao proposed a digital
twin architecture combined with artificial intelligence technology to ensure the accurate
control of the micro punching machine [13]. The digital twin analyzes operation data with
a machine learning model and a simulation model to improve the operation accuracy of
the machine. Steindl defined the digital twin software structure based on the microservices
architecture [14]. The microservice-based digital twin has functional scalability for comput-
ing features for digital twin services, such as data acquisition, data storage, state prediction,
and fault analysis. In these approaches, application service developers should design
digital twins for performance. This makes it difficult to utilize the digital twins in various
application systems because application service developers need to understand both ICT
technologies and domain knowledge for the digital twins and the application systems.

2.2. Modeling Scheme for the Disaster Digital Twin

Table 1 shows the four implementation types of the natural disaster model and their
characteristics for the digital twin.

Table 1. Comparison of disaster prediction modeling approaches.

Features Physics-Based Model Data-Driven Model Hybrid Model Proposed
Hybrid Model

Accuracy Low High in trained scenario High High
Data independency O X 4 O

Adaptability X O O O

O: Has the feature. 4: Weakly has the feature. X: Doesn’t have the feature.

The physics-based models are implemented with explicit expressions of natural phe-
nomena based on a theory defined by human observation. They are actively used in various
disaster spread simulations. Finney developed a fire growth simulator called FARSITE
based on Rothaermel’s model [15]. Real disaster growth is so complex and dynamic that it
is impractical to define a high-fidelity physics-based model that ensures accurate prediction
of disaster progress.

The existing research on physics-based models with data assimilation schemes is
conducted to enhance the prediction accuracy of physics-based models. Srivas proposed
an ensemble Kalman filter-based wildfire spread prediction scheme [7]. The technique
corrected the probabilistic factors of the prediction results of the physics-based model
by using the observation data to ensure that high-accuracy prediction can be achieved.
Yen proposed a rainfall simulation scheme for typhoons based on the ensemble Kalman
filter [16]. They showed that accurate rainfall prediction was possible by correcting the
translation speed of typhoons using the ensemble Kalman filter. However, it was difficult
to apply it to predict the state of the disaster in progress because it was impossible to obtain
observation data for future natural disaster growth.

Data-driven modeling using machine learning techniques can compensate for the
limitation of physics-based models. Radke presented a data-driven model that output
wildfire spread prediction results [17]. Since the model was trained with actual wildfire data,
it showed high prediction accuracy in actual wildfire scenarios. However, the data-driven
models have dependency on the training data, meaning that it can result in unreliable
spread prediction in untrained conditions of disaster spread. In addition, even when
creating a data-driven model for a new situation, the problem of the inability to acquire
observation data remains, making it difficult to create a model for general application to
various scenarios.
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In this study, we propose a digital twin with similarity-based hybrid modeling. The
hybrid modeling scheme generates a hybrid disaster behavior model that fuses a physics-
based disaster behavior model and a data-driven error correction model to enhance the
accuracy of disaster progress prediction. The similarity-based hybrid modeling technique
includes a dataset construction procedure by using the similarity assessment between the
disasters. This enables the hybrid model to accurately predict the disaster progress even if
there are few observation data for the target disaster. In addition, the proposed digital twin
includes the execution logic that operates independently of the application system. The
application system can use the digital twin service by request through the interface of the
digital twin without understanding the logic and technologies for the digital twin.

3. The Proposed Digital Twin

This section describes the software architecture of the proposed digital twin. Symbols
and descriptions for the proposed digital twin are described in Table 2.

Table 2. Symbols and description for hybrid model-based digital twin.

Symbol Description

Mdd Model for data-driven error correction FE
Tidle Idle time of hybrid model-based digital twin
Hidle Threshold of idle time of hybrid model-based digital twin
Tsim Simulation time of hybrid model-based digital twin
Tend Simulation end time of hybrid model-based digital twin

Tsimste Simulation time step size of hybrid model-based digital twin
Attr Digital twin attributes

F Feature vector of digital twin
N Name of digital twin
S Size of training data for hybrid modeling

3.1. The Proposed Digital Twin Architecture

Figure 1 shows a theoretical software architecture of the hybrid model-based digital
twin. The digital twin works with digital twin behaviors (DT-Bs), digital twin functional
elements (DT-FEs), and digital twin attributes (DT-As). Digital twin behaviors (DT-B) are
operation models of the digital twin. DT-Bs are defined in the form of a state machine to
describe the operation procedures of the digital twin. DT-Bs of the proposed digital twin are
composed of four behaviors: (1) monitoring behavior to collect observation data from the
physical twin, (2) identifying behavior to analyze features of the physical twin, (3) predictive
behavior to estimate the future state of the physical twin, and (4) adapting behavior to
optimize the digital twin to the physical twin. DT-FEs refer to the computing features of the
digital twin to provide digital twin service, such as monitoring, fault detection, and state
prediction for the physical twin. For example, physics-based simulation, fault detection,
and data preprocessing can be performed in the digital twin. Digital twin attributes (DT-As)
are collections of data that represent the state of the digital twin. DT-As include sensor
attributes that store observation data from the physical twin, model attributes that store
computing model specifications for the digital twin, and service attributes that are the data
processed by the digital twin. The digital twin interface consists of an IoT interface that
collects observation data from physical twins to acquire sensing attributes, an application
interface that exchanges service attributes with an application system, and a management
interface that supports interaction with the digital twin manager.
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Figure 1. The proposed digital twin architecture.

3.2. Digital Twin Behavior for the Disaster Digital Twin

The DT-Bs for the disaster digital twin consist of four behaviors: monitoring, identify-
ing, predictive, and adapting.

3.2.1. Monitoring Behavior

For monitoring behavior, the digital twin updates the sensing attributes to track the
real-time status of the physical twin by collecting disaster observation data through the IoT
interface. Since the collected data are in different formats depending on the type of disaster
or the IoT device, preprocessing is required for the digital twin to use it. The digital twin
uses data preprocessing FE to process the data. Figure 2 shows a sequence diagram for
monitoring behavior.
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The data preprocessing FE converts raw IoT data into DT-As so that it can be used
in other DT-FEs. Algorithm 1 shows the procedure of the data preprocessing FE. It is
executed by inputting the digital twin attribute, its name, and the data shape. The values
of the digital twin attribute are filtered according to the basis for each attribute to reduce
errors and redundancies. Next, outliers are removed. Then, the shape and data format are
converted. If simultaneous processing of multiple digital twin attributes is needed, the
above process is repeated for each digital twin attribute.

Algorithm 1 Data preprocessing functional element

Input: Attr1 . . . AttrN, Shape
Output: Results
1: Results← list()
2: for i← 1 to N do
3: if isFiltered(Attri) is True then
4: cleansing(Attri)
5: resizing(Attri)
6: formatting(Attri)
7: Results.append(Attri)
8: else
9: continue
10: end if
11: end for

3.2.2. Identifying Behavior

The digital twin needs a data-driven error correction model optimized to the disaster
environments to perform disaster situation prediction using a hybrid model. In the early
stage of a disaster, it is difficult to gather the observation data on the disaster to train
the optimal data-driven error correction model. The digital twin executes the identifying
behavior after the first monitoring behavior to obtain a hybrid prediction model of the
current disaster. In identifying behavior, the digital twin transfers the disaster observation
data to the digital twin manager to request an optimal hybrid model. Figure 3 is the
sequence diagram for the identifying behavior. First, the digital twin selects data that are
affected by the disaster, such as weather, climate, terrain, and vegetation data, from the
sensing attributes. It transfers the selected data to the digital twin manager. The digital
twin waits until the manager returns to a hybrid model. Then, the model is stored in the
model attributes and transitions to the monitoring behavior.
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3.2.3. Adapting Behavior

For adapting behavior, the digital twin evaluates and updates the performance of the
hybrid model. The digital twin uses the model update FE for the adapting behavior. As the
disaster progresses, actual disaster spread data are accumulated in the sensing attributes.
The digital twin reads observation data for the disaster progress from the sensing attributes.
Then, the digital twin reads the prediction result by the hybrid model stored in the service
attribute according to the time of the observation data. The prediction accuracy of the
hybrid model is evaluated by comparing the two datasets. If the prediction accuracy is
lower than the threshold specified by the digital twin developer, the digital twin uses the
model update FE to adapt the model to the current disaster. Figure 4 shows the working
procedure of the model update FE.
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Model update FE provides a function for the digital twin to improve the performance
of the data-driven model through real-data-based continuous learning. The operational
pipeline of the model update FE is shown in Figure 4. It is composed of a training dataset
by using the I/O data of the hybrid model and IoT acquisition data. The training is
performed by inputting the dataset into the data-driven error correction model. After
training, the hybrid model is run to check its performance. Even in the process of spreading
a disaster through the model update FE, the model is changed to better optimize the target
disaster environments.

3.2.4. Predictive Behavior

For the predictive behavior, the digital twin predicts the disaster progress based on
the hybrid model. As shown in Figure 5, the hybrid model is implemented as a series of
physics-based spread models and data-driven error correction models. First, the digital
twin obtains the input data for the hybrid model from the properties. Prediction results are
calculated with the physics-based spread model. Then, the prediction results are processed
with the data-driven error correction model to enhance the accuracy of the results. The
digital twin uses the disaster simulation FE that predicts disaster progress with the physics-
based spread model and the error correction FE that improves the accuracy of the prediction
results with the data-driven error correction model.
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The disaster simulation FE estimates the disaster progress prediction results with a
physics-based spread prediction model. First, the digital twin reads the physics-based
spread model from the model attributes and the disaster observation data from the sensing
attribute. The disaster simulation FE uses the data to set an initial state value for simulation
with the model. Then, the FE results in disaster progress prediction for the simulation
time step.

The data-driven error correction FE provides a function to accurately correct the
disaster spread prediction results from the physics-based spread simulation FE. This func-
tional element of the hybrid model-based digital twin was implemented based on the
CNN structure-based image-to-image model. The structure of the model is shown in
Figure 6. The model receives sensing attribute information used as a simulation input and
a prediction result obtained through simulation and outputs a corrected result.
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3.3. Digital Twin Manager

The digital twin manager consists of a digital twin LC control module that controls the
execution and the termination of the digital twin, a feature extraction module that processes
DT-As to characterize the digital twin, a similarity-based hybrid modeling module that
supports hybrid model training by configuring similarity-based training data, and a digital
twin repository that stores the attributes of the existing digital twins.

3.3.1. Digital Twin LC Control Module

The digital twin LC control module controls the digital twin according to the software
life cycle from creation, execution, and termination. It configures initial digital twin
attributes and digital twin interfaces to ensure that the digital twin can operate. If the
digital twin is not updated for a certain period due to the end of the disaster situation, this
module terminates the digital twin and returns the DT-As of the digital twin.

3.3.2. Feature Extraction Module

Observational data on the natural environment can be expressed as complex multi-
channel and multidimensional data spanning various domains, such as vegetation, climate,
weather, and topography. This makes the similarity-based hybrid modeling schemes take a
lot of time to compare each piece of observation data, and it might be difficult to search for
similar disasters through comparison with historical disaster data on time. The existing cli-
mate classification and vegetation classification systems only classify macro classifications.
This might cause difficulties in finding similar disasters. The feature extraction module
uses a machine learning model to extract a unique feature vector of each disaster from
the disaster observation data. Disasters with similar characteristics are arranged to have
approximate vector values, enabling similarity-based hybrid modeling.

It is developed based on a CNN classification model trained by using disaster obser-
vation data as an input and a macro geoscientific classification as a label. An example of
the CNN-based feature extraction model for the wildfire disaster is shown in Figure 7. In
the training stages, the feature extraction model is trained using a climate classification
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system as the label, which is a representative classification system related to the major
factor in the spread of wildfires, such as vegetation and weather. In the inference phase,
it is used after removing the last dense layer of the model. The multidimensional feature
vector output from the previous layer of the output layer is used as the feature vector. The
vectors extracted from the hidden layer can show more various aspects about the physical
system than the classification result.
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Figure 7. An example of a CNN-based feature extraction for wildfire disaster.

3.3.3. Similarity-Based Hybrid Modeling Module

Similarity-based hybrid modeling modules find similar historical disaster observation
data through distance comparison between feature vectors of the disaster observation data
and train the hybrid model with the DT-As of the similar digital twin. An example of a
similar digital twin search operation based on a dimensionality reduction algorithm for the
feature vectors is shown in Figure 8. The feature vectors in Figure 8 represent the climatic
characteristics of the input disaster environment data.
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In the case of a 32-dimensional vector extracted through the feature extraction FE, it
takes a lot of time to calculate the distance between vectors. Thus, it is difficult to set up a
model in the early stage. Therefore, distance comparison is performed by reducing it to
a 3D vector through a dimension reduction algorithm based on the principal component
analysis technique [18]. It orders the existing digital twins based on the distance between
feature vectors and selects the N nearest digital twins. The training dataset for hybrid
modeling is generated by acquiring observation data from the DT-As of the selected digital
twin. After training a hybrid model using the training data, the model is returned to the
digital twin. Algorithm 2 shows the algorithm for the proposed hybrid modeling.
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Algorithm 2 Similarity-based hybrid modeling

Input: Ftarget, F1 . . . FN, N1 . . . NN, S
Output: Mdd
1: Dictdistance ← dict()
2: Ftarget ← dimReduction(Ftarget)
3: for i← 1 to N do
4: Fi ← dimReduction(Fi)
5: Dictdistance[Ni]← calcVectorDistance(Ftarget, Fi)
6: end for
7: sortByValue(Dictdistance)
8: Datatraining←list()
9: keyList←getKeys(Dictdistance)
10: for i← 1 to S do
11: appendList(Datatraining), getAttributes(keyList[i])
12: end for
13: Mdd ← loadEmptyModel()
14: trainModel(Mdd, Datatraining)

4. Case Study

The performance of the proposed hybrid model-based digital twin was evaluated in
wildfire scenarios, which is a representative natural disaster. Symbols for this section are
shown in Table 3.

Table 3. The symbols and description for the case study.

Symbol Description

Ew f
p Error amounts of type of model on disaster name

x, y The width and height of the data
Pi,j Prediction result for coordination i,j
Oi,j Observation data for coordination i,j

I Prediction error increments ratio on the untrained data
Et Prediction error on trained wildfires
Eut Prediction error on untrained wildfires

Ew f
R(i)

Prediction error with randomly selected wildfire dataset

Ew f
F

Prediction error with similarity-based hybrid modeling
Rw f Prediction error ratio for wf wildfire

4.1. Simulation Setups

The experiment was performed to evaluate the accuracy and the data independency
of the hybrid model and the performance of the prediction models with or without feature
similarity-based hybrid modeling. FARSITE, developed based on Rothaermel’s wildfire
spread model, was used as a physics-based model for the simulations [15]. The data-driven
model was implemented based on the CNN structure that inputs climate data, vegetation
data, and the initial wildfire state and outputs the fire spread area. The rest of the CNN
model, except for the input layer, was implemented as shown in Figure 6. For the hybrid
model, FARSITE was used for the physics-based spread prediction FE, and the CNN-based
model presented in Figure 6 was used as the data-based error correction FE.

The accuracy of the proposed digital twin is evaluated through comparison prediction
errors of the hybrid model with those of the existing model. The prediction errors of the
models are derived in the wildfire scenarios in Table 4. The prediction error is calculated
using Equation (1). The prediction error of a wildfire is normalized based on the prediction
error of the physics-based model since the scale of the error generated by each model can
be different depending on various factors, such as vegetation, climate, and the initial size
of the wildfire.
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E =
1

x ∗ y

x

∑
i=1

y

∑
j=1

Abs
(

Pi,j −Oi,j
)

(1)

Table 4. Real data-based wildfire scenarios by Köppen climate classification and size class classification.

Size Class
Köppen Climate Classification

BS BW Cf Cs Df Ds

Small

B az_sunflower - ga_chimney_top
al_caney_head or_mr_068_blue_top co_silver_creek id_gleason

C

az_jack
co_long_draw
az_juniper
az_pivot_rock

az_skeleton

al_half_way
al_lookout_mountain
ga_burrell_42
ga_creek_road
ar_whitaker_point

or_gold_canyon
ca_ash

co_old_stump
co_rosebud id_freeman

D

az_maple
az_fresnal
az_fuller
az_airstrip

ga_burrell
ga_irwin_mill -

id_moose
co_freeman
id_comet
co_starwood
id_black

-

Large

E

ca_cedar_sqf
co_happy_hollow
az_choulic
az_mormon

az_tenderfoot

fl_taylor
ga_tatum_gulf
al_power_horn
ga_rocky_face
ga_rock_mountain

or_draw
id_pioneer
id_john_doe

co_spring_creek_2
co_cold_springs

id_dry_creek
id_buck

F
az_brown
az_cowboy
nv_horseshoe

- nv_pinto
ga_fox_mountain_fire

nv_little_valley
or_rail
ca_chimney_cnd

id_lone_pine
co_hayden_pass -

G nv_maggie - - or_rattlesnake - -

The data independency is evaluated by comparing the prediction accuracy of the
model on the untrained wildfire data with that of the model on the trained wildfire data. In
the training phase of the data-driven model and the hybrid model, it is used as training
data after randomly excluding some of the total forest fire data for each model. After the
learning is completed, the prediction error increment ratio of the models on the untrained
wildfire is calculated. Equation (2) shows the formula for the prediction error increment
ratio of the prediction error as follows:

I =
Avg(Eut)− Avg(Et)

Avg(Et)
(%) (2)

The performance of the similarity-based hybrid modeling is evaluated through the
amount of error generated by the developed model in the absence of real data of the target
wildfire. We evaluate how much the prediction model developed through the proposed
hybrid modeling method reduces the error compared with the model developed using
randomly selected wildfire among all wildfires. To avoid biased results, the prediction
error of the hybrid model with a randomly selected wildfire dataset is averaged after five
iterations of the modeling and simulation procedures. Performance evaluation is performed
with Equation (3) as follows:

Rw f =
Ew f

F − Avg(∑5
i=1 Ew f

R(i))

Avg(∑5
i=1 Ew f

R(i))
(%) (3)
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4.2. Simulation Scenarios

The simulation scenarios and the dataset are designed with 63 real-wildfire observa-
tion data of wildfires in North America in 2016. Climate data are generated by injecting
a random error based on the daily average of each wildfire scenario. Vegetation data
are constructed based on the United States Geological Survey LANDFIRE dataset [19].
Wildfire spread data use the Burned Areas Boundaries Dataset of Monitoring Trends in
Burn Severity [20]. Table 4 shows the classification of the wildfires used in this simula-
tion according to the Köppen climate classification and the North American wildfire size
classification [21,22].

The data for each wildfire scenario consists of 11 channels of 2D data: tempera-
ture, humidity, cloud cover, precipitation, wind speed/direction, fuel model, canopy
cover/bulk/height and wildfire spread states. The entire data layer is reshaped to the size
of 450 × 450. Each data value is normalized as follows: Numerical data which represent as
percentile values, including humidity, cloud cover, and canopy cover data, are divided by
100. Wind direction data ranges from 0 to 360 to indicate the direction. They are divided
by 360. The rest of the numerical data, including temperature, precipitation, wind speed,
canopy bulk, canopy height data, are divided by the maximum for each data type. The fuel
model data, which are categorical data, are converted into integer value by sorting them
based on the combustibility of each fuel type. A schematic usage data structure is shown in
Figure 9. The data-driven model uses all data as input. The data-based error correction FE
of the hybrid model uses a vegetation layer, wildfire spread state data, and output results
of a physics-based spread prediction FE.
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Figure 9. Structure of wildfire dataset for the simulations.

4.3. Simulation Results
4.3.1. Simulation Results on the Accuracy of the Hybrid Model

Figure 10 shows the simulation results on the accuracy for the entire wildfire scenario.
As shown in Figure 10a, the hybrid model can reduce the prediction error by 40% and
25%, respectively, compared with the physics-based model and the data-driven model
in the entire wildfire scenarios. In the case of the physics-based model, it is difficult to
calculate the characteristics of each wildfire because it is calculated according to a fixed
formula rather than a model optimized for each wildfire. In addition, since the calculation
is performed by dividing the actual time into several simulation steps, errors caused by
small factors, such as sensor errors can be accumulated, becoming large errors. However,
other models show less errors than the physics-based model since they use optimized
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models based on observation data. The hybrid model has less prediction errors than the
data-driven model since the hybrid model uses the formula used by the physics-based
model and the spread model learned from the observations at the same time. The formula
is used as a base for predictions, the prediction errors decrease, as shown in Figure 10b.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 16 
 

 

Figure 9. Structure of wildfire dataset for the simulations. 

4.3. Simulation Results 

4.3.1. Simulation Results on the Accuracy of the Hybrid Model 

Figure 10 shows the simulation results on the accuracy for the entire wildfire 

scenario. As shown in Figure 10a, the hybrid model can reduce the prediction error by 

40% and 25%, respectively, compared with the physics-based model and the data-driven 

model in the entire wildfire scenarios. In the case of the physics-based model, it is difficult 

to calculate the characteristics of each wildfire because it is calculated according to a fixed 

formula rather than a model optimized for each wildfire. In addition, since the calculation 

is performed by dividing the actual time into several simulation steps, errors caused by 

small factors, such as sensor errors can be accumulated, becoming large errors. However, 

other models show less errors than the physics-based model since they use optimized 

models based on observation data. The hybrid model has less prediction errors than the 

data-driven model since the hybrid model uses the formula used by the physics-based 

model and the spread model learned from the observations at the same time. The formula 

is used as a base for predictions, the prediction errors decrease, as shown in Figure 10b. 

 

Figure 10. The simulation results on prediction accuracy. 

Figure 10c shows the average prediction errors according to the size of initial 

wildfires. The hybrid model shows the minimum prediction errors in both large and small 

wildfires. For large wildfires, the models result more prediction errors than for small 

wildfires because the wildfires can have various wildfire spread patterns and external 

factors. The hybrid model shows the least prediction error because it compensates the 

errors from the external factors with the strengths of both models. The hybrid model 

showed the highest accuracy in the entire climate classification as shown in Figure 10d–f. 

Since the hybrid model includes the strengths of both the physics-based model and the 

data-driven model, it has at least 5% less error than the physics-based model, regardless 

of the climate-specific data ratio in the entire dataset. Therefore, it is confirmed that the 

hybrid model predicts the disaster spread states with higher accuracy than other models. 

4.3.2. Simulation Results on the Data Independency of the Hybrid Model 

Figure 11 shows the results of the data independency by repeating the process of 

randomly selecting and evaluating a forest fire to be used for learning among all wildfire 

(a) Average of normalized prediction error in entire wildfire scenario (b) Normalized prediction error in entire wildfire scenario

(d) Average of normalized prediction error on Köppen climate class B (e) Average of normalized prediction error on Köppen climate class C (f) Average of normalized prediction error on Köppen climate class D

(c) Average of normalized prediction error on Wildfire initial size

Figure 10. The simulation results on prediction accuracy.

Figure 10c shows the average prediction errors according to the size of initial wildfires.
The hybrid model shows the minimum prediction errors in both large and small wildfires.
For large wildfires, the models result more prediction errors than for small wildfires because
the wildfires can have various wildfire spread patterns and external factors. The hybrid
model shows the least prediction error because it compensates the errors from the external
factors with the strengths of both models. The hybrid model showed the highest accuracy in
the entire climate classification as shown in Figure 10d–f. Since the hybrid model includes
the strengths of both the physics-based model and the data-driven model, it has at least 5%
less error than the physics-based model, regardless of the climate-specific data ratio in the
entire dataset. Therefore, it is confirmed that the hybrid model predicts the disaster spread
states with higher accuracy than other models.

4.3.2. Simulation Results on the Data Independency of the Hybrid Model

Figure 11 shows the results of the data independency by repeating the process of
randomly selecting and evaluating a forest fire to be used for learning among all wildfire
scenarios ten times. The variation in the error value of the prediction result for the unlearned
forest fire compared with the predicted result for the learned forest fire are shown in
Figure 11a. The amount of error that occurs in predictions for untrained wildfires is smaller
in the hybrid model than in the data-driven model. In the case of a data-driven model, the
rate of the error reduction is large, and the rate of the reduction is wide and distributed.
Since the data-driven models predict the disaster status only using rules extracted from
the dataset, the performance of the model depends on the dataset. On the other hand, the
hybrid model shows fewer errors in the increasement ratio than the data-driven model
because the hybrid model uses the results of the physics-based prediction model as a
reference value. Therefore, the prediction of the hybrid model has less dependency to
dataset than that of data-driven model.
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Figure 11. The simulation results on error increments ratio on wildfire spread prediction for untrained
wildfire scenarios compared with wildfire spread prediction for trained wildfire scenarios.

4.3.3. Simulation Results on the Proposed Hybrid Modeling Schemes

Figure 12 shows the rate of change for the prediction error of the hybrid modeling
technique using randomly selected wildfire training data and the proposed similarity-
based hybrid modeling technique. Each point in Figure 12 is the evaluation result for each
wildfire presented in Table 4. It is confirmed that the proposed modeling scheme makes
the model more reliable than the randomly selected data-based hybrid modeling scheme.
Since the feature vector used as the basis of the similarity analysis is extracted based on the
climate class, errors are reduced where there are multiple wildfires with the same climate
classification. Weather and vegetation, which are major factors in the spread of wildfires,
are affected by precipitation. In the case of the Df class, although there are few wildfires
with the same classification, errors are reduced because there are many Cfs with the same
precipitation classification. This means that a hybrid model with good performance can
be developed even in a situation where observation data are insufficient by extracting
features that well-reflect factors affecting the spread of the disasters and performing hybrid
modeling using them. Therefore, the more specifically the characteristics of the disaster are
classified, the more that a similar disaster can be found among the existing data. Therefore,
it is expected that a hybrid model with good performance for the target disaster can be
developed through the proposed similarity-based hybrid modeling technique even if the
observation data of the target disaster is insufficient. Additionally, as the amount of existing
disaster observation data increases, it is possible to make the hybrid model more reliable
by acquiring many observation data from disasters with similar features.
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Figure 12. The simulation results on the evaluation on the performance of the proposed hybrid
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climates class, (b) Prediction error ratio for a hybrid model trained with a feature-based selected
training data compared a hybrid model trained with a randomly selected training data on initial
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5. Conclusions

This study proposes a digital twin architecture with the similarity-based hybrid mod-
eling for dependable disaster management systems. First, a digital twin software structure
that operates with a hybrid disaster model is proposed. The digital twin collects observa-
tion data and uses it to design and execute the hybrid model. This makes it possible for
the digital twin to predict the spread of disasters more reliably than existing techniques.
Second, the proposed digital twin architecture can develop an accurate hybrid disaster
model by means of similarity-based hybrid modeling schemes. The scheme analyzes the
observation data to construct a well-refined training dataset from similar historical disaster
data. By training the hybrid models with the dataset, it results small prediction errors
despite of insufficient observation data on the corresponding disaster environments. Finally,
the continuous learning pipeline is able to keep enhancing the prediction accuracy of the
hybrid model based on the real-time data collected as the disaster progresses.

The simulation results with real wildfire scenarios show that the hybrid model can
reduce errors by up to half in the disaster spread prediction results compared with the
existing disaster models. In addition, it was confirmed that the hybrid model is less
affected by the training data compared with the data-based model. Thus, it can show
better performance when the model is trained based on the similarity even in a situation
where there is insufficient data. Therefore, using the proposed digital twin, it would be
possible to more accurately predict the situation of a physical system that can cause a
fatal problem, such as a disaster. In future works, the proposed hybrid modeling scheme
should be applied to industrial domains. Since types of observation data are diverse in the
industrial domains, a multifunctional deep learning-based feature extraction scheme can
utilize artificial intelligence models of various structures.
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