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Simple Summary: Flight distance determines the score of ski jumping and thus should be elongated
in the competitions. Research has found that an analysis of aerodynamics is indispensable for ski
jumping and the attitudes of athletes and skis are crucial factors to dictate the aerodynamic forces. As
a follow-up to our previous computational fluid dynamics work, an optimization of the ski attitudes
is conducted to maximize the lift-to-drag ratio under certain lift constraints. The optimal attitudes at
these lift levels are of practical importance for athlete training and the angle of attack is proven to
be pivotal for the optimal lift-to-drag ratio. The flow structures generated by the ski at the optimal
attitudes are also discussed, together with a comparison with previous wind-tunnel measurements.

Abstract: The control and adjustment of in-flight attitudes are critical to enlarging the flight distance
of ski jumping. As one of the most important gears, the skis provide sufficient lift and drag forces for
the athletes, and thus their in-flight attitudes should be optimized to improve flight performance.
Here, the lift-to-drag ratio of a ski jumping ski is optimized with/without a constraint of lift capacity.
The ski attitude is defined by three Eulerian angles and the resulting aerodynamic characteristics
are predicted by Kriging models, which are established based on computational fluid dynamics
(CFD) data. The surrogated models are dynamically updated in the optimization process to ensure
their accuracy. Our results find that the optimization of the lift-to-drag ratio should be constrained
by a certain lift capacity to be more practical. The angle of attack of the ski dominates the optimal
lift-to-drag ratio at different lift levels while the yaw and roll angles are almost independent of the
constraint once the required lift coefficient surpasses 0.6. This thus suggests that the athletes should
focus on the angle of attack when modifying the ski attitude in the flight, which may reduce the
difficulties in their in-flight decision makings.

Keywords: sports performance; biomechanics; computational fluid dynamics (CFD); optimization;
kriging model

1. Introduction

Ski jumping is one of the most competitive events in the Winter Olympic Games and
is scored according to the jumping distance and athlete’s posture, in which the jumping dis-
tance is closely related to the aerodynamic performance of the body–skis system. Successful
ski jumping is usually separated into four stages: in-run, take-off, in-flight, and landing [1].
First, the athlete transfers the potential energy into kinetic energy through in-run and
reaches the initial speed of flight after take-off [2–5], followed by an adjustment towards
the optimal flight posture within a short period. This optimal flight posture, including both
body posture and ski attitude, is vital to sustaining excellent aerodynamic characteristics,
thus maximizing the jumping distance. However, due to the complex degrees of freedom
of the body–ski system, the coupling of unsteady aerodynamics and rigid body dynamics,
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and the effects of field gust, it is a challenging task to decide the optimal in-flight posture,
especially ahead of field jumps.

For field jumps, it is laborious to measure the aerodynamic characteristics in the air
within a short flight period. Thus, early studies conducted wind tunnel experiments as an
alternative. Remizov et al. studied the optimal in-flight posture of ski jumpers based on
wind tunnel measurement of aerodynamic forces [6]. It is shown that in the early flight,
athletes should tilt their bodies forward and retain a low angle of attack (α) for the body
to reduce drag. However, during the late flight, they should increase the α of the body to
maximize the lift coefficient and thus obtain a longer jumping distance. Seo et al. measured
the influence of the ski α, ankle angle, and the V-angle of the skis on aerodynamic force
using wind tunnel experiments and therefore developed an aerodynamic model through
data fitting [7]. They proposed that in the early flight, the main task of the athlete should
be reducing the drag, while in the late flight, the focus should be replaced by maximizing
the lift. They also found that the optimal V angle of the skis is about 26◦ to reduce drag in
the early flight phase and to maximize lift during the rest of a jump. Later, as the V-style
became dominant, scientists began to pay special attention to the effects of the V angle
on ski aerodynamics, combined with the contribution of other attitude angles of ski, i.e.,
α and edge angle. Virmavirta and Kivekäs conducted wind tunnel measurements on the
aerodynamic characteristics of an isolated ski [8]. Within a wide range of α, V-angle, and
edge angle, the max lift–drag ratio of the ski is achieved around α = 30◦, and a larger V
angle will increase the sensitivity of ski aerodynamic forces to edge angle. In addition, they
suggested that the optimal edge angle corresponding to the lift-to-drag ratio maximum at
α = 30◦ should be limited to 5–10◦. Despite that the research of Virmavirta and Kivekäs
presented the detailed aerodynamic characteristics of an isolated ski, no flow field data
were provided and thus less insight into the interplay of the aerodynamic forces and the
flow structures has been uncovered.

Given the rapid development of computer science [9–13], computational fluid dynam-
ics (CFD) simulation has become an important numerical tool in scientific research, the
results of which are comparable to wind tunnel experiments. More importantly, CFD simu-
lations can outline the flow structures, thus helping to understand the mechanisms in force
generation. Meile et al. first compared the CFD results with wind tunnel measurements on
the in-flight aerodynamic forces and gave a reasonable agreement [14]. Their comparison
encouraged the application of CFD simulations in the aerodynamic analysis of ski jumping.
Yamamoto et al. used the CFD method to simulate the influence of athlete posture on
aerodynamic characteristics during take-off [15]. By analyzing the evaluation of vortex
structure behind the athlete, they confirmed that the arm position has a remarkable impact
on the aerodynamic performance. Kim et al. compared the performance of two flight
postures via large-eddy simulation (LES) and separated the lift generation contributed
from the body, legs, skis, arms, and head [16]. They also carried out parameterized research
using their CFD-informed simplified model and found that optimal flight postures can
increase the overall lift-to-drag ratio by 35% and 21% compared to the baseline postures.
In the aerodynamic research of other sports, Defraeye et al. simulated the performance of
different bicyclist postures using the CFD method, the accuracy of which was validated by
wind tunnel experiments [17]. Barber et al. applied the CFD simulations to football aerody-
namics and investigated the surface geometry effects on aerodynamic performance [18].
In swimming, Bixler et al. have conducted numerous research on the flow structures
generated by the athlete. Additionally, the accuracy of CFD simulations in analyzing
swimming hydrodynamics was confirmed [19,20]. All these studies support the usage of
CFD simulation in analyzing the aerodynamic performance of athletes and their gears in
various sports.

In addition, since a series of CFD simulations takes an extremely long time, which is
common in engineering optimizations, the CFD simulations are often used to establish a
surrogate aerodynamic model, which further combines with an optimization process to
report an aerodynamically optimal posture (or gear structure) and thus assists the athlete
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training (or dear design). Taking the response surface approximation (RSA) model as the
surrogate model, Shim et al. optimized the gaps between the bumpers and the ground
and the leading angle of the front bumper in bobsleighs to minimize drag production [21].
Using the sequential quadratic programming (SQP) method, the drag coefficient of the
optimal design was reduced by 3.08% compared to the reference design and the relative
error is only 0.84% compared to a CFD validation. Gong and Gu combined the kriging
model and a multi-island genetic algorithm to optimize the shape of the wind deflector of
a tractor-trailer [22]. Their results showed that the optimized shape of the wind deflector
can decrease the drag of the tractor-trailer by 4.65%, compared to the original design.
The discrepancy between the CFD simulation and the surrogate model was 0.92% for
the optimal design. Based on a CFD-informed Kriging model and the SQP method, Lee
et al. optimized the ski α and the ankle angle of the body–ski system in ski jumping [23].
Compared to the reference model, the lift-to-drag ratio of the optimal posture was enhanced
by 28.8%. Moreover, the accuracy of the optimization was validated via a further CFD
simulation, and the error of the lift-to-drag ratio is 1.1%.

In our previous CFD research on ski attitudes [24], the relationship between the
aerodynamic forces and the flow structures has been informed. As a follow-up, the current
study employs our CFD method to generate a dynamic Kriging model, which further
combines with a genetic algorithm to optimize the ski attitudes to maximize the lift-to-drag
ratio under certain lift constraints. The numerical method and the optimization process are
described in Section 2. The optimization result and flow analysis at the optimal ski attitude
are provided in Section 3. The contribution of our results to the community and future
directions are discussed in Section 4. Finally, our concluding remarks are summarized in
Section 5.

2. Methods
2.1. Numerical Simulation

In this study, a simplified ski jumping ski is selected. As shown in Figure 1a, the ski
(2.42 m× 0.11 m× 0.01 m in length, width, and thickness) consists of a rectangular flat plate
and a semi-circle attached to the head, resulting in a reference area (A) of 0.2757 m2 [8]. The
attitude angles of a ski have been defined in our previous research [24], and are labeled by
α (equivalent to the angle of attack in the literature), β (half of the V-angle in the literature),
and γ (equivalent to the edge angle in the literature). The ski is surrounded by a sphere
fluid domain with a radius of 30 m (Figure 1b). All surface meshes are hexagons and
the volume mesh is therefore generated via the polyhedral method with hex-cores. To
better resolve the flow features near the ski and the aerodynamic loads on the ski surface, a
concentric sphere region (radius = 4.25 m) with refined meshes is generated around the ski
(Figure 1c). Two buffer layers are inserted between polyhedral and hexahedral volumetric
meshes and the boundary layer constitutes 12 layers of hexahedral meshes, with the height
of the first layer above the ski surface at 4 × 10−5 m (y+ ≈ 1).
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The governing equations are the 3D implicit incompressible RANS equations,

∇ · v = 0 (1)

and
∂v
∂t

+ (v · ∇)v = f− 1
ρ
∇p + υ∇2v (2)

where v is the velocity vector, f denotes the external force acting on the fluids, i.e., the
gravity in this research. The air density (ρ) and kinetic viscosity (ν) are 1.2 kg/m3 and
1.5 × 10−5 m/s2, resulting in a Reynolds number (Re) at 4.8× 106. The governing equations
are solved using the finite volume method. The solution of the momentum equation
uses a second-order upwind scheme, and the pressure term adopts the second-order
scheme. Under the condition that the result reaches the required accuracy, the temporal
discretization is achieved by the first-order implicit formulation to improve the convergence
speed. To account for the flow transition from laminar structures to turbulent structures,
the k-ω SST (shear stress transient) model, as a combination of conventional k-ε and k-ω
models [25], is introduced in the solution [23,26]. For boundary conditions, a uniform
constant incoming airflow (U∞) with a magnitude of 30 m/s is imposed at the far-field of
the fluid domain and the direction is set according to the ski attitude [24]. Moreover, the
ski surfaces are all defined as non-slip walls. We further determine the most economic cell
number of the computational mesh via a grid-dependence test (Figure 2a). Figure 2a shows
the impact of cell number on the lift and drag coefficients, i.e., CL (CL = 2L/ρU∞

2A, L is the
lift) and CD (CL = 2D/ρU∞

2A, D is the drag) of a ski at α = 30◦, β = 15◦, and γ = 0◦, and the
solution is almost converged when the total cell number reaches 1,000,000. Therefore, the
computational mesh with 1,300,000 cells is used in this research.
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2.2. Optimization Strategy
2.2.1. Kriging Model

As an unbiased surrogate model, the Kriging model possesses excellent nonlinear
data-fitting capability [27] and has been introduced into optimization works in many
fields [28–32]. The Kriging model assumes the mapping between the objective function (y)
and design variables (x) as a stochastic process:

y = f (x)Tk + z(x) (3)

Here, f (x) denotes a regression model, emanating from a linear superposition of its
sub-functions fi(x) (i = 1, 2, . . . , p, p is the dimension of design variables). The weight of
each fi(x) is determined by ki (i = 1, 2, . . . , p). In addition, z(x) in Equation (3) introduces a
random error to the regression. The mean value of z(x) is zero and the covariance:

Cov
(

z
(

xi
)

, z
(

xj
))

= σ2R
(

θ, xi, xj
)

(4)



Biology 2022, 11, 1362 5 of 12

with

R
(

θ, xi, xj
)
=

p2

∏
l

Rl

(
θl , xi

l − xj
l

)
(5)

σ2 is the process variance for each objective function y. R is the Gaussian correlation func-
tion, which is related to the weights θ and the distance between two sample points xl

i − xl
j.

In this paper, the design variable x is defined as the attitude angles of the ski, ranging
from 0◦ to 40◦ for each angle to cover all possible ski positions in an actual ski jumping,
and the lift-to-drag ratio (L/D, also CL/CD) and lift coefficient are the objective functions.
The sample points (125 in total) to establish the original Kriging models are uniformly
distributed in the parameter space (Figure 2b) and the corresponding aerodynamic forces
are pre-calculated via CFD simulations. During the optimization iteration, the Kriging
model for CL/CD is dynamic, the accuracy of which is improved via adding two sample
points during each optimization.

2.2.2. Expectation Improvement (EI) Criteria

The precision of the Kriging model is critical to output an accurate estimation for opti-
mization. Increasing the number of initial sample points is an efficient way to improve the
overall accuracy of the Kriging model, but this often requires considerable computational
resources for pre-calculation. An alternative is to establish a dynamic Kriging model that
includes extra sample points into the original pool during each iteration of the optimization.
In this research, two extra points are added in each iteration which is determined by the
Expectation Improvement (EI) criterion and the transient optimal value [33].

The EI criterion is relevant to the global optimal value (taking a minimum problem as
an example) and the uncertainty of the Kriging model,

E[I(x)] =

{
(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin−ŷ(x)

ŝ(x)

)
ŝ(x) > 0

0 ŝ(x) = 0
(6)

Here, Φ is the standard normal distribution, ϕ is the density of standard normal
distribution, ymin, and ŝ(x) represent the global minimum and the root mean squared
error (RMSE), respectively. Thus, the EI of each estimation from the Kriging model can be
calculated. The point with the largest EI value is therefore selected as the add-in point for
the current sampling pool. The actual aerodynamic forces for this point are then obtained
via CFD simulations and then the Kriging model is updated according to the new sampling
pool. The update of the Kriging model is terminated until the optimization for CL/CD
converges, which is dictated by the residual of the EI criteria.

2.2.3. Constraint of Lift Capacity

According to our previous aerodynamic analysis of an isolated ski [24], the CL of the
ski becomes extremely low at a neutral α position, where the global peak of CL/CD is also
observed. Therefore, the optimization of CL/CD for the ski attitude should be conducted
under a constraint of CL minimum. Otherwise, the optimal attitude angles of the ski are
not worthless since almost no lift capacity of the ski is retained. In our research, the penalty
function method is used to impose the constraint of lift capacity. By setting a prescribed CL
minimum, the objective function (CL/CD) that dissatisfies the constraint will be “penalized”
to avoid its selection in the optimization. The constraint of CL is set as a series of values in
our research to provide optimal ski attitudes at different CL levels.

2.2.4. Optimization Process

The optimization procedure is illustrated in Figure 3. First, the design variables and
the objective functions are selected. The original sampling pool is then generated and
the corresponding values for the objective functions are calculated via CFD simulation.
The kriging models for CL/CD and CL are thus constructed. Second, the genetic algorithm
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(GA) is employed to search for the optimal value of CL/CD (without a CL constraint), and
the Kriging model for CL/CD is updated until convergence (the convergence threshold is
set to ε = 0.001). The control parameters for the GA are as follows: the population is 100,
and the rates for crossover and mutation are 0.3 and 0.08, respectively. To accelerate the
convergence, we set 10◦ as the lower limit for α in the unconstrained optimization. Once
the unconstrained optimization is completed, the CL constraint is applied to the optimized
dynamic Kriging model for CL/CD using the penalty function method. The Kriging models
for both CL/CD and CL are not updated in the constrained optimization since reasonable
accuracy has been achieved.
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3. Optimization Results
3.1. Unconstrained Optimization for CL/CD

In the unconstrained optimization for CL/CD, no CL constraint is imposed, and two
new sample points are included in the pool according to the EI criteria and the optimal
point (Figure 3). The optimization results are summarized in Table 1. Note that the iteration
indicates the loop shown in Figure 3, instead of the optimization cycle in the GA. For
the original Kriging model (iteration 0), the highest CL/CD found by the GA is 3.360 and
the corresponding ski attitudes are 10.06◦, 16.31◦, and 0.3516◦. A posterior validation
for this optimal ski attitude via CFD simulation gives an error of around 0.1192%, which
demonstrates the high accuracy of the current kriging model around the temporal optimal
ski attitudes. Since the global optimum may deviate from this temporal point due to the
error of the Kriging model in the parameter space, we calculate the EI criteria and search
for the global EI maximum (0.07756), which is then simulated via CFD and included in
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the sampling pool to update the Kriging model. As the iteration marches, despite the
abrupt increase in error (and EI maximum) at iterations 3 and 4, the Kriging model becomes
more accurate within the entire parameter space since the EI maximum is continuously
reduced until iteration 12 (Figure 4). The final Kriging model gives an EI maximum
below ε. Meanwhile, the error of the Kriging model is mostly retained within 5% (except
for iterations 3 and 4) throughout the update. The highest CL/CD estimated by the final
Kriging model is 3.415 and the corresponding ski attitudes are α = 10.00◦ (the lower limit
of α), β = 13.19◦, and γ = 0.08791◦. Compared to the original Kriging model, the optimal
CL/CD is enlarged by 1.639%.

Table 1. Results of the unconstrained optimization. The iteration indicates the update of the dynamic
Kriging model.

Iteration α/◦ β/◦ γ/◦ (CL/CD)KRG (CL/CD)CFD Error EIMAX

0 10.06 16.31 0.3516 3.360 3.356 0.1192% 0.07756
1 10.00 17.39 0.09768 3.358 3.340 0.5389% 0.03810
2 10.54 23.70 0.08791 3.441 3.246 6.007% 0.04523
3 11.21 7.717 2.647 3.647 3.004 21.40% 0.08894
4 12.97 17.41 0.01954 3.604 3.020 19.34% 0.1750
5 10.00 15.89 2.803 3.481 3.301 5.453% 0.1421
6 10.43 13.38 0.2930 3.415 3.371 1.305% 0.1269
7 10.00 19.86 1.260 3.380 3.283 2.955% 0.05140
8 10.14 11.75 1.846 3.407 3.313 2.837% 0.007313
9 10.27 13.71 0.8107 3.379 3.370 0.2837% 0.02844
10 10.05 26.81 0.06837 3.484 3.297 5.672% 0.009051
11 10.03 13.66 0.4300 3.409 3.407 0.05870% 0.001609
12 10.00 13.19 0.08791 3.415 3.411 0.1173% 0.0005491
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3.2. Constrained Optimization for CL/CD

The optimization results under different CL constraints are shown in Table 2. In our
previous research [24], the CL maximum within the parameter space is around 0.82. Therefore,
four CL levels below their maximum are selected consequently to demonstrate the effect of CL
constraint on the optimization. In general, as the desired CL increases, the optimal α of the ski
increases continuously, while the optimal β first boosts up to 31.62◦ at CL > 0.5 and then falls
back to around 20◦ at higher CL constraints. The optimal γ also slightly increases as the CL
constraint increases but finally stabilizes around 5◦ at CL > 0.7. It is thus indicated that the
inclusion of the CL constraint mostly affects the optimal α. The optimal CL/CD also decreases
at a higher CL constraint, which is mostly attributed to the concomitant enlargement of
aerodynamic drag at a higher α. Again, the posterior CFD simulations validate the accuracy of
the Kriging models for both CL/CD and CL. The errors of the optimal CL/CD under the highest
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three CL constraints are 0.06238%, 0.4345%, and 0.2403% (compared to CFD simulations)
while the error in the optimization under CL > 0.5 is 3.787%. The errors of the optimal CL are
0.1126%, 0.6326%, 0.8256%, and 0.1595%, respectively.

Table 2. Results of constrained optimizations under different CL constraints.

Constraint α/◦ β/◦ γ/◦ (CL/CD)KRG (CL/CD)CFD ∆ (CL)KRG (CL)CFD

CL > 0.8 27.58 21.69 5.695 1.604 1.603 0.06238% 0.8001 0.7992
CL > 0.7 23.68 21.81 6.251 1.849 1.841 0.4345% 0.7001 0.6957
CL > 0.6 21.68 20.67 3.370 2.086 2.081 0.2403% 0.6006 0.6056
CL > 0.5 16.21 31.62 1.631 2.494 2.403 3.787% 0.5007 0.5015

None 10.00 13.19 0.08791 3.415 3.411 0.1173% 0.1909 0.1921

3.3. Flow Field Analysis

The pressure distribution and flow structures of the ski at the optimal attitudes are
shown in Figure 5. For the constraint of CL > 0.8 (Figure 5a), there are obvious low-pressure
region (LRR) footprints on the dorsal surface of the ski, which deviates to the right edge
due to the positive yaw and rolling angles. On the upwind side, the high-pressure region
(HPR) is also asymmetric and deviates to the right edge. As the CL constraint decreases
(Figure 5b–d), the LPR footprints on the dorsal surface are weakened due to the reduction in
α, while the locations of these footprints are barely changed. Moreover, the LPR footprints
near the aft edge of the ski experience a more remarkable attenuation. In addition, the
variation of optimal β due to the decrease in CL constraint results in a trivial influence
on the pressure distribution on the ski. Together with our previous simulations [24], it is
thus inferred that the LPR footprints are formed when β achieves a threshold and a further
change in β above the threshold cannot alter the footprint locations. When the constraint of
CL drops to 0.5 (Figure 5d), most LPR footprints on the ski are not noticeable at the same
strength level, except for the LPR at the ski head.
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By using Q-criterion and λ2-criterion [34,35], the three-dimensional vortical structures
produced by the skis at optimal attitude angles are shown in Figures 6 and 7. In general, all
optimal ski attitudes result in a tilted Hexa-vortex system or the coherent vortical structures
above the dorsal surface of the ski, and the locations of these vortices are in good agreement
with the LPR footprints (Figure 5). As the CL constraint decreases (Figure 6a–c), the strength
of vortices beyond the mid-length is significantly attenuated. Moreover, the vortex #3 (V3)
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to #6 (V6) of the system are not resolved under the same level of dimensionless Q = 0.7
(Figure 6d). In contrast, vortex #1 (V1) is mostly retained at every CL constraint. Further,
Figure 7 shows the attenuation of these vortices is accompanied by an elongation along
the vortex line, leading to a slender vortex structure above the wing surface (Figure 7a–c).
This can be related to the increased yaw angle β at a lower CL constraint, which further tilts
away the vortex system (Figure 7d).
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4. Discussion

Due to the high in-run speed and the transient variation of the incoming velocity
during flight, it is not a simple task for ski jumpers to determine the optimal in-flight
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attitude angle for their skis. Predicting the optimal ski attitudes using the numerical
method can not only reduce the training cost but also easily sweep over all possible statuses
in the field jump, thus providing guiding significance for improving athletes’ flight skills.

In the aerodynamic research of ski jumping, the lift-to-drag ratio (CL/CD) is usually
regarded as a critical index to evaluate the aerodynamic performance since the body–ski
system undertakes a gliding flight after take-off. Under unconstrained conditions, the
optimization reports an extremely high CL/CD for the ski. Under this attitude, the ski
rotates to the lowest angle of attack (α) in our parameter space. Thus, the CD is significantly
reduced as the pressure stress on the ski is significantly low and most of the drag comes
from the friction stress. The low CD, therefore, leads to the high CL/CD. Moreover, since
no obvious high-pressure region is generated on the upwind side of the ski, the limited
pressure stress also contributes to a low CL (~0.2). Without a doubt, the most efficient
way to enhance the aerodynamic performance of the ski is to achieve high CL and low
CD simultaneously and thus leading to a high CL/CD. However, our analysis of the ski
aerodynamics has shown that the CL and CD are mostly dependent on α and an increase
in CL often triggers an increase in CD [24], which may finally lead to a shorter flight
distance [36]. Usually, in the early flight phase, the athletes maintain a low α to reduce
the CD. A low CD is particularly advantageous for retaining the initial flight velocity
in the horizontal direction during the early in-flight period, which thus is an important
factor in extending the flight distance [37]. During the later flight phase, the athletes
focus on improving CL. A strong horizontal component of CL is beneficial for a larger
flight distance [6,7]. In addition, although the horizontal component of CD is adverse
to the flight, the vertical component of CD (against gravity) can support the athlete and
extend the flight period [14]. This also explains why researchers often combine CL and
CD (i.e., CL/CD) to assess ski aerodynamic performance. Considering the requirement of a
high lift, therefore, the optimization of CL/CD for the ski should be conducted under the
constraint of a minimum lift capacity. In this research, four different levels of CL constraints
are selected according to the lift maximum of the ski and the search for optimal CL/CD is
constrained under certain levels of lift capacity. It is found that α is the most important
attitude angle to determine the lift and, in general, the optimal CL/CD is reduced as the
CL constraint goes up. Moreover, to maintain the required lift capacity, the optimal α also
increases for a higher CL constraint, while the optimal β first increases abruptly and then
stabilizes around 20◦. The optimal γ is suggested to be below 5◦ for all CL constraints,
which agrees with the results of previous research [8], in which the CL/CD maximum is
produced at γ = 5–10◦.

Finally, the limitations of the current study are discussed. First, our sampling data
originates from the numerical analysis of an isolated ski and ignores the interaction in
a ski pair, as well as the interaction between the athlete’s body and skis. Second, our
optimization of CL/CD only considers the constraint of lift capacity. In actual flights, the
aerodynamic moments and the stability are also important to elongate the flight distance,
thus being possible constraints for the optimization. Finally, the aerodynamic force of the
ski is approximated by surrogate models. Despite that posterior CFD validations prove the
accuracy of the surrogate models, fully CFD-based optimizations are still recommended
given sufficient computational resources.

5. Conclusions

By combining the Kriging model and the genetic algorithm, the attitude angles of
a ski jumping ski under conventional in-flight circumstances are optimized to enlarge
the lift-to-drag ratio. The lift capacity of the ski can be constrained during optimization
through the penalty function method. The Kriging models are established to reduce the
computational resource and a dynamic upgrading strategy is employed to improve the
accuracy. In the absence of lift constraints, due to the extremely low aerodynamic drag at a
low angle of attack (α) around 10◦, the ski can achieve a remarkably high lift-to-drag ratio.
However, the corresponding lift generation is not high enough to enlarge the flight distance.
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When the lift constraints are imposed, α becomes one of the most critical attitude angles, in
that the optimal lift-to-drag ratio at a higher lift constraint corresponds to a higher α but the
yaw and roll angles become stabilized. The optimal yaw and roll angles are around 20◦and
5◦, respectively. This infers that the athletes can mostly retain the yaw and roll angles of
the ski during flight while adjusting α to maintain the requirement of lift-to-drag ratio and
lift capacity. This can provide further advice on the control of the skis for athletes, which
may simplify their in-flight decision makings.
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