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Abstract: The use of inertial measurement units (IMUs) is a low-cost alternative for measuring joint
angles. This study aims to present a low-cost open-source measurement system for joint angle
estimation. The system is modular and has hardware and software. The hardware was developed
using a low-cost IMU and microcontroller. The IMU data analysis software was developed in Python
and has three fusion filters: Complementary Filter, Kalman Filter, and Madgwick Filter. Three
experiments were performed for the proof of concept of the system. First, we evaluated the knee joint
of Lokomat, with a predefined average range of motion (ROM) of 60◦. In the second, we evaluated
our system in a real scenario, evaluating the knee of a healthy adult individual during gait. In the
third experiment, we evaluated the software using data from gold standard devices, comparing the
results of our software with Ground Truth. In the evaluation of the Lokomat, our system achieved
an average ROM of 58.28◦, and during evaluation in a real scenario it achieved an average ROM of
44.62◦. In comparing our software with Ground Truth, we achieved a root-mean-square error of 0.04
and a mean average percentage error of 2.95%. These results encourage the use of this system in
other scenarios.

Keywords: sensors in healthcare; accelerometers; sensor fusion

1. Introduction

Movement analysis uses technological devices to identify problems or increase phys-
ical performance [1]. However, the gold standard of data acquisition systems used to
measure movement is expensive and often requires highly controlled environments. A low-
cost approach to replace the costly optical data acquisition systems for three-dimensional
motion analysis is inertial measurement units (IMUs). A typical IMU comprises three
sensors—accelerometer, gyroscope, and magnetometer—to measure linear acceleration,
angular velocity, and local magnetic field. Recently, the combination of these measures has
been introduced in rehabilitation science to perform an accurate assessment outside the
laboratory [2].

The most common approach of combining IMU data is a fusion algorithm, specifically
for measuring joint angles. For this, it is necessary to estimate the orientation of each IMU
using sensor fusion filter algorithms [3]. Then, the gyroscope is used as primary reference
due to the good response in high frequency; the accelerometer and magnetometer, which
have a good response in low frequency, are used to correct the gyroscope drift [4–6]. After
finding the IMU orientation, we can infer the joint angle through different solutions [7].

IMU has several applications for movement sciences, but its applied use must over-
come some limitations. As suggested by [7], complex systems to estimate joint angles
makes it hard to use in daily clinical practice. In addition, there exists a need to effec-
tively combine accelerometer, gyroscope, and magnetometer data. A comprehensive
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literature review of IMU and methods used for motion analysis is presented. Seel et al.
and Weygers et al. present a literature review on the use of IMU and methods used for
motion analysis [3,7]. In general, research that presents systems for measuring angles does
not provide the analysis codes, circuit connections, and algorithms used [7]. The system
presented here aims to overcome this limitation, providing an easy-to-use, low-cost system
for joint angle estimation.

This study aimed to (1) develop a low-cost, easy-to-build hardware to estimate angles,
(2) present an open-source software to process IMU data with documentation, and (3)
perform a system proof-of-concept by three experiments with available analysis and code.

2. Materials and Methods

In this section, there is material description, components, concepts, and techniques
to develop the proposed system. Our hardware is named Joint Angle Measurement and
Acquisition device (JAMA) and is composed of an IMU (GY-80) and a microcontroller
(ESP32). The software library, fully developed in Python, was named Python for Joint Angle
Measurement and Acquisition (PyJama), which implements three fusion filters for data
processing. The system is available on GitHub (github.com/tuliofalmeida/jama (accessed
on 1 July 2021) and github.com/tuliofalmeida/pyjama (accessed on 1 July 2021)) and
was developed to work independently to analyze data collected with another IMU-based
system or to use JAMA to collect data and analyze it with another software.

Notation 1. γ denotes a general variable. ~γ represents a vector, γ̂ represents an estimate. γ∗

represents the conjugated of γ. γ[n×m] stand for a matrix with n lines by m columns. γT represents
the transposed of γ. 5γ represents the optimizer for γ (here we use Gradient Descendant and
Gauss-Newton). γ ⊗ γ represents that the vectorial product. γ̇ represents the derivative of γ.
γ · γ represents a scalar product. ‖γ‖ represents the normalized variable, γ̄ represents the filtered
variable. ∆t is the sample time. γt represents the variable in instant t and γt−1 represents the
variable in instant t− 1.

2.1. JAMA

In this work, two JAMAs estimated knee joint angles. Each JAMA used one microcon-
troller ESP32-DevKitC (ESP32), one IMU GY-80 with 10 degrees of freedom, two batteries
(3.7 V and 3800 mAh), one power button, and two input connectors to charge the batteries.
The main characteristics of these components are low energy consumption, robustness,
and low cost. Communication between ESP32 and GY-80 used an Inter-Integrated Circuit
(I2C) [8] with an acquisition frequency of 100 KHz.

Each JAMA costs around 24 dollars (see Table 1) and has three main advantages:
hardware size, Wi-Fi data transmission, and mobility (weighed 134 g, heavier than the gold
standard devices, approximately 16 g).

Table 1. Hardware components.

Components Price ($) Quantity (Unit) Total ($)

ESP32 5.00 2 10.00
GY-80 15.00 2 30.00

Batteries 3.7 V 4.00 4 8.00

Total –//– –//– 48.00
IMU can be customized according to user preference and price. For example, the MPU-9250 costs $5.00.

2.1.1. Data Acquisition

ESP32 extracts IMU data using I2C protocol with GPIO’S 21 and 22 connected to Serial
Data (SDA) and Serial Clock (SCL) pins of the GY-80. The transmission starts when the
SCL line becomes low. Using this logic, ESP32 controls the start and end of data sending

github.com/tuliofalmeida/jama
github.com/tuliofalmeida/pyjama
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in four steps: (1) signal generation to start transmission, (2) address transfer from GY-80,
(3) data transfer, and (4) signal generation to end transmission [8].

Extracted data were organized in a buffer with the following sequence: accelerometer
(a), gyroscope (ω), and magnetometer (m). Once the device was connected to Wi-Fi,
a server was created at port 4000. These data were transmitted asynchronously over Wi-Fi
(without any kind of processing), using the asynchronous Transmission Control Protocol
communication (async-TCP) to respond to client requests (more details in Section 2.1.2).
Additionally, the JAMA raw data service can be used by different analysis software,
and all connections for building the circuit are presented in Figure 1. To wrap the circuit,
we developed a 3D printing case using acrylonitrile butadiene styrene filament.
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Figure 1. JAMA circuit can be configured to ESP32 to connect to GY-80 via I2C master mode. The
microcontroller uses pins 1 and 2 for power supply (the I2C typically supports 3.3 V or 5 V), and pins
21 and 22 connect to the bidirectional transmission lines Serial Data (SDA) and Serial Clock (SCL),
respectively.

2.1.2. Data Transmission

Data transmission based on a 2.4 GHz Wi-Fi network (without internet connection and
with a range of 10 m) was designed to provide movement freedom out of the laboratory.
This communication is an Asynchronous Transmission Control Protocol (async-TCP), used
to prevent data from being lost during transmission, as it is performing in parallel with
other microcontroller tasks. The async-TCP is a third-party library that enables a trouble-
free, multi-connection network environment for microcontrollers. This library allows
inertial data, collected by a microcontroller timer interrupt routine, to be written to a buffer
and sent via TCP without interfering with data transmission. Moreover, if the data amount
is large, the library manages the data transmission in such a way as to continue sending
even after the data collection routine has finished.

Following the concept of asynchronous communication, the developed architecture
is client/server-based. The client ran on an Acer Nitro 5 notebook (8th generation i5
processor with 16 GB RAM) connecting to the server via a hotspot (inherent in the Windows
10 operating system). The hotspot windows function creates a Wi-Fi network with an
Internet Protocol (IP) address, network SSID, and password. The client application using
Python (version 3.83) and communication with the ESP32 (distributed servers) connected
to its IP. With the communication established, the ESP32 can send data to the client and
stores the data in a text file.

Before starting the client API execution, it is necessary to edit the code with each
JAMA IP address, the desired sample rate (pre-determined as 75 Hz, as suggested in the
literature for gait task [9]), the experiment duration, the desired name for the text file,
and the storage location. Our configuration allows the client to receive ten variables per
pack in a sample time from each server (ESP32), namely the timestamp and the 3-axis
accelerometer, gyroscope, and magnetometer.
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The async-TCP uses two programming languages, C++ (server) and Python (client).
Note that it is possible to configure the server directly on the hardware of each JAMA using
C++ language. In code, one can set the network SSID and password so the JAMA can
connect to the hotspot. After that, one can use the IP determined to identify each JAMA.
Six steps summarize the JAMA operation:

1. Build JAMA and check connections;
2. Compile and upload firmware to each JAMA device (set IP, SSID and password);
3. Activate the hotspot and check if all variables were correctly determined;
4. Turn on JAMA devices, check the Wi-Fi connection, and place it in the joint;
5. Run Python script to check connections and data streaming and recording;
6. Run Python script to perform the data acquisition.

2.2. PyJama

PyJama is a Python library that processes data from JAMA or other devices (based on
IMUs or optical systems).

Data pre-processing checks data integrity and sensor calibration, removes artifacts,
and filters signals. Data processing combines accelerometer, gyroscope and magnetometer
data to estimate IMU orientation and, therefore, joint angle.

Figure 2 shows PyJama classes with implemented functions. Requirements to use
PyJama are numpy (v.1.20.0), SciPy (v.1.7.0), pandas (v.1.2.4), and matplotlib (v.3.4.2). For
the development, we used data extracted from JAMA and gold standard devices (Total
Capture (https://cvssp.org/data/totalcapture (accessed on 14 April 2021))) dataset [10].

• get_euler( )   
• euler2quat( )

• euler2rotMat( )

• rotMat2euler( )

• rotMat2quat( )

• quatern2euler( )

• quatern2rotMat( )

• quaternConj( )         
• quaternProd( ) 
• quaternionProduct( )

• computeJacobian( )

• computeM_Matrix( ) 
• getAngFromQuat( )

• getQuatFromAng( )

010111
101011
010111

y
x

z
   Data
Handle( )

      Data
Processing( )

        Data
Visualization( )

      Data
  Analysis( )

• GaussNewton( )

• GradientDescent( )

• CompFilter( )

• CF_GD( )

• CF_GN( )

• KalmanGD( )

• KalmanGN( )

• Mad9DOF( )

• CF_GD_Update( )

• CF_GN_Update( )

• KalmanGD_Update( )

• KalmanGN_Update( )

• Mad9DOF_Update( )
  

• Mad6DOF( )

• Mad6DOF_Update( )

• butter_lowpass( )

• low_pass_filter( )

• MAPE( ) 
• rsquared( )

• threshold_adjust( )

• range_of_motion( )

• rom_mean( )

• variance_est( )

• pattern_extraction( )

• patternCI( )

• data_comparison( )

 

• import_raw_data( )

• split_raw_data( )

• get_imu_data( )

• calibration_imu( )

• toDataFrame( )

• csvToFloat( )

• csvFloatMerge( )

• vicon2dict( )

• xSens2dict( )

• saveCSV( ) • plot( )

• subplot( )

• all_filters( )

• joint_measures( )

• joint_rom( )

Figure 2. PyJama organization consists of four main classes to handle data formats, processing data,
visualization, and analyze data.

https://cvssp.org/data/totalcapture
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2.2.1. Data Handle

Data manipulation reads an organized data file to allow data processing functions.
For this, DataHandler() class provides functions to read raw data generated by JAMA, Vicon
Blade, and Xsens, and MTw wireless IMU organizes a dictionary or matrix (easily adapted
to DataFrame, a spreadsheet with the data in columns), calibrates, and saves a csv file.

2.2.2. Data Processing

DataProcessing() implements data processing and sensor orientation-related functions
to manipulate Euler angles, quaternions, rotation matrix, and the conversion functions
among them (Euler←→ quaternion←→ rotation matrix and Euler←→ rotation matrix).
Additionally, this class implements the Gradient Descent and Gauss–Newton algorithms
(Appendix A), sensor fusion algorithms for device data, low-pass filters for noise removal
from raw signals, and simple joint angle calculation applied to each plane of motion.

PyJama calibrates accelerometers and gyroscopes by removing the average of the
first 5 s of filtered static measurement from the entire signal. A 360◦ rotation of the JAMA
around the three axes of movement calibrates the magnetometers. This method is regularly
used in magnetometers by rotating the sensors in the three axes one at a time [11].

PyJama implements fusion filters in quaternions. The motivation for using quaternions
is the data stability, considering that the rotation using Euler angles can present more errors
and the occurrence of Gimbal Lock [12,13]. Thus, Complementary Filter(CF) with Gradient
Descent and Gauss–Newton [6,14], Kalman Filter (KF) with Gradient Descent and Gauss–
Newton [6,14], and MadgwickAHRS [5] were implemented.

The complementary filter uses gyroscope measurements and complements the ac-
celerometer and magnetometer measurements. Due to the behavior at low frequencies,
the complementary filter uses the gyroscope data as a reference because the data present
fewer variations, and an accelerometer and magnetometer are used to compensate for these
low-frequency variations [4,15]. To handle data fusion, one can tune α, a weight to balance
between gyroscope, and accelerometer and magnetometer data, which avoids neglecting
the contribution of any measurement (accelerometer and magnetometer). In Algorithm 1,
a Complementary Filter operation is implemented in PyJama. This allows the selection of
one of the Gradient Descent or Gauss–Newton optimizers.

Kalman Filter (KF) aims to estimate linear dynamic system parameters (or states)
that approximate measurements performed [16]. Many applications and possibilities of
variations (Extended, Fuzzy, Unscented, and others) have made KF one of the most used
filters to estimate variables indirectly. KF is a set of mathematical equations to estimate
process states by minimizing the mean squared error [17]. Therefore, KF performs well
in several aspects: it supports estimates of past, present, and even future system states,
even when the precise nature of the modeled system is unknown. In an application using
IMU data, KF predicts the orientation state using gyroscope data as a reference, similarly
to complementary filter. The update step uses magnetometer and accelerometer data [6,14].
Additionally, the variable β determines balance among gyroscope, accelerometer, and
magnetometer data. Moreover, KF can work in a real-time loop to be capable of predicting
and correcting the IMU orientation [17]. The implemented KF algorithm is presented in
Algorithm 2.

Similar to other presented filters, the Madgiwck filter uses gyroscope measurements
as reference because of better behavior at high frequencies and interference isolation from
forces during movement. Accelerometer and magnetometer measurements are used as
precise instructions to compensate for gyroscope deviation in low frequencies due to the
accumulation of numerical errors and influence of artifacts [5].

Formulations in quaternions require Madgiwck filter changes and specific imple-
mentation using the Gradient Descendant, as performed in its original formulation [5].
Madgwick filter implementation is presented in Algorithm 3.
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Algorithm 1 Complementary Filter
Input: ~a (rad/s), ~ω (rad/s), ~m (mG), α, β e conjugate
Output: q̇
Initialization: q = [1 0 0 0]1×4
Calculate initial quaternion orientation using Equations:

~̇q(t) =
1
2
·~qt−1 ⊗ ~ωt (1)

~qω(t) = ~qω(t− 1) + ~̇qω(t) · ∆t (2)

While ç < size(q):
Calculate current orientation using gyroscope data (Equation (2))
Normalize acceleration vector: a = ‖a‖
Adjust orientation vector:

E~ht = ~q(t− 1)⊗S ~mt ⊗~q(t)∗ (3)

Normalize magnetometer:

E~bt =
[
0
√

h2
x + h2

y 0 hz

]
(4)

Combine accelerometer and magnetometer data using one of the optimizers: Decedent
Gradient Algorithm or Gauss Newton Algorithm (see Appendix A)
Calculate data fusion using the Equation:

~q(t) = α ·~qω(t) + (1− α) ·~q(t) (5)

if conjugate is true
Conjugate quaternion vector: q̇ = q̇∗

end;

2.2.3. Pattern Extraction

In particular, the human body has some cyclical movements, such as gait, and these
cycles are traditionally identified and extracted by kinematic analysis [2,18,19]. In this
sense, a function developed to elicit these cyclic patterns is presented in Algorithm 4.
In addition to pattern evaluation, this function implements statistical metrics extracted
from patterns found, returning the confidence interval, standard deviation, polynomial
coefficient, coefficient of determination, and variance. Specifically, the polynomial adjust
returns minimum and maximum value estimates (calculated using percentage of gate
cycle and coefficients output). We also have the data_comparison() function, which plots the
polynomial fit curves of two measures for visual comparison of the data.

2.2.4. Data Visualization

An essential part of data analysis is its visual representation with figures and graphs.
The DataVisualisation() class implements automatized plots in single figures or sub-figures,
identifies the size of the input data, and organizes the entire figure layout. The standardiza-
tion of the axes is automatic, and it is simple to determine captions, titles, and subtitles.
Structurally, the class functions use the matplotlib. In addition, users can choose to use and
visualize the data with the orientation in quaternions or Euler angles, the last is the most
common way to visualize joint rotations [12].

2.2.5. Data Analysis

The DataAnalysis() class is easy to use for users with little data analysis experience.
This class has functions that perform data processing in a few steps. It has functions to apply
all implemented filters, perform all metric calculations and pattern extraction, and estimate
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the angle of a joint. In other words, it has a complete analysis routine implemented in
these functions.

Algorithm 2 Kalman Filter
Input: ~a (rad/s), ~ω (rad/s), ~m (mG), ∆t, R, β e conjugate
Output: q̇
Initialization:
~x = [1 0 0 0]1×4
q̇ = 1

2 · ~x ⊗ ~ω

Calculate matrix Q:

Q =


σ2

x + σ2
y +−σ2

z −σ2
x + σ2

y − σ2
z −σ2

x − σ2
y + σ2

z σ2
x − σ2

y − σ2
z

−σ2
x + σ2

y − σ2
z σ2

x + σ2
y + σ2

z σ2
x − σ2

y − σ2
z −σ2

x − σ2
y + σ2

z
−σ2

x − σ2
y + σ2

z σ2
x − σ2

y − σ2
z σ2

x + σ2
y + σ2

z −σ2
x + σ2

y − σ2
z

σ2
x − σ2

y − σ2
z −σ2

x − σ2
y + σ2

z −σ2
x + σ2

y − σ2
z σ2

x + σ2
y + σ2

z


4×4

(6)

Assume the gyroscope variance vector is~σw =
[
σx σy σz

]T

While ç < size(q):
Normalize acceleration vector: a = ‖a‖
Calculate:

~ωt =
~ωt − ~ωt−1

2
(7)

q̇ =
1
2
·~x ⊗ ~ωt (8)

Adjust magnetometer orientation vector (m) (Equations (3) and (4))
Normalize magnetometer vector m = ‖m‖
Combine accelerometer and magnetometer data using one of the optimizers: Decedent
Gradient Algorithm or Gauss Newton Algorithm (see Appendix A)
Calculate the matrix B:

B =



1 1
2 ·ωx · ∆t 1

2 ·ωy · ∆t 1
2 ·ωz · ∆t

1
2 ·ωx · ∆t 1 1

2 ·ωz · ∆t 1
2 ·ωy · ∆t

1
2 ·ωy · ∆t 1

2 ·ωz · ∆t 1 1
2 ·ωx · ∆t

1
2 ·ωz · ∆t 1

2 ·ωy · ∆t 1
2 ·ωx · ∆t 1


4×4

(9)

Calculate Pt|t−1, K, and Pt|t:

Pt|t−1 = (B ·Q · BT) + Q (10)

K = Pt|t−1 · H · (H · Pt|t−1 · HT + R)−1 (11)

Pt|t = (I4×4 − K · H) · Pt|t−1 (12)

if conjugate is true
Conjugate quaternion vector: q̇ = q̇∗

end;
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Algorithm 3 Madgwick Filter
Input: a (rad/s), ω (rad/s), m (mG), conjugate, β1 e β2
Output: q̂est
Initialization:

q = [1 0 0 0]1×4
While ç < size(q):

Normalize acceleration vector: a = ‖a‖
Adjust magnetometer orientation vector m (Equation (14))

sω = [0 ωx ωy ωz] (13)

S
M q̇ =

1
2

S
M q̂⊗ sω (14)

Normalize magnetometer vector m = ‖m‖
Calculate Sωt

Sωt =
1
2

S
M q̂est,t−1 ⊗ Sωt (15)

Combine accelerometer and magnetometer data using the Gradient Algorithm (see
Appendix A)
Calculate q̇, q̂est and q̂est:

q̇ = 0.5 ∗ (q̇⊗ Sωt)− β ∗ 5 f T (16)

q̂est = q̇t−1 + q̇t ∗ ∆t (17)

q̂est = ‖q̂est‖ (18)

if conjugate is true
q̂est = q̂∗est

end;

2.3. Experiments

In this section, the methodology used to prove the concept of the developed system
is presented in three experiments. JAMA was attached to rehabilitation robot (Lokomat)
and analyzed the data using PyJama. Second, JAMA was attached to the knee joint of a
walking person on a treadmill (again using JAMA with PyJama). Third, PyJama processed
an open dataset with gold standard device data.

This project was approved by the ethics committee of Federal University of Rio Grande
do Norte under the protocol 79649717.0.0000.5292 approved in 15 December 2017.

2.3.1. Experiment 1

A controlled task allowed to assess JAMA measurements and joint angle estimation us-
ing PyJama. JAMA was attached to hip and knee joints of Lokomat (HocomaAG, Volketswil,
Switzerland), a validated robot for gait rehabilitation with sagittal plane movements [20].
The recording of the experiment was to compare the measurement obtained by both
JAMA and Kinovea, a free and validated software to assess joint angle in 2-dimensional
videos [21].

Lokomat is a market-leading rehabilitation robot capable of providing highly repetitive
gait training with physiological movement patterns. It consists of a pair of robotic legs and
a user’s weight support device. The operator can determine joint angles and simulate gait
speed [20], a controlled scenario to test JAMA measurements. For this test, the range of
motion was 45◦ for the hip joint and 60◦ for the knee joint, and walking speed was 1 km/h.
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The joint evaluated was the knee, with two JAMA devices attached to the sides of the right
robotic leg (with the Y-axis aligned with gravity), acquisition frequency of 75 Hz, and 120 s
of data transmission.

Algorithm 4 Pattern Extraction

Input: ~θ, Acquisition time, threshold, cycle, bias, a
Output: patterns
Initialization:

Acquisition time = ~t
~subset = ~θ − threshold

~signal =


~subset
| ~subset| i f a = 0

~subset√
~subset∗~ε

i f a = 1

for j from 1 to size( ~signal):
~ind = ~signal[j+1] − ~signal[j]

end_if;

for i =
(

size o f ind
cycle+1

)
− 1:

cyclei = i ∗ cycle + bias

~pdrtime = 100 ∗
(
~t
[ ~ind[0+cyclei ]: ~ind[cycle+cyclei ]]

−
~t
[ ~ind[0+cyclei ]]

~t
[ ~ind[cycle+cyclei ]]−~t[ ~ind[0+cyclei ]]

)
~pdrdata =

~θ
[ ~ind[0+cyclei ]: ~ind[cycle+cyclei ]]

end_if;
patterns = [ ~pdrtime, ~pdrdata]

Video recording used an iPhone 8 (Apple Inc., Sunnyvale, CA, USA) with a resolution
of 1920 × 1080 at 30 frames per second. JAMA was attached to the Lokomat using
double-sided tape (3M Company, Saint Paul, MN, USA). Kinovea software tracked two
points frame by frame: one in the hip joint and the other in the distal part of the robotic
leg. Kinovea exports a .csv file with the angles frame by frame. Figure 3 presents the
experimental configurations and parameters.

2.3.2. Experiment 2

Experiment 2 evaluates JAMA in a human gait task on a Lokomat treadmill with a
speed of 4 km/h, as proposed by Lebleu et al. [2] to evaluate IMU sensors in an adult male,
184 cm tall, body mass index of 20.7 kg/m2, with no gait disability or previous injuries
in the last 6 months. Two devices were positioned, on the thigh and on the shin [1–3],
with sampling rate of 75 Hz and 120 s of acquisition time. The experiment setup is shown
in Figure 4. Regarding video recording, the assessment was realized under the same
conditions as Experiment 1 and was also analyzed using Kinovea.

2.3.3. Experiment 3

Performance of the PyJama was evaluated with data from gold standard devices
available in the Total Capture dataset [10]. Data were collected using the optical device
Vicon Blade and the inertial sensor Xsens MTw wireless IMU with an acquisition frequency
of 60 Hz.

Data were collected indoors, using eight high-definition Vicon Blade cameras (with
60 frames per second) duly calibrated with 2.5-m supports and 13 Xsens sensors distributed
in a capture suit. The dataset provides the quaternion orientation from the Vicon system;
the accelerometer, gyroscope, and magnetometer provided raw data, and quaternion
orientation (Ground Truth) was taken from Xsens sensors. A walking task with markers
and sensors on the thigh were used to test PyJama.
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 Lokomat
Hip 0−45°

Knee 0−60°
Speed 1 km/h

                  JAMA
                  75 Hz
           Aquisition 120s

                 Vídeo
                30 fps 
            1920 x 1080

Parameters

X

z

Y

X

z

Y

Tripod
60 cm tall

180 cm away

Figure 3. Experiment 1. Figure shows Lokomat schema (sidebars removed for better viewing) and
parameters used for data acquisition. Two JAMAs were positioned on the side of the robotic leg,
one above and the other below the knee joint, using 75 Hz as the acquisition frequency. Camera was
positioned 180 cm away on a 60 cm height tripod. Video was recorded in full HD resolution at 30 fps.
Lokomat was configured for a 45◦ hip and 60◦ knee ROM and simulating a 1 km/h gait.

A comparison performed between orientations provided in quaternions by Vicon
and Xsens showed a significant difference. Thus, Vicon’s data to compare with PyJama’s
estimates were discarded. Probably, this difference was due to the positioning of Xsens
sensors and Vicon’s body markers, which require some specific type of adjustment. The cal-
ibration done by the authors considered the orientation of the bone of a virtual avatar [10],
which was not directly related to the context of our work. Accelerometer, gyroscope, and
magnetometer data to estimate the orientation using the filter algorithms implemented in
PyJama were compared to Ground Truth. Comparisons were made using root-mean-square
error (RMSE) and the mean absolute percentage error (MAPE) metrics. RMSE is the most
common metric in studies with sensors [7], and MAPE is an error metric that is easier to be
interpreted. For this experiment, joint angles were not calculated since the dataset does not
provide it.
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Lokomat
Speed 4 km/h

Parameters

JAMA
75 Hz

Aquisition 120s
Vídeo
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Figure 4. Experiment 2. Figure shows the positioning of the two JAMAs used to assess the knee joint
with the parameters for data acquisition. One JAMA was positioned above and the other below the
joint, using 75 Hz of acquisition frequency. Camera was positioned 180 cm away and 60 cm high on a
tripod. Video was recorded in full HD resolution at 30 fps.

3. Results

This section presents the results of experiments performed to proof the concept for
both JAMA and PyJama. All results are interactively available on Google Collaboratory
notebooks, hosted on PyJama GitHub. In addition, a step-by-step tutorial on how to build
and use JAMA is available on GitHub.

3.1. Experiment 1

In Table 2, calculated metrics based on the gait cycle extracted within the function
joint_measures() from DataAnalysis() class were presented.

In this experiment the minimum point was 0◦, which does not affect the analysis and
explains the estimate values being a little different from those found. According to the data
presented in Table 2, the developed filters were able to estimate the expected ROM of 60◦.
Despite similar results, the Madgwick Filter (58.28 ± 2.75◦, CI = 5.39%) showed the best
results, followed by the Kalman GD Filter (58.81 ± 2.90◦, CI = 5.68%), Kalman GN Filter
(56.81 ± 2.81◦, CI = 5.51%), GD Complementary Filter (60.89 ± 4.81◦, CI = 9.43 %), and GN
Complementary Filter (61.57 ± 4.94◦, CI = 9.69%), this considering the averages, standard
deviation, and confidence interval.

JAMA and Kinovea data were compared using the gait pattern average cycles of Loko-
mat and extracted by PyJama. Due to its better performance, Madgwick Filter was used
to find the cycles. To facilitate visual comparison, we calculated the cycles for Madgwick
Filter and Kinovea, which are presented in Figure 5 using the data_comparison() function.

As expected, the results obtained with the application of the fusion filters were con-
sistent, and Figure 5 shows the expected gait pattern with the dispersion metrics found
(Table 2). Note that parameters used to tune filters were generalist. In other words, a spe-
cific adjustment of parameters of each filter might present better results.
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Table 2. Experiment 1—Metrics.

Movement/Filter ROM Max Target ROM Average ROM (sd)

Flex/Ext CF GD 72.78◦ 60.00◦ 60.89 ± 4.81◦

Flex/Ext CF GN 73.58◦ 60.00◦ 61.57 ± 4.94◦

Flex/Ext Kalman GD 70.91◦ 60.00◦ 58.81 ± 2.90◦

Flex/Ext Kalman GN 69.14◦ 60.00◦ 56.81 ± 2.81◦

Flex/Ext Madgwick 65.92◦ 60.00◦ 58.28 ± 2.75◦

Flex/Ext Kinovea 61.59◦ 60.00◦ 56.25 ± 1.94◦

Movement/Filter CI 95% Min/Max Min/Max Est

Flex/Ext CF GD 9.43% 0.00◦/72.78◦ 6.00◦/63.54◦

Flex/Ext CF GN 9.69% 0.00◦/73.58◦ 5.32◦/63.61◦

Flex/Ext Kalman GD 5.68% 0.00◦/70.91◦ 7.36◦/63.60◦

Flex/Ext Kalman GN 5.51% 0.00◦/69.14◦ 6.12◦/61.71◦

Flex/Ext Madgwick 5.39% 0.00◦/65.92◦ 4.48◦/58.58◦

Flex/Ext Kinovea 3.79% 2.23◦/63.82◦ 6.10◦/63.38◦

Abbreviations: Flex/Ext = Flexion and Extension; CF = Complementary Filter; GD = Gradient Descending;
GN = Gauss-Newton; ROM = range of motion; sd = standard deviation; CI = confidence interval; Var = vari-
ance; Min = minimum value found; Max = maximum value found; Min Est = estimated minimum value;
Max Est = estimated maximum value.
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Figure 5. Data comparison between Madgwick and Kinovea. Figure shows the values of average
ROM adjusted based on Min and Max, estimated based on the polynomial adjust.

3.2. Experiment 2

Experiment 2 evaluated the gait of an adult participant using Madgwick filter, and the
results in Experiment 1 support its use to analyze gait data.

Table 3 presents values for knee joint using Madgiwck’s Filter. Measurement variabili-
ties of Kinovea (dp = 5.9◦, var = 35.47◦) were similar to PyJama. Due to standard human
gait variability, a target ROM was not determined. Additionally, there was no difference be-
tween measured and estimated Min/Max, possibly attributed to a variance effect, although
Min/Max of the overall data is subject to uncertainties. However, estimated Min/Max
from a polynomial curve based on least-squares data removes Gaussian noise.

Similar to Experiment 1, a threshold determined subsets of gait cycles, and a similar
joint behavior (flexion and extension) was extracted from JAMA and Kinovea.
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Figure 6 shows a comparison between knee flexion and extension movement average
with similar patterns of Madgiwck and Kinovea. The knee joint had a well-known pattern
in the gait cycle, and both methods presented two flexion peaks. However, extracted cycles
had inverted gait phases, starting from the swing phase to stance phase. Because the
function pattern_extraction() has no parameters to adjust the order of the phases, only the
input threshold was presented in Algorithm 4. Other influencing factors might be gait
speed (4 km/h), JAMA limb positioning, and a difference in acquisition frequency between
JAMA and the video (Hz and fps).

Table 3. Experiment 2—Metrics.

Movement/Filter ROM Max Target ROM Average ROM (sd)

Flex/Ext Madgwick 54.48◦ –//– 44.62 ± 3.90◦

Flex/Ext Kinovea 63.06◦ –//– 50.93 ± 5.96◦

Movement/Filter CI 95% Min/Max Min/Max Est

Flex/Ext Madgwick 7.64% 0.09◦/54.57◦ 4.82◦/46.82◦

Flex/Ext Kinovea 11.67% 3.62◦/66.69◦ 9.80◦/60.15◦

Abbreviations: Flex/Ext = Flexion and Extension; ROM = range of motion; –//– = there was no target;
sd = standard deviation; CI = confidence interval; Var = data variance; Min = lowest value found; Max = highest
value found; Min Est = minimum value estimate; Max Est = maximum value estimate.
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Figure 6. Comparison between Madgwick and Kinovea processed data. Figure shows the values of
average ROM adjusted based on Min and Max estimates, based on the polynomial adjust.

3.3. Experiment 3

Experiment 3 evaluated the manipulations and transformations performed by PyJama
on Total Capture [10] dataset. Total Capture dataset has Vicon data in quaternion orienta-
tion, and Xsens has raw and quaternion orientation data. Reading functions for Vicon and
for Xsens data, respectively vicon2dict() and xSens2dict(), returned data in a dictionary form
to ensure analysis.

Comparing quaternion data from Vicon and Xsens (RMSE and MAPE for each
quaternion—q1, q2, q3, and q4—and quanternions average) obtained an average RMSE of
0.69± 0.04 (q1 = 0.67, q2 = 0.70, q3= 0.74, q4 = 0.63) and an average MAPE of 64.40 ± 11.60%
(q1 = 53.72%, q2 = 57.71%, q3 = 79.94%, q4 = 66.21%).

Quaternion orientation data from the Xsens sensors were used as Ground Truth for
manipulations, and estimates of fusion filters were implemented in PyJama as proof of
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concept. Estimates using accelerometer, gyroscope, and magnetometer raw data were
extracted from algorithms implemented in the PyJama DataProecessing() class.

First, the manipulation test transformed Xsens reference data to Euler angles and
transformed them back to quaternions (quaternion −→ Euler −→ quaternion). This ma-
nipulation presented an average RMSE of 0.73 ± 0.05 (q1 = 0.67, q2 = 0.73, q3 = 0.80,
q4 = 0.70) and an average MAPE of 55.72 ± 6.57% (q1 = 47.95%, q2 = 55.35%, q3 = 64.03%,
q4 = 55.56%). However, the function conversion from quaternions to Euler angles uses an
in pitch rotation sine arc, which limits angle results to the range of I =

{
−π

2 ≤ θ ≤ π
2
}

,
causing errors. Quaternion vector values were limited to two quadrants, using abso-
lute values, and showed an average RMSE of 7.41 ×10−7± 3.15×10−7 (q1 = 5.16 × 10−7,
q2 = 5.94 × 10−7, q3= 1.28 × 10−6, q4 = 5.69 × 10−7) and an average MAPE of 3.69 × 10−5

± 2.15 % (q1 = 3.13 × 10−5 %, q2 = 3.69 × 10−5 %, q3 = 7.72 × 10−5 %, q4 = 3.57 × 10−5 %)
as presented in Figure 7.

RMSE: 0.00 MAPE: 0.00% 

RMSE: 0.00 MAPE: 0.00% 

RMSE: 0.00 MAPE: 0.00% 

RMSE: 0.00 MAPE: 0.00% 

Figure 7. Data manipulation by PyJama. The figure shows the transformation of Xsens quater-
nion data to Euler angles, and from Euler angles back to quaternion, using quadrant constraint.
The manipulation showed an RMSE of 0.00 and a MAPE of 0.00%.

Table 4 shows PyJama quaternion orientation estimation, using the Complementary
Filters (with GD and GN), Kalman (with GD and GN), and Madgwick, all of them with the
orientation constraint.

PyJama’s filters showed similar results with an average RMSE of 0.73 and a MAPE
of 59.6%. Nevertheless, restriction of quadrant showed a better result again. Thus, Com-
plementary Filter with GN (presented in Figure 8) had the best performance, which
presented an average RMSE of 0.04 ± 0.01 and MAPE of 2.95 ± 0.51% followed by
Madgwick (RMSE = 0.05 ± 0.01, MAPE = 4.52 ± 0.88%), Complementary Filter with GD
(RMSE = 0.11 ± 0.02, MAPE = 8.40 ± 1.32%), Kalman with GN (RMSE = 0.11 ± 0.11,
MAPE = 9.85 ± 1.22%), and Kalman with GD (RMSE = 0.11± 0.01, MAPE = 10.63 ± 1.18%).
The results suggest that filters with GN performed better than those with GD. However,
this might be related to a classic GD local minimum problem.

Note the measurement errors at the initial moment were caused by the filter adjust-
ment delay. The first estimate is predetermined in the initial orientation input ([1,0,0,0])
and then updated with the input data. If this initial data are better adjusted, the results of
all measurements tend to have a lower RMSE and MAPE.
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Table 4. Experiment 3—Metrics.

Filter MAPE q1 MAPE q2 MAPE q3 MAPE q4 Average (sd)

CF GD 53.45% 61.24% 68.03% 61.12% 60.96 ± 5.96%
CF GN 50.12% 56.30% 65.18% 56.83% 57.11 ± 6.18%

Kalman GD 52.54% 61.18% 68.25% 62.24% 61.05 ± 6.47%
Kalman GN 51.78% 62.13% 68.34% 60.08% 60.58 ± 6.84%
Madgwick 51.43% 58.97% 65.05% 57.91% 58.34 ± 5.58%

Filter MAPE q1 MAPE q2 MAPE q3 MAPE q4 Average (sd)

CF GD Abs 9.20% 9.83% 7.53% 7.05% 8.40 ± 1.32%
CF GN Abs 3.02% 3.03% 3.49% 2.27% 2.95 ± 0.51%

Kalman GD Abs 9.95% 12.35% 9.74% 10.63% 10.67 ± 1.18%
Kalman GN Abs 9.63% 11.62% 9.32% 8.84% 9.85 ± 1.22%
Madgwick Abs 4.54% 5.65% 4.37% 3.52% 4.52 ± 0.88%

Filter RMSE q1 RMSE q2 RMSE q3 RMSE q4 Average (sd)

CF GD 0.69 0.73 0.80 0.71 0.73 ± 0.04
CF GN 0.67 0.73 0.80 0.70 0.73 ± 0.04

Kalman GD 0.66 0.73 0.80 0.71 0.73 ± 0.05
Kalman GN 0.66 0.74 0.80 0.70 0.73 ± 0.05
Madgwick 0.68 0.74 0.79 0.70 0.73 ± 0.04

Filter RMSE q1 RMSE q2 RMSE q3 RMSE q4 Average (sd)

CF GD Abs 0.14 0.30 0.09 0.10 0.11 ± 0.02
CF GN Abs 0.05 0.04 0.04 0.03 0.04 ± 0.01

Kalman GD Abs 0.11 0.14 0.11 0.12 0.11 ± 0.01
Kalman GN Abs 0.11 0.13 0.10 0.10 0.11 ± 0.01
Madgwick Abs 0.05 0.06 0.05 0.04 0.05 ± 0.01

Abbreviations: q = quaternion; CF = Complementary Filter; GD = Gradient Descent; GN = Gauss-Newton;
Abs = Absolute Value. sd = standard deviation; RMSE = Root Mean Squared Error; MAPE = Mean Absolute
Percentage Error.

RMSE: 0.05 MAPE: 3.02% 

RMSE: 0.04 MAPE: 3.49% 

RMSE: 0.04 MAPE: 3.03% 

RMSE: 0.03 MAPE: 2.27% 

Figure 8. Orientation estimation using the Complementary Filter with Gauss–Newton. The estima-
tion resulted in an average RMSE of 0.04 and an average MAPE of 2.95%.
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4. Discussion
4.1. JAMA

This paper presented a low-cost device capable of extracting data from an IMU. Unlike
other works [7,22,23], in addition to presenting a low-cost device, we provide how to build
and use it. Although we have limitations, this availability facilitates integration with
the community and the development of JAMA variations, as it is possible to change the
batteries, the sensor, or even modify the case to improve the measurement performance.

The biggest limitation in using JAMA is the non-validation of two measurements.
Most of the works that develop hardware using IMU use gold standard devices as a
reference during development and for measurement validation [2,3,24]. Although it is not
the best technique for device validation, the use of robots is a form of validation, and here
we use Lokomat to carry out the proof of concept of the JAMA measurements [20,24–26].
In this context, the signals extracted by JAMA present an expected pattern, which can be
observed based on the results of the performed experiments but also on the shape of the
extracted signal (data presented on GitHub).

In this paper, for proof of concept, an acquisition frequency of 75 Hz were used, which
can extract enough data for the algorithms developed with PyJama [9]. Some algorithms
need a higher amount of data to work, around 200 Hz [27,28]; this is a limitation of JAMA,
considering that the GY-80 continuous measurement mode operates at frequencies of
0.75–75 Hz, while the single measurement mode operates at frequencies of 0.75–160 Hz,
but packet loss may occur.

JAMA may not present good results for evaluating rapid movements, such as running
(>8 km/h), in its current version. On the other hand, these hardware configurations are
compatible for gait assessments [22,29], assessment of falls in the elderly [30], and clinical
tests (Time Up and Go and 6-min walk test) [31]. Therefore, based on the results presented,
JAMA can perform IMU guidance data extraction.

4.2. PyJama

The main objective for the development of PyJama is to provide open-source algo-
rithms for processing data from inertial sensors in different stages (pre-processing, pro-
cessing, data analysis). There are several systems available for measuring angles, whether
commercial or free, but few of them are open-source [7] and specially developed in Python.
As Python is the most used programming language in science, PyJama arises to minimize
this gap.

Fusion filters are one of the options for estimating orientation of inertial sensors. Py-
Jama has the following Fusion Filters: Complementary Filter, Kalman Filter, and Madgwick
Filter, and all of them use accelerometer, gyroscope, and magnetometer measurements to
estimate orientation. By combining these different measurements, fusion filters provide
more stable results for simpler sensor noise removal [5]. These filters have become the ac-
cepted basis for the majority of systems that use low-cost sensors and present the real-time
feature [5,7,32]. Although our scope is to analyze offline data in Google Colab, PyJama has
filters implemented for real-time use (update functions presented in Figure 2).

Commercial systems such as Xsens [27] and Physilog [28] use the strap-down integration
technique to merge IMU data [7]. However, it is not indicated for sensors with a less robust
measurement, and it is necessary to use a higher acquisition frequency [7,27,28]. Therefore,
when using low-cost sensors for data acquisition, fusion filters present better results.

In the state-of-the-art time series analysis for pattern recognition, information extrac-
tion and data fusion have been made by artificial neural networks in different areas [33–35].
Recently, these techniques have also been applied for IMU data fusion. Weber, Gühmann,
and Seel [36] developed RIANN (Robust Neural Network Outperforms Attitude Estima-
tion Filters), which implements a Recurrent Neural Network with superior results to the
fusion filters. However, even with the inferior results, the authors point out that the fusion
filters are granted additional advantages of parameter optimization on target sequences
and have a lower computational cost.



Sensors 2021, 21, 6477 17 of 23

A similarity between filters implemented in PyJama and most neural network archi-
tectures is the use of optimizers. These optimization techniques aim to decrease the cost
function, in other words, to decrease the measurements error [5,6]. PyJama implements
filters using the most common optimization algorithms, Gradient Descent and Gauss–
Newton. These algorithms allow quick correction of measurements, minimizing noise and
sensor measurement errors.

For data drift removal, a sensor calibration based on static upright pose measurements
was implemented for the gyroscope and accelerometer measurements. More complex
and/or faster movements tend to encounter greater measurement errors; for these cases
other techniques may be needed, such as functional calibration, as presented in [2].

4.3. Experiment 1

Experiment 1 aimed to evaluate the performance of JAMA and PyJama in a controlled
situation of knee joint movement with a robotic leg (Lokomat). Overall, PyJama estimated
the knee angle correctly, and all filters showed an average range of motion of 60◦, with
better performance of Madgwick filter (Table 2).

However, notwithstanding the metrics found are correct, the graphical representation
(Figure 5) of the gait cycles was inverted (with swing phase, the peak of 60◦, at the begin-
ning of the cycle). This inversion was due to the pattern extraction algorithm developed
(Algorithm 4). The inverted representation for the gait cycle is unusual, but some authors
present their results in this way, even using commercial analysis systems [37], which shows
that this is a crucial error in the algorithm.

The algorithm for pattern extraction presented was developed based on the angle
and not the temporal perspective, which is the most common [2,3,37]. Thus, when using
the angle as a more simplified way to extract the cycle information, the algorithm lost
the perspective of the time series and inverted the graphical representation, but without
changing the metrics of the angle estimated by PyJama and Kinvoea.

Kinovea has adequate precision for biomechanical analysis [21]. Therefore, we used
its measurements to assess the behavior of fusion filters, even though it is not the gold
standard. As a result, PyJama proved to be able to analyze data from other sources, and
the implemented filters were able to estimate the angle with results closer to those found
by Kinovea. Note that it was not the objective of the experiment to evaluate the individual
performance of each filter. They were all tuned using the main input parameters. Therefore,
when using specific parameter combinations for each filter, the results tend to improve [38].
Data and codes are available from the aforementioned GitHub library.

4.4. Experiment 2

Experiment 2 aimed to test JAMA and PyJama in a real-world scenario evaluating
the knee joint of a healthy adult during gait. Data acquired using JAMA and analyzed
using the PyJama Madgwick Filter resulted in an average ROM of 44.62 (±3.90◦), and for
Kinovea the average ROM was 50.93 (±5.96◦).

Walking at a speed of 1 m/s or 3.6 km/h, the knee ROM ranges between 50 and
60◦ [2,3,18]. Individual factors (such as height and size of the legs) affect the biomechanics
of movement and, consequently, the kinematic metrics. In the case of this experiment,
we expected an ROM of less than 60◦ due to individual characteristics (Section 2.3.2).
In addition to these factors, data may have suffered interference from the pattern extraction
Algorithm 4, which caused a difference of 15 degrees during the swing phase between
Kinovea and PyJama estimation.

In addition to the inversion of the phase representation, the algorithm proposed for
pattern extraction was also not able to deal with the variability of human movement.
An average ROM less than 60◦ happened due to the influence of the algorithm errors.
In other words, when extracting a wrong pattern, the algorithm changed the data mean.
Table 3 presents the experiment metrics, where the minimum and maximum values of the
measurements appear to be correct.
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The difference between the estimate of PyJama and Kinovea was based on data
behavior. Kinovea’s data showed less variability because they were extracted by video,
while data extracted by JAMA suffered from interference from noise produced by the body
itself, such as soft tissue noise [39]. Again, the filter was not optimally tuned to merge the
data, which can improve the orientation estimate [38]. Based on other studies, gait speed
was not a determining factor for the variability presented, considering that, at speeds in a
range of 2 to 5 km/h, the knee joint presented an amplitude of 60◦ [2,3,18].

The most used way to extract patterns from the cycles is based on kinematic metrics,
such as the size and duration of a normal step [1,3,40]. However, many of these methods
would not work out for our application because they are based on ground contact mea-
surements. Alternatives of extraction are the use of machine learning to classify patterns.
Gaitpy is a free python software that extracts kinematic gait parameters based on measure-
ments from just an accelerometer positioned over the lumbar spine [29]. PyJAMA also
implements this experiment, and the codes and data are available on GitHub.

4.5. Experiment 3

Experiment 3 aimed to validate fusion filters implemented in PyJama. As it was
not possible to make comparisons between our system and gold standard devices for
motion analysis, we chose to analyze data from these devices to validate PyJama. In this
sense, we choose the Total Capture dataset [10] for providing synchronized data between
two gold standard systems, using Xsens and Vicon. Other datasets involving sensors are
available for free, but some have download problems, do not have the IMU and optical
synchronized data attached, and/or do not provide raw and processed data. In this sense,
the Total Capture dataset [10] was chosen for providing synchronized data between two
gold standard systems, using Xsens and Vicon.

First, Xsens quaternion data were transformed to Euler angles, and then transformed
back to quaternions. This operation presented an RMSE of 0.00 and MAPE of 0.00%
(Figure 7), which demonstrates that the transformation functions implemented works cor-
rectly. After that, PyJama filters procesed Xsens data (accelerometer, gyroscope, and mag-
netometer) to estimate quaternion orientation and compare with Ground Truth.

The implemented filters showed good accuracy. The higher error without the quadrant
restriction was something to be expected due to the different analysis techniques used
in the formulation of the dataset [10,27]. However, after quadrant restriction, PyJama
filters showed good accuracy (RMSE 0.04 and MAPE 2.95%, as the RMSE (in angles) for
systems with high precision is around 1.3–11.22 degrees [7]; results are presented in Table 4).
The RMSE is the most used error metric in studies with IMU, but here we also calculate the
MAPE as its interpretation is easier. It will return the difference between the data regardless
of the analyzed unit (degrees, quaternions, centimeters, and others).

We carried out an evaluation here for proof of concept of the filters. In this sense,
we also standardized the input parameters (balance between accelerometer, gyroscope,
and magnetometer contributions and input data filtering). It is not possible to have a fair
performance comparison among filters, as they have not the best tuning [38]. Therefore,
it is necessary to adjust parameters using specific algorithms to compare the performance
of filters. The most used for this purpose is the genetic algorithm [41,42]. This algorithm
belongs to the class of evolutionary algorithms. It aims to approximate the best possible
solution using a random set of input parameters. After the initial estimate, you can evaluate
the results and change the parameters at each cycle. This process is repeated until reaching
the programmed limits (number of interactions or error metric).

Probably, the non-optimization of parameters negatively influenced the evaluation of
Kalman filters with greater intensity and was probably for two reasons: (1) the implemen-
tation used was proposed by Comotti [6], where he performed the comparison between
the Kalman filter and the Complementary Filter, with the Kalman Filter showing a better
performance; and (2) due to gyroscope calibration. The Kalman filter function uses the first
few seconds of the gyroscope data (static upright pose) to calibrate future measurements
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based on the variance of the data. As the Total Capture dataset was used, these data are
not provided, which led to a longer adjustment time for the Kalman Filter. Therefore, these
two factors contributed negatively to the Kalman filter measurements.

In general, the functions implemented in the PyJama were effective for processing the
IMU data and fusion filters in real-time through the update functions (Figure 2).

4.6. Limitations and Perspectives

This study focused on a proof of concept, testing the systems with a rehabilitation robot
and a healthy adult individual evaluating the knee joint in the sagittal plane. Tests for other
joints and in other populations are needed in future studies, mainly for system validation.

We based the proposed pattern extraction on the angle (Algorithm 4). This approach
proved to be inferior to other techniques proposed in the literature (for not being able to
deal with the variability of movement), specifically due to the patterns extracted based on
time [3,29]. Because of this, other algorithms for pattern extraction will be implemented in
the future.

Although the system was able to extract the behavior of the joint, and specifically
PyJama achieved a high accuracy when processing Xsens data, we can improve our system
by adding algorithms to locate the joint centers and improve the robustness of the segment
orientation automatically [43,44]. Another important factor is the GUI (graphical user
interface) to guide user and facilitate its use in clinical applications.

5. Conclusions

This paper proposed a low-cost system for measuring joint angles in three experiments
as a proof-of-concept of JAMA and PyJama. We used PyJAMA to process the data collected
by JAMA in two experiments, which was able to find some pattern behavior of the knee
joint. In the gold standard data processing tests, PyJama reconstructed the original signal
(RMSE 0.00 and MAPE 0.00%) and estimated the sensor orientation with a low error (RMSE
0.04 and MAPE 2.95%). The proposed system needs some specific conditions for sensor
calibration. In addition, it needs a long time for sending async-TCP buffer data. In future
work, we plan to enhance the communication protocol and implement new functions for
data calibration and fusion, using different techniques.
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Appendix A

Algorithm A1 Descendant Gradient
Input: Accelerometer (rad/s), Giroscope (q̇), Magnetometer (mG) e µ
Output: Combined magnetometer and accelerometer data
Initialization:

Receive quaternion initial orientation using Equation (2)
µ = 10 · | q̇t | · δt

while ç < 10:
fg =

[
2(q̇[1] q̇[3] − q̇[0] q̇[2])− ax 2(q̇[0] q̇[1] + q̇[2] q̇[3])− ay 2(0, 5− q̇2

[1] − q̇2
[3])− az

]
1×3

Jg =

−2q̇[2] 2q̇[3] −2q̇[0] 2q̇[1]
2q̇[1] 2q̇[0] 2q̇[3] 2q̇[2]

0 −4q̇[1] −4q̇[2] 0


3×4

Adjust and normalize orientation and magnetometer data (Equation (3) and (4))
~mq = [0, mx, my, mz]1×4
q̇inv = [ q̇[0] q̇[1] q̇[2] q̇[3] ]1×4
H = (q̇⊗ ~mq)⊗ q̇inv

b =
[√

H2
[1] + H2

[2] 0 H[3]

]
1×3

‖b‖

fb =

2b[0](0, 5− q̇2
[2] − q̇2

[3]) + 2b[2](q̇[1] q̇[3] − q̇[0] q̇[2])−mx

2b[0](q̇[1] q̇[2] − q̇[0] q̇[3]) + 2b[2](q̇[0] q̇[1] + q̇[2] q̇[3])−my
2b[0](q̇[0] q̇[2] − q̇[1] q̇[3]) + 2b[2](0.5− q̇2

[1] − q̇2
[2])−mz


3×1

Jb = −2b[2] q̇[2] 2b[2] q̇[3] −4b[0] q̇[2] − 2b[2] q̇[0] −4b[0] q̇[3] + 2b[2] q̇[1]
−2b[0] q̇[3] + 2b[2] q̇[1] 2b[0] q̇[2] + 2b[2] q̇[0] 2b[0] q̇[1] + 2b[2] q̇[3] −2b[0] q̇[0] + 2b[2] q̇[2]

2b[0] q̇[2] 2b[0] q̇[3] − 4b[2] q̇[1] 2b[0] q̇[0] − 4b[2] q̇[2] 2b[0] q̇[1]


3×4

fgb = [ fg, f T
b ]

Jgb = [Jg, Jb]

D f = [JT
gb · fgb]

q̂est =
q̇−µD f

‖D f‖
q̇est = [q̂est[0], q̂est[1], q̂est[2], q̂est[3]]

q̇ = q̇est
‖q̇est‖

end;

Jt(q̇t(t)) =



J[0][0] J[0][1] J[0][2] J[0][3]
J[1][0] J[1][1] J[1][2] J[1][3]
J[2][0] J[2][1] J[2][2] J[2][3]
J[3][0] J[3][1] J[3][2] J[3][3]
J[4][0] J[4][1] J[4][2] J[4][3]
J[5][0] J[5][1] J[5][2] J[5][3]


6×4

(A1)

Assume:
J[0][0] = 2q̇[1]ax + 2q̇[2]ay + 2q̇[3]az J[0][1] = −2q̇[2]ax + 2q̇[1]ay + 2q̇[0]az
J[0][2] = −2q̇[3]ax − 2q̇[0]ay + 2q̇[1]az J[0][3] = 2q̇[0]ax − 2q̇[3]ay + 2q̇[2]az
J[1][0] = 2q̇[2]ax − 2q̇[1]ay − 2q̇[0]az J[1][1] = 2q̇[1]ax + 2q̇[2]ay + 2q̇[3]az
J[1][2] = 2q̇[0]ax − 2q̇[3]ay + 2q̇[2]az J[1][3] = 2q̇[3]ax + 2q̇[0]ay − 2q̇[1]az
J[2][0] = 2q̇[3]ax + 2q̇[0]ay − 2q̇[1]az J[2][1] = −2q̇[0]ax + 2q̇[3]ay + 2q̇[2]az
J[2][2] = 2q̇[1]ax + 2q̇[2]ay + 2q̇[3]az J[2][3] = −2q̇[2]ax + 2q̇[1]ay − 2q̇[0]az
J[3][0] = 2q̇[1]mx + 2q̇[2]my − 2q̇[3]mz J[3][1] = −2q̇[2]mx + 2q̇[1]my + 2q̇[0]mz
J[3][2] = −2q̇[3]mx − 2q̇[0]my + 2q̇[1]mz J[3][3] = 2q̇[0]mx − 2q̇[3]my + 2q̇[2]mz
J[4][0] = 2q̇[2]mx − 2q̇[1]my − 2q̇[0]mz J[4][1] = 2q̇[1]mx + 2q̇[2]my + 2q̇[3]mz
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J[4][2] = 2q̇[0]mx − 2q̇[3]my + 2q̇[2]mz J[4][3] = 2q̇[3]mx + 2q̇[0]my − 2q̇[1]mz
J[5][0] = 2q̇[3]mx + 2q̇[0]my − 2q̇[1]mz J[5][1] = −2q̇[0]mx + 2q̇[3]my + 2q̇[2]mz
J[5][2] = 2q̇[1]mx + 2q̇[2]my + 2q̇[3]mz J[5][3] = −2q̇[2]mx + 2q̇[1]my − 2q̇[0]mz

Algorithm A2 Gauss-Newton
Input: Accelerometer (rad/s), Giroscope (q̇), Magnetometer (mG) e µ
Output: Combined magnetometer data and accelerometer data
Initialization:

Receive quaternion initial orientation using Equation (2)
nk = [ q̇[1] q̇[2] q̇[3] q̇[0] ]1×4

while ç < 10:
Adjust and normalize orientation and magnetometer data (Equation (3) and (4))
~mq = [0, mx, my, mz]1×4
q̇inv = [ q̇[0] q̇[1] q̇[2] q̇[3] ]1×4
H = (q̇⊗ ~mq)⊗ q̇inv

b =
[√

H2
[1] + H2

[2] 0 H[3]

]
1×3

‖b‖
~o =

[
ax(t) ay(t) az(t) mx(t) my(t) mz(t)

]T
1×6

~y =
[
0 0 1 b[1] b[2] b[3]

]T
1×6

Jt(q̇t(t)) =
δ(ε)

δq̇t(t)
= −

[(
δm

δq̇[0]
·~o
) (

δm
δq̇[1]
·~o
) (

δm
δq̇[2]
·~o
) (

δm
δq̇[3]
·~o
)]

R =q̇2
[1] + q̇2

[2] − q̇2
[3] − q̇2

[0] 2(q̇[1] q̇[2] − q̇[3] q̇[0]) 2(q̇[1] q̇[3] − q̇[2] q̇[0])
2(q̇[1] q̇[2] − q̇[3] q̇[0]) q̇2

[0] + q̇2
[2] − q̇2

[1] − q̇2
[3] 2(q̇[2] q̇[3] − q̇[1] q̇[0])

2(q̇[1] q̇[3] − q̇[2] q̇[0]) 2(q̇[2] q̇[3] − q̇[1] q̇[0]) q̇2
[0] + q̇2

[3] − q̇2
[2] − q̇2

[1]



M =


R3×3

0 0 0
0 0 0
0 0 0


3×30 0 0

0 0 0
0 0 0


3×3

R3×3


2×2

n = nk − (Jt(q̇t(t))T · Jt(q̇t(t))−1 · Jt(q̇t(t)) · (~y−M ·~o)
‖n‖
q̇ =

[
n[3] n[0] n[1] n[2]

]
1×4

end;
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