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This paper aims at estimating pathological subjects from a population through various physical information using genetic algorithm
(GA). For comparison purposes, 𝐾-Means (KM) clustering algorithm has also been used for the estimation. Dataset consisting of
some physical factors (age, weight, and height) and tibial rotation values was provided from the literature. Tibial rotation types are
four groups as RTER, RTIR, LTER, and LTIR. Each tibial rotation group is divided into three types. Narrow (Type 1) and wide (Type
3) angular values were called pathological and normal (Type 2) angular values were called nonpathological. Physical information
was used to examine if the tibial rotations of the subjects were pathological. Since the GA starts randomly and walks all solution
space, the GA is seen to produce far better results than the KM for clustering and optimizing the tibial rotation data assessments
with large number of subjects even though the KM algorithm has similar effect with the GA in clustering with a small number of
subjects. These findings are discovered to be very useful for all health workers such as physiotherapists and orthopedists, in which
this consequence is expected to help clinicians in organizing proper treatment programs for patients.

1. Introduction

Most problems come out in nature are usually represented
by mathematical models. To analyze those problems arisen
in various fields of science, mathematical modeling has been
considered as an important tool. Advent of computers, pro-
ducing algorithms, and progress in computer programming
have made life easier in solving intricate problems of science.
This is also the case in problems encountered in biome-
chanics. To make the best biomechanical decisions, medical
prediction plays a very important role for health providers.
Specifically, many researchers have concentrated on analysis
of the knee motion and many methods were designed to
describe the range ofmotion of it [1]. It is important to predict
tibial rotation types of pathologies during daily examination,
since there exists a serious link between the tibial motion and
various knee injuries [2].

As signified in the literature [3, 4] the knee joint is one
of the most complex joints in the musculoskeletal system.
To assess the motion of the knee joint, various techniques
were suggested to describe the range of motion of the knee
joint [1, 5–9]. It is reported that there are limited number
of investigations resolving the tibial motion involving the

internal and external rotations [4, 10–14]. Note that an
excessive internal tibial rotation or a delayed external tibial
rotation leads to some knee injuries. Owing to external
rotation related to knee extension, excessive internal rotation
during the stance phase of walking can postpone the natural
external rotation while the knee extends. As underlined by
various researchers [2, 15], this situation may cause torsional
joint stresses through tibial shaft and by turns lead to knee
injury rotation.

Analysis of the tibial motion is usually difficult for
medical points of view. Although it is natural to come across
attractive studies realized in the literature, the pathological
interval of the tibial rotations has not been optimized through
the physical information yet. Even though the conventional
methods encountered in the assessment of the tibial rotations
are still among the attractive topics in the academic society
[16–26], researchers have nowadays increased to pay their
attention to computational assessment [27, 28] and predic-
tion techniques such as artificial neural networks [4, 14].
Despite recognized advantages of the conventional methods,
most of them are suffering from various disadvantages such
as high cost, difficulty in use, being time-consuming, and
constraints in daily use. In that case, optimization can be
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recalled as an alternative to the corresponding methods.
Various heuristic approaches have been improved in the
recent couple of decades that simplify solving optimiza-
tion problems that had previously serious difficulties. Those
approaches include evolutionary computation, tabu search,
and particle swarm. Recently, genetic algorithm (GA) and
particle swarm optimization (PSO) techniques come out
as encouraging approaches for analyzing the optimization
problems. Those algorithms are having popularity within
academic society as model tools due to their versatility and
potentiality to optimize in intricate search spaces. For both
GA and PSO approaches, the fundamental issue in imple-
mentation lies in the selection of an appropriate objective
function. Both approaches are inspired by nature and are
shown to be effective solutions to optimization problems.
Note that the corresponding algorithms are not a panacea,
despite their well-known effectiveness. For some problems,
the GA approach is superior to the PSO approach while
for some problems the latter approach is superior to the
first one [29–32]. The encountered prediction algorithms,
like PSO, have great potentiality and in some cases superi-
orities in analysis of optimization problems. The other one
of the two popular methods, the GA, is well-established,
flexible, of easy programming, and lower cost, and therefore
it is used very often and supplies an alternative approach
for information-processing methods. Hence, the aforemen-
tioned advantages of the GA sent us to use it in the current
study.

This paper predicts pathological subjects from a popu-
lation through various physical information using the GA.
Even though it has been considered for comparison pur-
poses, the KM clustering algorithm has also been devel-
oped for the prediction. The developed framework of the
GA is successfully applied to medical prediction problems
and has achieved superior classification performance to the
other competitive counterpart, the KM clustering algorithm.
Dataset consisting of some physical factors (age, weight, and
height) and tibial rotation values was provided from the
work of Sari and Cetiner [4]. Thus, this study discovers
potentiality of the two algorithms, the GA and the KM
clustering, in predicting the tibial rotation types through the
physical factors. To the authors’ best knowledge, the GA has
not been implemented to predict the tibial rotation type based
on the physical information so far. Since the GA is flexible,
assumption-free methodology, and does not need expertise
on statistics, it has been used for the reliable data processing
and then interpretations in the current paper. The GA, as
general optimal clustering algorithm, makes the prediction
process possible for many different patterns based on the
existing data of interest by discovering the relations between
the inputs (information) and outputs (responses).

2. Materials and Methods

2.1. Study Design. In this study, dataset for healthy subjects
was provided from the work of Sari and Cetiner [4].The data
includesmeasurement of age, weight, and height information
of 484 volunteers. The age, weight, and height values of each
subject are displayed in Figure 1.
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Figure 1: Scatter plot of the data consisted of age, weight, and height
parameters.

In the data, tibial rotation values of each subject con-
sisting of 4 components were given as right tibial external
rotation (RTER), right tibial internal rotation (RTIR), left
tibial external rotation (LTER), and left tibial internal rotation
(LTIR). The rotation values were divided into 3 types as
Type 1, Type 2, and Type 3 according to whether they were
pathological or not, as seen in Table 1. Values between 0
and 20 degrees and between 65 and 90 degrees are accepted
to be pathological. Values between 20 and 65 degrees are
considered to be nonpathological [33, 34]. All types were
divided into three clusters as Cluster 1, Cluster 2, and Cluster
3, based on the distribution of the data. This clustering was
done according to age, weight, and height parameters as
shown in Table 2. For all these rotation values, the number
of subjects of the clusters in all types is also shown in Table 3.

The pragmatic aim of this paper is to predict patho-
logical subjects from a population through various physical
information (age, weight, and height) using the GA. As the
GA clustering is of the mentioned advantages like flexibility
and no need for assumption, it has been preferred for the
trustworthy data processing in this study. Additionally, the
KM clustering algorithm has also been used to decide which
one is better in the prediction. Thence, this study keeps
the light on capability of the GA in predicting pathological
subjects based on the existing data by exploring the links
between the inputs and outputs. Since the GA has been
implemented for the first time for clustering in the prediction
of subjects that they are either pathological or not, this study
is believed to be a very significant contribution.

2.2. Genetic Algorithm. Darwin’s theory of evolution has been
a source of inspiration for many researchers in various disci-
plines. Many evolutionary algorithms have been developed
using fundamental terms such as gene, natural selection,
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Table 1: Type values of each rotation and number of subjects.

RTER RTIR LTER LTIR
Type 1 (≤20∘) 39 33 37 51
Type 2 (20∘–65∘) 391 423 357 414
Type 3 (>65∘) 24 28 90 19

Table 2: Clusters and number of subjects.

Age Weight Height Number of subjects
Cluster 1 >30 - - 52
Cluster 2 ≤30 ≤60 ≤1.70 249
Cluster 3 ≤30 >60 >1.70 183

crossover, and mutation that Darwin put forward in his
theory. One of the most important of these evolutionary
algorithms is genetic algorithms (GAs). First, Goldberg and
Holland [35] put the evolution process into a computer
environment and took a step for the GAs. Goldberg [36]
proved that the GAs have more than 80 examples in real life.
Later, in terms of all those progresses, Koza [37] developed
genetic programming. The main aim of the GA is that the
strong individual survives and the weak die. The basic stages
of determining the strong and weak individual are natural
selection, crossover, and mutation. In the GA, it is aimed to
find the best individual after individuals have passed through
those stages. The flow diagram of the GA can be shown in
Figure 2. The following subsections consist of the main steps
of the GA.

2.2.1. Initial Population. For the solution space, random
chromosomes with genes are created. The number of chro-
mosomes generated for the solution indicates the size of the
population. For example, the cluster of𝑚 chromosomes with
randomly generated 𝑛 genes to determine the maximization
or minimization of a function is the initial population of the
GA as explained in Figure 3.The values of all chromosomes in
the fitness function of the problem are calculated. It has then
been decided that if the individuals are strong or weak. The
gene, chromosome, and population are illustrated in Figure 3.

2.2.2. Selection. This step is the first step in which the princi-
ple of survival of the strong one begins to be implemented. At
this stage, individuals are created to match each other in the
future. The strongest candidates are determined according to
the fitness values. According to the purpose of this algorithm,
these candidates match each other and produce the highest
quality of the generation. At the simplest level, if the problem
is maximization, the individuals with the greatest fitness
value are taken. Conversely, if the problem is minimization,
this time and the individuals with the smallest fitness value
are taken. The population of these individuals is called the
transition population.

2.2.3. Crossover. At this stage, a new generation is produced.
High-quality individuals selected from natural selection are
considered as parents and these individuals are matched to
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Figure 2: Flow diagram of the GA.
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Figure 3: The display of gene, chromosome, and population.

create new individuals. This mapping is created by replacing
each individual gene sequence in each individual chro-
mosome with each other. This process is called crossover.
As an example, the second genes of Chromosome 1 and
Chromosome 2 which have 4 genes will be matched and new
individuals will be produced. This matching is illustrated in
Figure 4.
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Table 3: Number of types in each cluster for every rotation type.

Cluster 1 Cluster 2 Cluster 3 Total

RTER

Type 1 0 17 22 39
Type 2 50 183 158 391
Type 3 2 49 3 24
Total 52 249 183 484

RTIR

Type 1 1 7 25 33
Type 2 48 223 152 423
Type 3 3 19 6 28
Total 52 249 183 484

LTER

Type 1 1 16 20 37
Type 2 47 160 150 357
Type 3 4 73 13 90
Total 52 249 183 484

LTIR

Type 1 3 14 34 51
Type 2 49 218 147 414
Type 3 0 17 2 19
Total 52 249 183 484

G11 G12 G13 G14 G21 G22 G23 G24

G11 G12 G13 G14 G21 G22 G23 G24
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Figure 4: Sample of a crossover.

2.2.4. Mutation. Sometimes, some genes may remain the
same even if matching has repeatedly been carried out in
the individuals to be matched. This situation prevents the
formation of different individuals. So, it may not deliver
the best solution. Although the probability of occurrence of
this situation is very low, to prevent problems due to this
situation, a very small change can be made in a gene of
the created individuals. Thus, different individuals occur and
future generations also become different. Two examples of
mutations are shown in Figure 5.

As can be seen from the figure, the mutations made in
the binary codes are a general reverse translation process.
This converts 0 to 1 or 1 to 0. This means that mutations
in binary code can make a big difference in terms of gene
diversity. When looking at real coded chromosomes, very
small changes are made in the genes, depending on their
value. The effect obtained with very small spins in the

real code is equivalent to the large effect in the binary
code.

Creating initial population, selecting strong individuals
from this population (natural selection process), and creating
high-quality generation by matching these strong individ-
uals each other (crossover), the process of eliminating the
problem of producing the same generation from similar
genes (mutation) is repeated in each iteration. It is aimed
at producing a better generation as a result of each iteration.
When the specified number of iterations is reached, the
algorithm is terminated and the optimum value is found.

The GA does not circulate at all points in solution space.
In all steps, it cannot travel every point because it has
randomness as in nature. The GA tries to predict the best
by improving the randomly determined population. More
details on the GA can be found, for instance, in [38–42].

The GA have been implemented for solving problems
in many fields ranging from medical applications [43, 44]
to prediction of heavy rainfall based on certain medical
parameters [45]. However, the prediction of tibial rotation
types using the GA is new. This article makes a thorough
study of some physical information and examines their
relationship with the tibial motion factors based on the GA.
The pseudocode of the GA has been presented as shown in
Pseudocode 1.

2.2.5. Genetic Algorithm (GA) Clustering. The GA investi-
gates for the optimal solution together with its own processes
like selection, crossover, and mutation. For clustering, the
optimum solution is searched as many as the number of
clusters. The distance is based on those optimum solutions.
The optimum solutions are then considered to be cluster
centers. The issue of finding center required in clustering
algorithms is sorted out by using the GA. Although one
encounters various GA clustering examples in the literature
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Binary code Real code

(i) Mutation of 5. gene on binary code (ii) Mutation of 6. gene on real code

0 0 1 0 0 1 0 0

0 0 1 0 1 1 0 0

24 1 54 53 37 8 62 30

24 1 54 53 37 9 62 30

Figure 5: Examples of mutation on binary code and real code.

begin
Create initial population;
while (Until Stopping Criteria)

for (Each Chromosome)
Calculate fitness value;
Selection (Survival of strong individuals);
Crossover (Here, new generation produced);
if (There are same chromosomes)

Mutation (Changing some genes for new and
different individuals);

end
end

Generate new population;
end

end

Pseudocode 1: Pseudocode of the genetic algorithm.

for different problems [46–51], to the best knowledge of the
authors, for the first time, the GA has been implemented
to estimate pathological subjects through various physical
parameters.

2.3. 𝐾-Means Clustering Algorithm. The 𝐾-Means (KM)
clustering algorithm is one of the fastest, simplest, and most
commonmethods in clustering problems. Firstly, theKMwas
discovered by MacQueen [52]. The way that the algorithm
works is given as follows. The algorithm divides 𝑁 data
into 𝑘 groups according to their distance to each other.
The algorithm aims to find the best cluster center for each
iteration. Cluster centers are updated for each iteration. This
is done by taking the average of the new cluster center and the
old cluster centers.The name of the algorithm stems from this
procedure.

As clustering-based algorithm is based on the points that
are the closest to each other, an objective function must be
already given in the KM approach and thus the problem will
be aminimization problem.The Euclidean distance is used in
the algorithm as follows [53]:

𝐷 = 𝐾∑
𝑗=1

𝑁∑
𝑖=1

𝑥𝑖 − 𝐶𝑗2 , (1)

where 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁, and 𝐶𝑗, 1 ≤ 𝑗 ≤ 𝐾, stand for set of𝑁 data and set of cluster centroids, respectively. The distance

between any two 𝑝-dimensional patterns 𝑋𝑖 and 𝑋𝑗 can be
expressed as follows [54]:

𝑑 (𝑋𝑖, 𝑋𝑗) = √ 𝑝∑
𝑚=1

(𝑋𝑖𝑚 − 𝑋𝑗𝑚)2. (2)

3. Results and Discussion

In this study, each one of all rotation values RTER, RTIR,
LTER, and LTIR is divided into three types as Type 1, Type
2, and Type 3. For all types, success of Cluster 1, Cluster 2,
and Cluster 3 has been observed.

For example, Type 1 values for RTER are 0, 17, and 22
for Cluster 1, Cluster 2, and Cluster 3, respectively. So, there
are 39 subjects in total. These are 0.00%, 43.59%, 56.41%,
respectively, as the percentage values from Table 4. Taking
these values into consideration, if we look at the results of
the KM algorithm in Table 6, Type 1 value for RTER is 39,
and these values are 0, 2, and 37 for Cluster 1, Cluster 2, and
Cluster 3, respectively. Even for this situation, the failure of
the KM for Type 1 can be seen. Looking at the percentage will
give a clearer interpretation. It is 0.00%, 5.13%, and 94.87%,
respectively. By comparing the results of the KM and actual
values, the KM found these values as 5 and a percentage of
5.13%, while Type 1 has a real value of 17 and a percentage of
43.59% for Cluster 2. Likewise, if the same assessment ismade
for Cluster 3, the ratio should be 56.41%, which is 94.87%. It
can be simply assessed as follows: the KM has found it to be
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Table 4: Real cluster values and percentages of all tibial rotation types.

Real
Cluster 1 Percent (%) Cluster 2 Percent (%) Cluster 3 Percent (%) Total Percent (%)

RTER
Type 1 0 - 17 43.59 22 56.41 39 100.00
Type 2 50 12.79 183 46.80 158 40.41 391 100.00
Type 3 2 3.70 49 90.74 3 5.56 54 100.00

RTIR
Type 1 1 3.03 7 21.21 25 75.76 33 100.00
Type 2 48 11.35 223 52.72 152 35.93 423 100.00
Type 3 3 10.71 19 67.86 6 21.43 28 100.00

LTER
Type 1 1 2.70 16 43.24 20 54.06 37 100.00
Type 2 47 13.17 160 44.82 150 42.01 357 100.00
Type 3 4 4.44 73 81.11 13 14.45 90 100.00

LTIR
Type 1 3 5.88 14 27.45 34 66.67 51 100.00
Type 2 49 11.84 218 52.66 147 35.50 414 100.00
Type 3 0 - 17 89.47 2 10.53 19 100.00

Table 5: Results of the GA for all tibial rotation types.

GA
Cluster 1 Percent (%) Cluster 2 Percent (%) Cluster 3 Percent (%) Total Percent (%)

RTER
Type 1 0 - 17 43.59 22 56.41 39 100.00
Type 2 30 7.67 205 52.43 156 39.90 391 100.00
Type 3 1 1.85 48 88.89 5 9.26 54 100.00

RTIR
Type 1 1 3.03 2 6.06 30 90.91 33 100.00
Type 2 59 13.95 226 53.43 138 32.62 423 100.00
Type 3 2 7.14 21 75.00 5 17.86 28 100.00

LTER
Type 1 1 2.70 13 35.14 23 62.16 37 100.00
Type 2 38 10.64 161 45.10 158 44.26 357 100.00
Type 3 1 1.11 75 83.33 14 15.56 90 100.00

LTIR
Type 1 1 1.96 17 33.33 33 64.71 51 100.00
Type 2 9 2.17 222 53.62 183 44.20 414 100.00
Type 3 0 - 17 89.47 2 10.53 19 100.00

43.59%, even though the actual rate is 5.13%. If proportional,
the KM will achieve an accuracy rate of 8.49%.

If all these evaluations are done for the GA by considering
RTER again, the GA has found them to be 0, 17, and 22 that
real values of Cluster 1, Cluster 2, and Cluster 3 for Type 2 are
0, 17, and 22, respectively. So, that is 100.00% success as seen
from Table 5.

As in all optimization algorithms, the GA requires large
number of elements to be able to produce accurate results.
The real value of RTIR-Type 2 is 423. From these data, 48
subjects belong to Cluster 1, 223 subjects belong to Cluster
2, and 152 subjects belong to Cluster 3. In percent, Cluster
1, Cluster 2, and Cluster 3 are 11.35%, 52.72%, and 35.93%,
respectively. The KM has produced these values as 36, 263,
and 124; in percent, they are as follows: 8.51%, 62.18%, and
29.31%. The real RTIR-Type 2 has Cluster 1 value of 48 and a
KM value of 36. It has been found to be 8.51%, while the real
one is 11.35%, with the accuracy rate of 74.98. Yet, the KM has
been found to be 263 (62.18%) and 124 (29.31%) for Cluster
2 and Cluster 3, respectively. Again, to evaluate the accuracy
percentage, the real Cluster 2 value is 52.72% while the KM

is found to be 62.18%. This is of accuracy rate 84.79%. In the
same way, the real value of Cluster 3 is 35.93% while the value
for the KM is 29.31%. Again, the accuracy rate is 81.58%.

If the same considerations aremade for theGA, the RTIR-
Type 2 values have been found to be 59, 226, and 138 for
Cluster 1, Cluster 2, and Cluster 3, respectively.The produced
values of the GA for the clusters are 13.95%, 53.43%, and
32.62%, respectively. As seen in Table 4, the actual values for
the three clusters are 11.35%, 52.72%, and 35.93%, respectively.
The accuracy rates calculated in the GA are 81.36%, 98.67%,
and 90.79%.

If all values are recovered, for the GA, accuracy rate of
Cluster 1 for RTIR-Type 2 is 81.36% while it is 74.98% for
the KM for the same parameters (see Table 7). Likewise, for
the GA, accuracy rate of Cluster 2 for RTIR-Type 2 is 98.67%
while it is 84.79% for the KM for the same factors. Finally, for
the GA, accuracy rate of Cluster 3 of RTIR-Type 2 is 90.79%
while the KM produced is 81.58% for the same parameters.
As can be seen from these values, success of the clustering
of RTIR-Type 2 of the GA is much higher in comparison
with success of the KM. Especially for Cluster 2, which has
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Table 6: Results of the KM clustering for all tibial rotation types.

KM
Cluster 1 Percent (%) Cluster 2 Percent (%) Cluster 3 Percent (%) Total Percent (%)

RTER
Type 1 0 - 2 5.13 37 94.87 39 100.00
Type 2 42 10.74 207 52.94 142 36.32 391 100.00
Type 3 4 7.41 43 79.63 7 12.96 54 100.00

RTIR
Type 1 0 - 1 3.03 32 96.97 33 100.00
Type 2 36 8.51 263 62.18 124 29.31 423 100.00
Type 3 2 7.14 23 82.14 3 10.72 28 100.00

LTER
Type 1 1 2.70 1 2.70 35 94.60 37 100.00
Type 2 36 10.08 242 67.79 79 22.13 357 100.00
Type 3 2 2.22 67 74.45 21 23.33 90 100.00

LTIR
Type 1 1 1.96 3 5.88 47 92.16 51 100.00
Type 2 36 8.70 251 60.63 127 30.67 414 100.00
Type 3 0 - 19 100.00 0 - 19 100.00

Table 7: Comparison of the GA and the KM rates.

Cluster 1 Cluster 2 Cluster 3
GA KM GA KM GA KM

RTER
Type 1 - - 100.00 11.77 100.00 59.46
Type 2 59.97 83.97 89.26 88.40 98.74 89.88
Type 3 50.00 50.00 97.96 87.76 60.04 42.90

RTIR
Type 1 100.00 - 28.57 14.29 83.34 78.13
Type 2 81.36 74.98 98.67 84.79 90.79 81.58
Type 3 66.67 66.67 90.48 82.62 83.34 50.02

LTER
Type 1 100.00 100.00 81.27 6.24 86.97 57.15
Type 2 80.79 76.54 99.38 66.12 94.92 52.68
Type 3 25.00 50.00 97.34 91.79 92.87 61.94

LTIR
Type 1 33.33 33.33 82.36 21.42 97.06 72.34
Type 2 18.33 73.48 98.21 86.85 80.32 86.39
Type 3 - - 100.00 89.47 100.00 -

the highest number of subjects, the GA is leading by a huge
difference.The reason for this is that increasing the number of
subjects leads to increasing the success. Note that, in general,
in case of large of number of subjects, the GA is found to be
far more successful than the KM clustering for the current
problem.

The accuracy rates are compared in Table 7 to showwhich
algorithm is more successful than the other. When these
ratios are calculated, firstly, the values inTable 4 are compared
with Table 6 and written in the KM column in Table 7.
Likewise, the values in Table 4 are compared to Table 5 and
written in the GA column.

As an example, in Table 4, the real ratio value of Cluster
2 for LTER-Type 2 is 44.82%. The same value is found to be
67.79% for the KM in Table 6. The accuracy rate of LTER-
Type 2-Cluster 2 is obtained as 66.12% as seen in Table 7. If
the same operations are performed for the GA in Table 5,
this value is 45.10%. If these values are compared, a success
of 99.38% is achieved by the GA. Table 7 has been generated
by repeating the same procedures for all rotation values. As

can be seen from Table 7, the GA is mostly clustering much
more successfully than the KM algorithm.

For a long time, the GA has been used as a very
powerful algorithm in various problems of science. To the
best knowledge of the authors, in the current paper the GA
has been applied to the tibial rotation for the first time. It
was tested if it would be successful in the field as is the
case in a large kind of problems. The GA has been seen to
produce very effective results in predicting the tibial rotation
types through the physical information. The application to
the current problemhelps health providers to predict the type
of the rotation, that is, pathological or nonpathological.

Clustering success was targeted by dividing each one
of the rotation values RTER, RTIR, LTER, and LTIR into
pathological (Type 1 and Type 3) or nonpathological (Type
2) classes. In the present problem, the number of clusters
for the genetic algorithm is given by the user. Subjects are
divided into 3 clusters (Cluster 1, Cluster 2, and Cluster
3) by considering age and weight parameters. Taking into
consideration these values, the effect of physical information



8 Computational and Mathematical Methods in Medicine

on the tibial rotations has been investigated. Then the results
of the GA have been compared with the results of the KM
clustering algorithm. In case of large of number of subjects,
it has strikingly been seen that the GA has been found
to be far more effective than the KM clustering algorithm
for optimizing correctly the current tibial problem. It is
noticeable that the dataset is consisting of subjects mostly
younger than 30 years old; the current study may not be very
decisive enough for that subjects who are older than 30.

4. Conclusion and Further Research

This paper has predicted pathological subjects from a popu-
lation through various physical information using the genetic
algorithm. Unlike traditional approaches, the GA has thus
accomplished to predict the types of the tibial rotation
through several physical factors: age, weight, and height.
Since the real values of each rotation type are known, the
results of both the GA and the KM clustering algorithm
are compared with these actual values. The clustering with
the GA has been done for the first time in the prediction
of tibial rotations. The simulation results have proven the
superiority of the GA over the other competitive counterpart,
theKMclustering algorithm.TheGAhas been seen to be very
successful on optimizing the tibial rotation data assessments
with many subjects even though the KM algorithm has
similar effect with the GA in clustering with a small number
of subjects. It has been concluded that findings are clinically
expected to be very useful for health providers in organizing
proper treatment programs for patients. For future research,
this study could be divided into more clusters depending
on the structure of the data but the structure of the current
dataset is limited to have more clusters from medical point
of view. In the forthcoming works, more clusterable and
thus more illustrative results may be found with various
datasets.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References
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