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Abstract 

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-

generation biologics that are effective against a variety of strains of the virus. Herein, we 

characterize a human VH domain, F6, which we generated by sequentially panning large phage 

displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. 

Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the 

RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 

and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that 

neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC50) of 4.8 

nM in vitro. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) 

variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic 

against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a 

vulnerable epitope within the spike protein RBD that may be exploited to achieve broad 

protection against circulating variants. 
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Introduction 

     Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic [1-3], more than 415 

million cases and 5.83 million deaths have been confirmed as of February 16th, 2022. To treat infection by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, 

various therapeutics have been explored, such as convalescent patient sera [4], neutralizing antibodies 

(nAbs) [5-15], and small antiviral molecules [16-21]. The spike glycoprotein (S protein), which engages 

the human angiotensin converting enzyme 2 (hACE2) receptor [22], is a major target for Ab-mediated 

neutralization. nAbs that block S protein - ACE2 binding are promising therapeutic candidates, with a 

plethora of SARS-CoV-2 nAbs reported - several of which have received emergency use approval (EUA) 

in the US [9, 23-26].  

     The receptor binding domain (RBD) within the S1 region of the S protein exhibits a high degree of 

mutational plasticity and is prone to accumulate mutations that lead to partial immune-escape [27-33]. 

The World Health Organization (WHO) has designated several SARS-CoV-2 lineages as Variants of 

Concern (VOCs), which are more transmissible, more pathogenic, and/or can partially evade host 

immunity, including the Alpha, Beta, Gamma, Delta variants and the recently identified Omicron variant 

[27, 34-39]. Some pan-sarbecovirus mAbs have been demonstrated to retain their neutralization activity 

against these VOCs [40, 41]. The Omicron variant is heavily mutated and contains 30 amino acid changes 

in its S protein, with 15 of mutations localizing to the RBD  [42]. Some of these mutations have been 

predicted or demonstrated to either enhance transmissibility [43] or to contribute to escape from most 

nAbs that were raised against the original (Wuhan-Hu-1) or early VOCs lineages of SARS-CoV-2. The 

continuous evolution and emergence of VOCs that can partially evade host immunity requires the 

development of Abs with broad neutralizing activity that can block or reduce disease burden. Additionally, 

multi-specific Abs or Ab cocktails hold promise to resist mutational escape by targeting multiple epitopes 

on the SARS-CoV-2 S protein [15, 39]. Recently, several bispecific Abs have been reported that show 

broad neutralization efficacy against SARS-CoV-2 variants [6, 44-46], therefore the generation of 

bispecific or multi-specific nAbs to target variants that otherwise evade immune response is a viable 

therapeutic strategy. 

     In this study, we identify a VH domain (VH F6) which shows broad neutralizing activity against SARS-

CoV-2 VOCs including the Alpha, Beta, Gamma, Delta, and Omicron VOCs. VH F6 binds a relatively 

conserved portion of the receptor binding motif (RBM), using a unique framework region (FR)-driven 

paratope. By combining VH F6 with our previously identified Ab, VH ab8, we developed a biparatopic Ab 

(F6-ab8-Fc), which exhibits potent neutralizing activity against all SARS-CoV-2 VOC psuedoviruses 

(including the Omicron variant) and several live virus variants. Prophylactic dosing with F6-ab8-Fc also 
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reduced viral titres in the lungs of a mouse model and high doses of F6-ab8-Fc protected against mortality. 

Our study identifies a novel broadly neutralizing VH domain Ab with a unique paratope and provides a 

potent biparatopic Ab (F6-ab8-Fc) against all SARS-CoV-2 VOCs, including the presently dominant 

Omicron variant. 

Results 

Identification of a novel antibody domain (VH F6) which binds to most prevalent RBD 
mutants and neutralizes SARS-CoV-2 VOCs  

     To identify cross-reactive VH domains against SARS-CoV-2 VOCs, we adopted a sequential panning 

strategy to pan our in-house large VH phage library. We used E484K mutated RBD for the first round of 

panning, wild type (WT) RBD for the second, and the S protein S1 domain containing K417N, E484K, 

and N501Y mutations for the third (Fig. S1A). Following these three rounds of panning, a dominant clone, 

VH F6, was identified by ELISA screening. VH F6 bound to the WT and Beta RBDs with half-maximal 

binding concentrations (EC50) of 5.1 nM and 7.2 nM respectively (Fig. S1B). VH F6 also bound to the WT, 

Alpha, and Beta S1 proteins (Fig. S1C). To assess the cross-reactivity of VH F6, we performed ELISA 

and pseudovirus neutralization assays.  VH F6 was able to bind to trimeric spike proteins from multiple 

SARS-CoV-2 VOCs including Alpha, Beta, Gamma, Kappa, and Delta variants (Fig. S1D). Furthermore, 

we evaluated the ability of VH F6 to bind RBDs containing single-point mutations at mutational sites 

commonly observed in currently circulating variants. VH F6 bound to 35 out of the 37 assayed RBD 

mutations, with only F490S and F490L mutants escaping binding (Fig. 1A and Fig. S1E). VH F6 was 

able to neutralize ancestral SARS-CoV-2 (WT), Alpha, Beta, Gamma, and Delta spike pseudotyped 

viruses with 50% pseudovirus neutralizing Ab titers (IC50) of 28.47, 40.32, 3.62, 6.23, and 0.40 nM 

respectively (Fig. 1B).   

     The Omicron variant escapes most mAbs that are in clinical use [47]. We found that VH F6 was able to 

bind the Omicron RBD with an EC50 of 68.6 nM as tested by ELISA, which is consistent with the binding 

dissociation constant (KD= 19.1 nM) obtained by BlitZ (Fig. 1C). Furthermore, VH F6 neutralized 

Omicron psuedoviruses with an IC50 of 269 nM (Fig. 1B). 
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Fig. 1. F6 binds to prevalent RBD mutants and neutralizes SARS-CoV-2 VOCs including Omicron. A. Heat 
map of VH F6 binding to circulating RBD mutants. The binding of VH F6 to RBD mutants was detected by ELISA 
and normalized by comparing area under the curves (AUCs) between mutant and wild type RBD. B.  Neutralization 
of SARS-CoV-2 WT, Alpha, Beta, Gamma, Delta, and Omicron variants pseudovirus by VH F6. Experiments were 
performed in duplicate and error bars denote ± SD, n=2. C. Measurement of VH F6 binding to the Omicron RBD by 
ELISA (left) and BlitZ (right).  

CryoEM structure of the VH F6 - Beta variant spike protein complex reveals a unique FR-
driven binding mode 

     To garner structural insights into the broad neutralization exhibited by VH F6, we solved the cryo-

electron microscopy (cryoEM) structure of VH F6 bound to a prefusion stabilized Beta S trimer at a 

global resolution of 2.8 Å (Fig. S2 and Table S1). The Beta variant trimer was chosen for this structural 

analysis as it contains K417N, E484K, and N501Y mutations, which are partially present in other variants 

of concern (Alpha, Gamma, and Omicron). The cryoEM reconstruction revealed density for three bound 

VH F6 molecules with strong density observed for VH F6 binding to a “down” RBD, and moderate or 

weak densities for two VH F6 molecules binding “up” RBDs (Fig. 2A). The strong density for VH F6 

bound to the “down” RBD enabled focused refinement, providing a local resolution density map at 3.0 Å 

and enabling detailed analysis of the VH F6 epitope (Fig. 2B).  
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     VH F6 binding spans the RBD “peak” and “valley” regions, with its footprint skewed towards the 

RBD “outer face” (Fig. 2B and 2C). This interface is exposed in both “up” and “down” RBD 

conformations, thus explaining VH F6 binding to both states simultaneously. Interestingly, the framework 

regions (FRs) of F6 – a heavy-chain (VH) only Ab – expands the interaction interface beyond the 

conventional complementarity-determining regions (CDRs) (Fig. 2D). Specifically, the hydrophobic FR2 

residues present a hydrophobic core that associates with hydrophobic RBD residues which line the RBD 

peak and valley regions. This large FR engagement contributes an interaction area that accounts for up to 

36% of the total antibody paratope. Such substantial involvement of FRs causes VH F6 to adopt an 

atypical perpendicular binding angle relative to the RBD, with its FR2, FR3 and CDR3 wrapping around 

the RBD peak (Fig. 2D). In addition to FRs, CDR2 and CDR3 also contribute to the RBD binding 

interaction via hydrogen bonding, π-π stacking and van der Waals interactions (Fig. S3C-E). Due to its 

positioning toward the RBD outer edge, the VH F6 footprint only slightly overlaps with the hACE2 

binding interface, potentially rationalizing its weaker RBD binding competition with hACE2 as compared 

to ab8 [48, 49]  (Fig. S3A, S3B and Fig. 2E). 

     The VH F6 bound Beta S protein structure rationalizes the broad activity of VH F6 against various 

RBD mutants. K417, N501 and E484 – frequently mutated in VOCs and imparting escape from many 

nAbs – are not within the VH F6 epitope (Fig. 2C).  The RBD residue Q493, which is mutated in the 

Omicron variant and induces escape from the clinical Ab REGN10933 [50], is located within the VH F6 

epitope to form hydrogen bonds with the main chain of G101 and S102 in the CDR3 (Fig. S3C). Despite 

these specific hydrogen bonds, the Q493R/L mutations did not significantly impact VH F6 binding (Fig. 

1A), potentially reflecting either the plasticity or small overall contribution of this hydrogen bonding 

interaction. Residue L452 – which is mutated to L452R in Delta and Kappa variants – is located within 

the periphery of the VH F6 epitope and may contribute hydrophobic interactions with the VH F6 residue 

F58 (Fig. S3D). The peripheral nature of this interaction may explain the marginal sensitivity of VH F6 

binding to the L452R mutation (Fig. 1A). In contrast, F490L and F490S mutations attenuate and 

completely abrogate VH F6 binding respectively (Fig. 1A), as can be rationalized by the location of F490 

within both the FR and CDR3 binding interfaces (Fig. S3E). The lack of significant interactions with 

VOC mutated residues provides a structural basis for the broad activity of F6. 

     The resolved F6/Beta spike structure may also explain the binding of VH F6 to Omicron. According to 

the resolved F6/Beta RBD, 13 out of 15 omicron RBD mutations are located outside of the F6 epitope 

(Fig. 2F), and the remaining two mutations, G446S and Q493R are in the peripheral region of F6 

footprint. Importantly, our RBD mutants ELISA showed the G446S and Q493R mutations did not 
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significantly disturb F6 binding (Fig. 1A). Structure modeling and molecular dynamics (MD) simulations 

were performed to examine the interfacial interactions and showed that the complex formed between the 

Omicron variant RBD and F6 stably retained the same structural features as the cryo-EM resolved F6-

Beta RBD complex in triplicate runs of 800 ns. The mutation sites Q493R and Q498R intermittently 

formed new compensating salt bridges. Simulations and binding energy calculations repeated for the 

complexes of F6 with Beta and Omicron variants led to respective KD values of 12.2±3.1 nM and 

15.5±3.3 nM, which is in line with the Blitz KD (Fig. S4).  

 

 

 

Fig.2. CryoEM structure of VH F6 in complex with the SARS-CoV-2 Beta variant spike protein. A. Global 
cryoEM map of the Beta variant spike protein in complex with VH F6. Density corresponding to the Beta variant 
trimer is colored in shades of grey and violet while density corresponding to VH F6 molecules is colored in orange. 
B. Left: Focus refined density map of the Beta variant RBD - VH F6 complex with docked atomic model. Right: 
Molecular surface representation of the epitope of VH F6 on the Beta variant RBD. The side chains of residues 
within the binding footprint of VH F6 are displayed and colored orange. C. Footprints of class 1 Abs (green), class 2 
Abs (purple), and VH F6 (orange) on the molecular surface of the SARS-CoV-2 RBD. Commonly mutated and 
antibody-evading mutations are colored in red. D. Focused view of the atomic model at the VH F6 - RBD interface. 
The side chains of discussed residues are shown, with the scaffold colored orange, CDR1 green, CDR2 blue, CDR3 
magenta and the RBD gray. E. Superposition of VH F6-RBD (orange) and ACE2-RBD (cyan) complex atomic 
models. The RBD is shown in grey and the ACE2-RBD model was derived from PBD ID: 6m0j. G. Mapping the 
Omicron mutations onto the RBD structure with comparison to the F6 epitope 
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Generation of a biparatopic antibody with enhanced neutralization of SARS-CoV-2 VOCs 

To expand the VH F6 epitope, with the aim of decreasing mutational escape, we designed a biparatopic 

Ab by combining VH F6 and VH ab8, which is a nAb with a distinct yet partially overlapping epitope 

compared to F6 (Fig. S5A and S5B). While ab8 is escaped by the Beta, Gamma, and Omicron variants 

(Fig. S5C), ab8 is not escaped by the F490S and F490L mutations that escape VH F6 binding (Fig. S5D). 

The biparatopic Ab was constructed by linking VH F6 to VH ab8 via a 5x(GGGGS) polypeptide linker 

with the C terminal fused to the human IgG1 fragment crystallizable region (Fc) (Fig. 3A). Addition of an 

Fc region has previously been demonstrated to both extend antibody serum half-life and activate the 

effector function of the immune system[48]. The biparatopic Ab, F6-ab8-Fc, broadly bound to SARS-

CoV-2 VOC spike trimer proteins (Fig. S5E). Importantly, F6-ab8-Fc potently bound to the Omicron 

RBD with an EC50 of 19.1 nM as measured by ELISA and a KD of 38.7 nM as measured by BlitZ (Fig. 

3B and 3C). Furthermore, F6-ab8-Fc potently neutralized WT, Alpha, Beta, and Delta SARS-CoV-2 

variants in both pseudovirus and live virus assays (Fig. 3D and E). F6-ab8-Fc neutralized Omicron 

variant psuedoviruses with an IC50 of 4.82 nM (Fig. 3D and F), which is significantly more potent than 

VH F6 (IC50 =269 nM). Additionally, F6-ab8-Fc neutralization of other SARS-CoV-2 VOCs is also more 

potent than that of VH F6 (Fig. 3F), prompting us to evaluate its in vivo viral inhibition. 

 

Fig. 3. Construction of a biparatopic antibody (F6-ab8-Fc) that neutralizes various SARS-CoV-2 VOCs 
including Omicron. A. The scheme of the biparatopic antibody F6-ab8-Fc containing a tandem VH (F6-ab8) at the 
N terminal of the human IgG1 Fc. B. ELISA results of F6-ab8-Fc binding to the Omicron RBD protein (EC50= 19.1 
nM). C. Binding kinetics of F6-ab8-Fc binding to the Omicron RBD tested by the BlitZ (KD=38.7 nM). D-E. 
Neutralization of SARS-CoV-2 WT, Alpha, Beta, and Delta variants pseudoviruses (D) and live viruses (E) by F6-
ab8-Fc. F. Comparisons of virus neutralization IC50s by VH F6 and F6-ab8-Fc. 
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F6-ab8-Fc prophylactically and therapeutically reduces disease burden and protects from 

SARS-CoV-2 Beta variant mortality in mice 

To evaluate the prophylactic and therapeutic efficiency of F6-ab8-Fc in vivo, we used a mouse-adapted 

SARS-CoV-2 infection model[51]. The Beta variant was chosen for in vivo protection experiments 

because it is relatively difficult to neutralize [36, 52]. Groups containing five mice each were 

administered a high dose of 800 μg or a low dose of 50 μg F6-ab8-Fc twelve hours pre- or twelve hours 

post-SARS-CoV-2 mouse-adapted 10 (MA10) Beta variant challenge. Mice were monitored for signs of 

clinical disease and viral titers in the lungs were measured four days after infection (Fig. 4A). Mice in the 

high-dose (800 μg) prophylaxis group were completely protected from mortality (0% morality). In 

contrast, 20% mortality was observed in the 800 μg therapeutic group and 40% mortality was observed in 

the 50 μg prophylactic group. 60% mortality was observed in the 50 μg therapeutic and control mAb 

group (Fig. 4B). Thus, F6-ab8-Fc can protect against mortality when given prophylactically at high doses. 

We observed greater than one log reduction in viral titer in the high-dose prophylactic and therapeutic 

groups after four days (Fig. 4C). Additionally, lung congestion scores, which is a gross pathologic score 

at the time of harvest, were lower in all four F6-ab8-Fc treated groups compared to the mAb control (Fig. 

4D). Our results indicate that F6-ab8-Fc, is able to reduce lung viral replication in vivo, with prophylactic 

treatment being more effective than therapeutic treatment. 

 

 

 

Fig. 4. Evaluation of prophylactic and therapeutic efficacy of F6-b8-Fc in a mouse ACE2-adapted model. A. 
The overview of study design for evaluating F6-ab8-Fc efficacy in a SARS-CoV-2 mouse model. B. Percent 
survival curves for each F6-ab8-Fc treatment group as indicated. C. Viral titers (PFUs) in lung tissue for the F6-ab8-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.18.481058doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481058
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fc treatment groups. The limit of detection (LoD) is 100 pfu/lobe.  D. Lung hemorrhage scores of live mice. T tests 
were used to evaluate statistical differences. *p <0.05, **p <0.01, ***p < 0.001, ns. no significance.  

 

Discussion 

The SARS-CoV-2 spike protein has accumulated numerous mutations that retain its ability to engage its 

receptor (hACE2), while evading neutralizing Abs [53]. The RBD is immunodominant and has 

accumulated several mutations that partially escape approved vaccines and the majority of clinical mAbs. 

A recent epitope binning and structural study classifies Ab epitopes across the RBD into six classes, with 

class 1-3 Abs targeting the top surface RBM region (thus competing with ACE2), and class 4/5 and class 

6/7 Abs binding to the RBD outer and inner surfaces respectively [54]. Class 1-3 Abs are most likely to 

be rendered ineffective by K417N/T, E484K, and N501Y mutations which are found in Alpha, Beta, and 

Gamma VOCs. Currently, only a few RBM-targeting Abs are reported to neutralize the Omicron variant 

such as ACE2 mimicking Abs S2K146 [55] and XGv347 [56].  

In this study, we developed a novel single domain (human VH) Ab, F6 that can broadly neutralize Alpha, 

Beta, Gamma, Delta, and Omicron variants. VH F6 targets a class-4 epitope which spans the RBD peak 

and valley outer-face, and partially overlaps with the hACE2 binding interface. Importantly, the cryoEM 

structure of VH F6 in complex with the Beta S protein revealed that VOC mutations lie either outside of 

the VH F6 epitope (K417, E484, N501, N439) or within its periphery (L452, Q493, G446). The VH F6 

epitope bears high similarity to that of the full-length Ab A19-46.1, which can also neutralize the 

Omicron variant [57]. Unlike A19-46.1, VH F6 is resistant to the L452R mutation, and can bind the RBD 

in both “up” and “down” conformations, probably due to its lower steric hindrance associating with its 

small size. The ability of an antibody fragment to bind both “up” and “down” RBD states is an attractive 

property given that the accessibility of its epitope is independent of RBD conformation [58]. Notably, VH 

F6 adopts an uncommon angle of binding relative to the RBD, using its exposed FR regions and CDR3 to 

present a hydrophobic interaction interface. This interaction mode resembles that of llama/shark VH Abs 

which use long CDR3s to fold against the FR2 region and collectively establish novel paratopes [59]. 

F6 primarily belongs to the class 4 Ab community, which also contains the highly potent and patient-

derived Abs C002 [60] and A19-46.1 [57], and  typically exhibits decreased binding to L452 and E484 

mutated RBDs [61]. Additionally, the VH F6 epitope partially overlaps with the with class 1-2 Abs 

which contain therapeutic Abs such as LY-CoV016 and REGN10933 [61] (Fig. 2C). The ability of the 

SARS-CoV-2 Omicron variant to escape class 1 and 2 Abs requires the development of Ab combinations 

(either cocktails or bi(multi)-specifics) targeting multiple epitopes. In this study, with the aim to target a 
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broader epitope on the RBD, we generated a bispecific (biparatopic) Ab by combining F6 with the 

previously identified potent class-2 Ab domain VH ab8 [48]. Although both Beta and Omicron variants 

were escaped by VH Ab8, the biparatopic Ab, F6-ab8-Fc, potently neutralized all SARS-CoV-2 VOCs 

(including Omicron) in vitro. Importantly, VH F6 also reduced lung viral titers in mice infected with the 

Beta variant and protected against mortality when administered prophylactically. 

In summary, we identified a broadly neutralizing antibody domain (VH F6) with a unique paratope and 

epitope, and which neutralized all SARS-CoV-2 VOCs. The F6 epitope may be targeted to elicit broadly 

neutralizing Abs and vaccines against circulating SARS-CoV-2 variants. The biparatopic Ab, F6-ab8-Fc, 

with its broad neutralization activity and in vivo activity presents a new Ab therapeutics against current 

SARS-CoV-2 VOCs.    
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Materials and methods 

Antigen expression and phage panning 

The SARS-CoV-2 RBD, S1 and S trimer mutants were ordered from Sino Biological (USA).  The VH F6 

and VH ab8 were expression in HB2151 bacteria cells as previously described[62, 63]. VH-Fc ab8, F6-

ab8-Fc, and RBD-Fc were expressed with Expi293 cells as previously described[48, 62]. Expressed 

Protein purity was estimated as >95% by SDS-PAGE (Invitrogen) and protein concentration was 

measured spectrophotometrically (NanoVue, GE Healthcare). The panning process was described in 

detail in our previous protocol [64]. 

ELISA 

Ninety-six-well Elisa plates (Corning 3690) were coated with the RBD, S1 mutants or S trimer variants at 

a concentration of 5 μg/mL (diluted with 1xPBS) and incubated at 4 � overnight (50 μL per well). The 

next day, plates were blocked with 150 μL 5% milk (Bio-RAD) in DPBS solution at room temperature 

for 2 hours. Primary antibodies were diluted with the same 5% milk blocking buffer and 1:10 or 1:3 serial 

dilution series were conducted, with 1 μM as the highest concentration. After 2 hours of blocking, the 

primary antibodies were added (50 μL per well) and incubated at room temperature for 2 hours. After 2 

hours incubation, the plates were washed 4 times with 0.05% Tween 1xPBS (PBST) solution using a 

plate washer (BioTek). Secondary antibodies (anti-Flag-HRP or anti-Human Fc-HRP) were prepared with 

the same 5% milk at a dilution of 1:1000. 50 μL of secondary antibody was added into each well and 

incubated at room temperature for 1 hour. After 1 hour incubation, the plates were washed 5 times with 

PBST.  50 μL of TMB substrate (Sigma) was added into each well, allowed 1-2 minutes to develop color, 

then stopped with 50 μL H2SO4 (1M, Sigma) and the plate scanned at 450 nm absorbance. The ELISA 

results were analyzed using GraphPad Prism 9.0.2. 

BlitZ 

Antibody affinities were measured by biolayer interferometry BLItz (ForteBio, Menlo Park, CA). For VH 

F6 affinity determination, VH F6 was biotinylated with BirA biotin-protein ligase standard reaction kit 

(BirA500, Avidity, USA). Streptavidin biosensors (ForteBio: 18–5019) were used for biotinylated VH F6 

immobilization. For F6-ab8-Fc affinity determination, Protein A biosensors (ForteBio: 18-5010) were 

used for immobilization. Dulbecco’s phosphate-buffered saline (DPBS) (pH = 7.4) was used for baseline 

and dissociation collection. The detection conditions used were: (I) baseline 30s; (II) loading 120 s; (III) 

baseline 30 s; (IV) association 120 s with a series of concentrations (1000 nM, 500 nM, 250 nM for VH 

F6; 500 nM, 250 nM, 125 nM for F6-ab8-Fc); (V) dissociation 240 s. The Ka and Kd rates were measured 

by BLItz software and KD was calculated for each antibody by the Kd /Ka ratio. For VH F6 - VH ab8 
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competition, Protein A biosensors (ForteBio: 18-5010) were used for RBD-Fc immobilization. The 

detection conditions used were (I) baseline 30s; (II) loading 120 s; (III) baseline 30 s; (IV) association 

120 s with VH ab8; (V) association 120 s with VH F6. 

Electron Microscopy Sample Preparation and Data Collection  

For cryo-EM, SARS-CoV-2 S trimer Beta mutant were deposited on grids at a final concentration of 2 

mg/ml. Complexes were prepared by incubating S trimer Beta mutant with VH F6 at a molar ratio of 1:10. 

Grids were cleaned with H2/O2 gas mixture for 15 s in  PELCO easiGlow glow discharge unit (Ted Pella) 

and 1.8 μl of protein suspension was applied to the surface of the grid. Using a Vitrobot Mark IV 

(Thermo Fisher Scientific), the sample was applied to either Quantifoil Holey Carbon R1.2/1.3 copper 

300 mesh grids or UltrAuFoil Holey Gold 300 mesh grids at a chamber temperature of 10˚C with a 

relative humidity level of 100%, and then vitrified in liquid ethane after blotting for 12 s with a blot force 

of −10. All cryo-EM grids were screened using a 200-kV Glacios (Thermo Fisher Scientific) TEM 

equipped with a Falcon4 direct electron detector and data were collection on a 300-kV Titan Krios G4 

(Thermo Fisher Scientific) TEM equipped with a Falcon4 direct electron detector in electron event 

registration (EER) mode. Movies were collected at 155,000× magnification (physical pixel size 0.5 Å) 

over a defocus range of −3 μm to −0.5 μm with a total dose of 40 e – /Å2 using EPU automated 

acquisition software (Thermo Fisher).  

Image Processing 

A detailed workflow for the data processing is summarized in Supplementary Figure S2. All data 

processing was performed in cryoSPARC v.3.2 [65]. On-the-fly data pre-processing including patch 

mode motion correction (EER upsampling factor 1, EER number of fractions 40), patch mode CTF 

estimation, reference free particle picking, and particle extraction were carried out in cryoSPARC live. 

Next, particles were subjected to 2D classification (just for evaluation of the data quality) and 3 rounds of 

3D heterogeneous classification. The global 3D refinement was performed with per particle CTF 

estimation and high-order aberration correction. Focused refinement was performed with a soft mask 

covering the down RBD and its bound VH F6. Resolutions of both global and local refinements were 

determined according to the gold-standard FSC [66].  

Model Building and Refinement 

Initial models either from published coordinates (PDB code 7MJI) or from homology modeling (VH 

F6)[67] were docked into the focused refinement maps or global refinement maps using UCSF Chimera 

v.1.15[68]. Then, mutation and manual adjustment were performed with COOT v.0.9.3[69], followed by 

iterative rounds of refinement in COOT and Phenix v.1.19[70]. Model validation was performed using 
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MolProbity[71]. Figures were prepared using UCSF Chimera, UCSF ChimeraX v.1.1.1[72], and PyMOL 

(v.2.2 Schrodinger, LLC). 

Molecular dynamics simulations of SARS-CoV-2 Omicron RBD complexed with F6, and evaluation 

of binding energies.  

We constructed a structural model for the Omicron RBD complexed with F6 using the cryo-EM structure 

of F6/Beta RBD complex as template, and constructed the system for molecular dynamics simulations of 

this complex using the CHARMM-GUI Solution Builder module[73]. The resolved N-linked glycans and 

disulphides were included in the model, along with explicit water molecules to cover a distance 10 Å 

away from protein edges. Sodium and chloride ions corresponding to 0.15 M NaCl were included. This 

resulted in a simulation box of 94×94×94 Å3. CHARMM36 force field with CMAP corrections was used 

for the protein, water, and glycan molecules[74, 75]. All MD simulations were performed using NAMD 

(version 2.13)[76] with the protocol adopted from earlier work[77]. Simulations were performed in 

triplicates with 100 ns each for the Omicron RBDs complexed with F6.  Binding free energies ΔGbinding  

were evaluated using PRODIGY[78], and binding dissociation constants, KD, using KD = exp(ΔGbinding/RT) 

x 109 (in nM) with RT = 0.6 kcal/mol at T = 300K. ΔGbinding histograms were generated based on 800 

snapshots evenly collected during the MD simulation time interval 20 < t ≤ 100 ns for each run.  

Pseudovirus Neutralization Assay 

SARS-CoV-2 spike Wuhan-Hu-1 (+D614G), Alpha, Beta, Gamma, Delta, and Omicron protein genes 

were synthesized and inserted into pcDNA3.1 (GeneArt Gene Synthesis, Thermo Fisher Scientific). 

HEK293T cells (ATCC, cat#CRL-3216) were used to produce pseudotyped retroviral particles as 

described previously[79]. 60 hours post transfection, pseudoviruses were harvested and filtered with a 

0.45 µm PES filter. HEK293T-ACE2-TMPRSS2 cells (BEI Resources cat# NR-55293) were seeded in 

384-well plates at 20 000 cells for neutralization assays. 24 hours later, normalized amounts of 

pseudovirus preparations (Lenti-X™ GoStix™ Plus) were incubated with dilutions of the indicated 

antibodies or media alone for 1 h at 37°C prior to addition to cells and incubation for 48 h. Cells were 

lysed and luciferase activity assessed using the ONE-Glo™ EX Luciferase Assay System (Promega) 

according to the manufacturer’s specifications. Detection of relative luciferase units (RLUs) was 

measured using a Varioskan Lux plate reader (Thermo Fisher).  

Authentic SARS-CoV-2 Plaque Reduction Neutralization Assay 
  
Neutralization assays were performed using Vero E6 cells (ATCC CRL-1586). One day before the assay, 

the Vero E6 cells (3 x 105 cells) were seeded in 24-well tissue culture plates per well. Antibodies were 
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serially diluted by two-fold with a starting concentration ranging from 4 μg/mL to 40 μg/mL (depending 

on the antibody being tested) and mixed with equal volume of 30-50 plaque forming units (pfu) of SARS-

CoV-2. The following SARS-CoV-2 variants were used: isolate USA-WA1/2020 (NR-52281, BEI 

Resources); isolate hCoV-19/South Africa/KRISP-EC-K005321/2020 (NR-54008, BEI Resources); 

isolate hCoV-19/USA/CA_UCSD_5574/2020 (NR-54008, BEI Resources); and isolate hCoV-

19/USA/PHC658/2021 (NR-55611, BEI Resources). The antibody-virus mixture was then incubated at 

37°C in a 5% CO2 incubator for 1 hour before adding to the Vero E6 cell seeded monolayers. The 

experiments were performed in duplicate. Following 1 h incubation at 37 °C, an overlay media containing 

1% agarose (2x Minimal Essential Medium, 7.5% bovine albumin serum, 10 mM HEPES, 100 µg/mL 

penicillin G and 100 U/mL streptomycin) was added into the monolayers. The plates were then incubated 

for 48-72 hours and then cells were fixed with formaldehyde for 2 hours. Following fixation, agar plugs 

were removed, and cells were stained with crystal violet. To precisely titrate the input virus, a viral back-

titration was performed using culture medium as a replacement for the antibodies. To estimate the 

neutralizing capability of each antibody, IC50s were calculated by non-linear regression using the 

sigmoidal dose response equation in GraphPad Prism 9. All assays were performed in the University of 

Pittsburgh Regional Biocontainment Laboratory BSL-3 facility. 

Evaluation of F6-ab8-Fc Prophylactic and Therapeutic Efficacy with SARS-CoV-2 mouse Models. 

Eleven to twelve-month old female immunocompetent BALB/c mice (Envigo, stock# 047) were used for 

SARS-CoV-2 in vivo Prophylactic and Therapeutic experiments as described previously[51]. Each group 

contains five mice and five mice per cage (contain one mouse from each group) and fed standard chow 

diet. To evaluate the prophylactic efficacy of F6-ab8-Fc, mice were intraperitoneal (i.p.) injection with 

800 μg or 50 μg of F6-ab8-Fc 12 hours prior virus infection. Mice were infected intranasally with 105 

plaque-forming units (PFU) of mouse-adapted SARS-CoV-2 B.1.351 MA10. For evaluating the 

therapeutic efficacy of F6-ab8-Fc, mice were intraperitoneal injection with 800 μg of or 50 μg of F6-ab8-

Fc12 hours following infection. 4 days after virus infection, mice were sacrificed, and lungs were 

harvested for viral titer by plaque assays. The caudal lobe of the right lung was homogenized in PBS. The 

homogenate was 10-fold serial-diluted and inoculated with confluent monolayers of Vero E6 cells at 

37°C, 5% CO2 for 1 hour. After incubation, 1 mL of a viscous overlay (1:1 2X DMEM and 1.2% 

methylcellulose) is added into each well. Plates are incubated for 4 days at 37°C, 5% CO2. Then, the 

plates are fixation, staining, washing and dried. Plaques of each plate are counted to determined virus titer. 

The study was carried out in accordance with the recommendations for care and use of animals by the 

Office of Laboratory Animal Welfare (OLAW), National Institutes of Health and the Institutional Anll 

e17 Cell 184, 4203–4219.e1–e18, August 5, 2021 Article imal Care. All mouse studies were performed at 
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the University of North Carolina (Animal Welfare Assurance #A3410-01) using protocols (19-168) 

approved by the UNC Institutional Animal Care and Use Committee (IACUC) and all mouse studies were 

performed in a BSL3 facility at UNC.  
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