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Abstract: Carbon dots (CDs) can be prepared from various organic (abundant) compounds that are
rich in surfaces with –OH, –COOH, and –NH2 groups. Therefore, CDs exhibit good biocompatibility
and electron transfer ability, allowing flexible surface modification and accelerated electron transfer
during catalysis. Herein, CDs were prepared using a hydrothermal method with fructose, saccharose,
and citric acid as C sources and urea as an N dopant. The as-prepared CDs were used to catalyze
AgNO3–trisodium citrate (TSC) to produce Ag nanoparticles (AgNPs). The surface-enhanced Raman
scattering (SERS) intensity increased with the increasing CDs concentration with Victoria blue B
(VBB) as a signal molecule. The CDs exhibited a strong catalytic activity, with the highest activity
shown by fructose-based CDs. After N doping, catalytic performance improved; with the passivation
of a wrapped aptamer, the electron transfer was effectively disrupted (retarded). This resulted in
the inhibition of the reaction and a decrease in the SERS intensity. When bisphenol A (BPA) was
added, it specifically bound to the aptamer and CDs were released, recovering catalytical activity.
The SERS intensity increased with BPA over the concentration range of 0.33–66.67 nmol/L. Thus, the
aptamer-adjusted nanocatalytic SERS method can be applied for BPA detection.

Keywords: CDs catalysis; aptamer adjust; SERS; BPA

1. Introduction

Because of their high selectivity, high affinity, and low concentration dissociation,
aptamer (Apt) reactions have been widely used in biomedicine, analytical chemistry, and
clinical examination [1–8]. Through surface-enhanced Raman scattering (SERS), an en-
hanced Raman signal is obtained for the molecules adsorbed on or close to the metal surface
and activated by its local surface plasma resonance (LSPR) [9–13]. With the development
of nanoparticle preparation technology, SERS substrates have become more flexible and
inexpensive, allowing them to be modified and fixed on slides or optical fibers [14,15] or
used directly in colloids [16]. These advantages have resulted in the widespread use of
SERS nanosubstrates with local surface plasmon effects [17–20]. In addition, nanocatalysis
has been conducted to generate noble metal nanoparticles. The generated nanoparticles
have been subsequently used as a direct SERS substrate based on the LSPR effect and
subjected to the Apt reaction to establish an analysis platform [21–23].

Carbon dots (CDs) typically exhibit good biocompatibility and have been widely used
as bioimaging probes and biosensors [24,25]. CDs have different preparation methods
and numerous sources (including carbohydrates, amino acids, and organic acids) that
promote flexible structure modification [26–29]. In addition, CDs exhibit good electronic
transfer ability and can be used to catalyze redox reactions [30–33] and to establish analysis
methods. Long groups [31] prepared CDs with lampblack followed by reduction with
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NaBH4 to form r-CDs, which was then used to catalyze the reaction of hydrogen perox-
ide with 3,3′,5,5′-tetramethylbenzidine for hydrogen peroxide detection (detection range:
0.01–0.1 mM). Wang and coworkers [32] synthesized CDs containing O, N, Fe, S, and C
by the hydrothermal treatment of animal blood. The as-prepared CDs exhibited excellent
peroxidase-like catalytic activity and could be mixed with glucolase to determine glucose
by colorimetry with a detection range of 0.2–2.5 mM. However, the combination of Apt-
adjusted CD catalysis and Ag nanosol SERS for the detection of bisphenol A (BPA), which
is an endocrine disruptor, has not been extensively investigated.

Endocrine-disrupting chemicals (EDCs) can damage human and ecosystem health
by inhibiting reproduction as well as causing birth defects, dysplasia, and metabolic dis-
orders. Prolonged exposure to EDCs may cause obesity, diabetes, cardiovascular disease,
carcinogenesis, and neurotoxicity [34]. BPA is a common industrial material that has been
detected as a potential risk for human diseases, as evaluated by supervision organizations
and health agencies [35–37]. BPA threatens health through food, when it is present in a
container during food heating [38]. The main methods of detecting BPA include chro-
matography [39,40], absorption spectroscopy [41,42], fluorimetry [43,44], electrochemistry
methods [45], resonance Rayleigh scattering (RRS) [46,47], and surface-enhance Raman
spectroscopy [48,49]. However, these methods exhibit low selectivity and low sensitivity
or require precious and expensive instrumentation. Thus, real-time detection of BPA is
difficult. Herein, an SERS method for BPA detection was developed using as-prepared Ag
nanoparticles (AgNPs) with a strong surface plasmon resonance effect as an SERS substrate.

2. Results and Discussion
2.1. Principle

The carbon dots (CDs) surface contains abundant electrons, which can accelerate the
electron transfer between the oxidant and the reductant, allowing the redox reaction to
proceed more easily. At a certain concentration of silver nitrate (AgNO3)–trisodium citrate
(TSC), effective collisions occur infrequently between citrate and silver ions. When CDs are
added, they adsorb silver ions and citrate molecules on the surface and rapidly transfer
electrons from citrate to silver ions, resulting in the generation of elemental silver, 1,3-
acetonedicarboxylic acid, and CO2. The as-prepared Ag nanoparticles (AgNPs) increased
with increasing CDs loading (Figure 1). The SERS signal of the system was strong with
AgNPs as the SERS substrate and Victoria blue B (VBB) as the molecular probe. When an
aptamer (Apt) enwrapped the surface of the CDs, the absorption of citrate and silver ions
on the CDs was blocked, inhibiting the catalytic activity. This resulted in a decrease in
the SERS intensity. In the presence of BPA, a specific bonding with the Apt was achieved,
resulting in CDs exposed to the reaction system and recovering the catalytic activity. The
generated AgNPs increased with BPA loading, and the SERS signals were linearly increased,
allowing for the development of an SERS method for BPA detection.
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2.2. SERS Spectra

At 85 ◦C, the reaction of silver nitrate–TSC was blocked, but in the presence of CDs, the
redox reaction proceeded to produce yellow AgNPs. When VBB was used as a signal molecule,
four enhanced SERS peaks were observed at 1614, 1394, 1200, and 795 cm−1. The 795 cm−1

peak can be attributed to the inner surface deformation of the ring. The 1200 cm−1 peak was
attributed to the outside surface deformation of NH2, while the 1394 cm−1 peak was assigned
to C–H of C=C and C–H bending vibration. The 1614 cm−1 peak was assigned to the C=C and
C=N stretching vibration of the benzene ring [50]. In addition, the 1614 cm−1 peak was the most
intense and linearly increased with the increasing CD concentration. Various C sources were
selected to prepare CDs (glucose, fructose, sucrose, and citric acid), and urea was used as an N
source to prepare N-CDs for catalysis investigation (Figures 2 and S1–S3). In the presence of
the Apt, the CD surfaces were enwrapped and isolated from the catalytic system, suppressing
the CD catalytic activity and the SERS intensity (Figures 3 and S4). When BPA was added,
it specifically conjugated with the Apt, releasing CDs and recovering catalytic activity. With
the increasing BPA loading, the amount of released CDs increased, and the generated AgNPs
increased with the SERS intensity as a function of BPA content (Figures 4 and S5–S7).
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Figure 2. Surface−enhanced Raman scattering (SERS) spectra. (a) a to h: solutions of CD−FN3 (0,
1.67, 3.33, 8.33, 33.33, 83.33, 166.67, and 333.33 µg/L) + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC
+3.33 × 10−7 mol/L Victoria blue B (VBB) + 0.02 mol/L NaCl; (b) a to h: solutions of CD−SN2 (0,
3.33, 8.33, 16.67, 33.33, 83.33, 333.33, and 833.33 µg/L) + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC
+3.33 × 10−7 mol/L VBB + 0.02 mol/L NaCl.
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Figure 3. SERS spectra of aptamer (Apt)−CD−AgNO3−TSC: (a) a to h: solutions of Apt (0, 0.33, 0.67,
1.67, 3.33, 5, 6.67, and 10 nmol/L) + 166.67 µg/L CD−FN3 + 1.33 mmol/L AgNO3 + 4.67 mmol/L
TSC +3.33 × 10−7 mol/L VBB + 0.02 mol/L NaCl; (b) a to h: solutions of Apt (0, 0.33, 0.67, 1.33, 2.67,
3.33, 5, and 6.67 nmol/L) + 333.33 µg/L CD−SN2 + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC + 3.33
× 10−7 mol/L VBB + 0.02 mol/L NaCl.
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Figure 4. SERS spectra of bisphenol A (BPA)−Apt−CD−AgNO3−TSC: (a) a to h: solutions of
3.33 nmol/L Apt + 166.67 µg/L CD−FN3 + BPA (0, 0.33, 0.67, 1.33, 3.33, 6.67, 13.33, 33.33, and
66.67 nmol/L) + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC+3.33 × 10−7 mol/L VBB + 0.02 mol/L
NaCl; (b) a to h: solutions of6.67 nmol/L Apt + 333.33 µg/L CD−SN2 + BPA (0, 1.33, 3.33, 6.67, 13.33,
33.33, 66.67, and 100 nmol/L) + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC + 3.33 × 10−7 mol/L VBB
+ 0.02 mol/L NaCl.
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2.3. The Catalytic Effect of CDs and the Inhibition of the Apt

Under the optimal conditions, AgNO3 slowly reacted with TSC. When the nanocatalyst
was added, the small particle size, high surface energy, and high surface electron density
allowed silver ions and citrate to absorb on its surface, facilitating electron transfer. The
reaction generated yellow AgNPs, and the system SERS intensity increased rapidly due
to the accelerated electron transfer. The catalytic activities of various catalysts, i.e., the
as-prepared CDs using glucose, fructose, sucrose, citric acid, and the corresponding N
dopants, as well as AgNPs, were investigated. The CDs produced with pure citric acid as a
C source showed no catalysis, while the others had strong catalysis with N doping further
increasing the catalytic activity (Table 1). This indicated that N atoms in the CD crystal
lattice facilitated the incorporation between CDs and –COOH or –NH2 by non-covalent
hydrogen bonds and Van der Waals forces. The as-prepared AgNPs caused the SERS
value to increased (Table S1). In addition, AgNPs could catalyze this reaction even at the
concentration of 13.33 nmol/L, indicating that the as-prepared AgNPs were autocatalytic
(Figure S8).

Table 1. Analytical characteristics of the Apt-adjusted catalysis and Ag nanoplasma SERS for the
determination of BPA.

Test Method Nanocatalyst Working Curve Linearly Range Coefficient (R2) Limit of Detection

SERS

CD-FN0 ∆I1614 cm−1 = 7.96 C − 0.81 3.33–133.33 nmol/L 0.9988 1.2 nmol/L

CD-FN1 ∆I1614 cm−1 = 22.12 C + 59.70 1.33–100 nmol/L 0.983 0.8 nmol/L

CD-FN2 ∆I1614 cm−1 = 39.16 C + 132.51 0.67–66.67 nmol/L 0.9709 0.2 nmol/L

CD-FN3 ∆I1614 cm−1 = 54.50 C + 50.22 0.33–66.67 nmol/L 0.9978 0.1 nmol/L

CD-FN4 ∆I1614 cm−1 = 40.13 C + 136.5 0.67–66.67 nmol/L 0.966 0.3 nmol/L

CD-FN5 ∆I1614 cm−1 = 38.49 C + 104.61 0.67–66.67 nmol/L 0.984 0.3 nmol/L

CD-SN0 ∆I1614 cm−1 = 17.31 C + 18.75 3.33–133.33 nmol/L 0.9984 2.0 nmol/L

CD-SN1 ∆I1614 cm−1 =22.93 C + 58.28 1.33–100 nmol/L 0.9886 0.8 nmol/L

CD-SN2 ∆I1614 cm−1 = 35.00 C + 17.67 1.33–100 nmol/L 0.9976 0.5 nmol/L

CD-SN3 ∆I1614 cm−1 = 25.67 C + 32.60 1.33–100 nmol/L 0.996 0.6 nmol/L

CD-SN4 ∆I1614 cm−1 = 25.98 C + 46.79 1.33–100 nmol/L 0.9946 0.7 nmol/L

CD-SN5 ∆I1614 cm−1 = 23.81 C + 57.91 1.33–100 nmol/L 0.9949 0.7 nmol/L

CD ∆I1614 cm−1 = 34.12 C + 46.86 0.67–66.67 nmol/L 0.9896 0.3 nmol/L

CDGN ∆I1614 cm−1 = 15.07 C + 45.55 0.67–66.67 nmol/L 0.9759 0.5 nmol/L

CDCa ∆I1614 cm−1 = 19.09 C + 47.84 0.67–66.67 nmol/L 0.9851 0.45 nmol/L

CD-CN1 ∆I1614 cm−1 = 8.66 C − 0.48 1.33–100 nmol/L 0.997 0.7 nmol/L

CD-CN2 ∆I1614 cm−1 = 31.47 C + 56.14 0.67–66.67 nmol/L 0.9938 0.3 nmol/L

CD-CN3 ∆I1614 cm−1 = 25.21 C + 45.16 0.67–66.67 nmol/L 0.9889 0.4 nmol/L

CD-CN4 ∆I1614 cm−1 = 21.85 C + 41.74 0.67–66.67 nmol/L 0.9928 0.4 nmol/L

CD-CN5 ∆I1614 cm−1 = 18.39 C + 44.54 0.67–66.67 nmol/L 0.9812 0.5 nmol/L

Ag nanoparticle (AgNP) ∆I1614 cm−1 = 27.24 C + 38.92 0.67–66.67 nmol/L 0.9938 0.3 nmol/L

2.4. Scanning Electron Microscopy (SEM)

The reaction solution was diluted up to 10 times for final BPA concentrations of 0,
3.33, and 13.33 nmol/L. Subsequently, a 10 µL sample solution was dropped onto a silicon
wafer and dried naturally before conducting SEM. As can be seen in Figure 5a, in the
absence of BPA, few AgNPs with a mean grain size of 100 nm were present in the reaction
solution. Upon BPA addition, the catalytic activity was recovered, and AgNPs were formed
by aggregation, with a mean grain size of 70 nm (Figure 5b,c), as corroborated by the laser
scattering image (Figure S9).
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Figure 5. SEM images of Apt–CD-FN3–AgNO3–TSC–BPA system (20.67 nmol/L Apt + 333.33 µg/L
CD-FN3 + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC) at the temperature of 85 ◦C for 21 min with
different BPA concentrations: (a) 0 nmol/L; (b) 3.33 nmol/L; (c) 13.33 nmol/L.

2.5. Optimization of Catalysis Conditions

The effect of the reagent concentration on the determination was studied. With the
increasing AgNO3 concentration, the amount of generated AgNPs increased with the SERS
value, while the4I value was largest at the AgNO3 concentration of 1.33 mmol/L (Figure
S10). When the AgNO3 concentration increased continuously, the SERS value decreased
conversely, because the AgNPs aggregated excessively and the control test also reacted.
Therefore, 1.33 mmol/L AgNO3 was chosen for subsequent use. With the increasing TSC
concentration, the amount of generated AgNPs increased, the SERS value increased, and
the4I value was maximized at the TSC concentration of 4.67 mmol/L (Figure S11). Thus,
4.67 mmol/L TSC was selected as optimal. The reaction temperature significantly influenced
the generated AgNPs, and at 85 ◦C for 21 min, the4I value was maximized. Thus, 85 ◦C
and 21 min were chosen as the optimal conditions for the reaction (Figures S12 and S13).
The effect of Apts was also studied, and the 4I value reached the maximum at the Apt
concentration of 13.33 nmol/L (Figure S14). In this examination, some time was required
for the combination of the Apt with fullerol. With the increasing of the binding time, the
combination strengthened within 8 min (Figure S15). With the increasing time, the 4I
value was maintained; thus, to ensure sufficient stability, a binding time of 10 min was
selected as optimal.

2.6. Working Curve

Under the optimal conditions, the working curves were prepared according to the rela-
tionship between C(BPA) and the corresponding ∆I1614 cm

−1 values (Figures 6 and S16–S19), and
the analytical characteristics are listed in Table 1. The SERS method showed the maximum
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slope of 54.50 with a limit of detection of 0.1 nmol/L. These methods were compared with
previously reported methods for BPA determination. The newly developed method was
simple and showed high sensitivity and good selectivity. Therefore, it can be used to detect
residues BPA in plastic products.
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tion of 6.67 nmol/L Apt + 3.33–133.33 nmol/L BPA + CD-FN + 1.33 mmol/L AgNO3 + 4.67 mmol/L 
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Figure 6. Working curves for the SERS determination of Apt–CD–AgNO3–TSC–BPA: (a) the solution
of 6.67 nmol/L Apt + 3.33–133.33 nmol/L BPA + CD-FN + 1.33 mmol/L AgNO3 + 4.67 mmol/L
TSC + 3.33 × 10−7 mol/L VBB + 0.02 mol/L NaCl; (b) the solution of 10.00 nmol/L Apt + 3.33–
133.33 nmol/L BPA + CD-SN + 1.33 mmol/L AgNO3 + 4.67 mmol/L TSC + 3.33 × 10−7 mol/L VBB
+ 0.02 mol/L NaCl.

2.7. Influence of Substances

According to the procedure, CD-FN was used as a catalyst, and the influence of the
coexisting interfering substances on the determination of 3.33 nmol/L BPA was tested. The
common substances tested did not interfere with the determination with a relative error of
±10% (Table S2).

2.8. Sample Analysis

Different brands of plastic films and polythene bags, unbranded grocery bag, and
2 disposable plastic drinking cup brands were purchased from the market and snipped.
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Then, 0.4 g of the samples was soaked for 48 h in ethyl alcohol. The extracts were then air-
dried in a well-ventilated area, subsequently dissolved in 100 mL of double-distilled water
and stored at 4 ◦C. According to the procedure, 50 µL of the samples were used to detect
BPA. A known amount of BPA was added to the sample, and recoveries of 98.5–105.4%
were obtained (Table S3).

3. Materials and Methods
3.1. Apparatus

A model DXR smart Raman spectrometer (Thermo Company, Waltham, MA, USA)
with a laser wavelength of 633 nm and a laser power of 3 mW, a Cary Eclipse fluorescence
spectrophotometer (Varian Company, Palo Alto, CA, USA), a TU-1901 double-beam UV-
visible spectrophotometer (Beijing General Instrument Co., LTD, Beijing, China), and an
FEI Quanta 200 FEG field-emission scanning electron microscope (FEI Company, Hillsboro,
OR, USA) were used.

3.2. Reagents

Apt with a sequence of 5′-3′ GGG CCG TTC GAA CAC GAG CAT G N60 GG ACA GTA
CTC AGG TCA TCC TAG G (Sangon Biotech (Shanghai) Co., Ltd., China). 1.0 × 10−3 mol/L
BPA: 22.8 mg BPA were dissolved with 2.0 mL ethanol and then diluted to 100 mL with
water (0.1 mol/L, measured by the HPLC method [51]). The solution was diluted and
used step by step. 0.01 mol/L silver nitrate (Sinopharm chemical reagent Co. Ltd., China);
0.1 mol/L TSC (Xilong Scientific Co., Ltd., Shantou, China); 10−3 mol/L VBB solution:
25 mg VBB were dissolved with 5.0 mL ethanol and then diluted to 50 mL with water. The
solution was diluted and used step by step. glucose; fructose; sucrose; citric acid; urea;
and Ca(OH)2 (Sinopharm chemical reagent Co. Ltd., Shanghai, China). All reagents were
analytically pure, and water was double-distilled.

Preparation of N-CDs (CD-GN): 1 g glucose and 1 g urea ultrasonic dissolved in
30 mL water (N: 11.6%) to form a yellow solution. The mixture was transferred into a high-
pressure reaction kettle heated with polytetrafluoroethylene lining for 180 ◦C for 5 h and
then air-cooled to room temperature. The reaction mixture was a brown yellow solution.
Then, it was dialyzed for 12 h with an MWCO 3500Da dialysis bag, and the water was
changed at every 2 h until the dialysate was colorless. The CDs were adjusted to neutral
with 50 mmol/L NaOH and then diluted to 30 mL with water. The CDGN concentration
was 0.025 g/mL.

Preparation of N-CDs (CD-FN): 1 g fructose and urea (0, 0.2, 0.5, 1.0, 1.5, and 2.0 g)
ultrasonically dissolved in 30 mL water to form a yellow solution, marked as CD-FN0, CD-
FN1, CD-FN2, CD-FN3, CD-FN4, and CD-FN5, respectively. The mixture was transferred
into a high-pressure reaction kettle heated with polytetrafluoroethylene lining at 180 ◦C for
5 h and then air-cooled to room temperature. The reaction mixture was a brown yellow
solution. Then, it was dialyzed for 12 h with an MWCO 3500Da dialysis bag, and the
water was changed at every 2 h until the dialysate was colorless. The CDs were adjusted
to neutral with 50 mmol/L NaOH and then diluted to 30 mL with water. The CD-FN
concentration was 0.025 g/mL.

Preparation of N-CDs (CD-SN): 1 g sucrose and urea (0, 0.2, 0.5, 1.0, 1.5, 2.0 g) ultra-
sonically dissolved in 30 mL water to form a yellow solution, marked as CD-SN0, CD-SN1,
CD-SN2, CD-SN3, CD-SN4, and CD-SN5, respectively. The mixture was transferred into
a high-pressure reaction kettle heated with polytetrafluoroethylene lining at 180 ◦C for
5 h and then air-cooled to room temperature. The reaction mixture was a brown yellow
solution. Then, it was dialyzed for 12 h with an MWCO 3500Da dialysis bag, and the
water was changed at every 2 h until the dialysate was colorless. The CDs were adjusted
to neutral with 50 mmol/L NaOH and then diluted to 30 mL with water. The CD-SN
concentration was 0.025 g/mL.

Preparation of Ca-CDs (CDCa): 1 g citric acid and 0.4 g Ca(OH)2 were dissolved in a
reaction kettle with 10 mL water, and then, 500 µL ethidene diamine were added slowly
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and mixed well. The mixture was heated at 200 ◦C for 4 h in a muffle furnace. Then, the
reaction mixture was centrifuged at 10,000 rad/s for 10 min. The precipitate dissolved in
water and adjusted to pH 7.5 with 50 mmol/L NaOH and then diluted to 10 mL with water.
The CDCa concentration was 0.1 g/mL.

Preparation of N-CDs (CD-CN): 1 g citric acid and urea (0, 0.2, 0.5, 1.0, 1.5, 2.0 g)
ultrasonically dissolved in 30 mL water to form a yellow solution, marked as CD-CN0, CD-
CN1, CD-CN2, CD-CN3, CD-CN4, and CD-CN5, respectively. The mixture was transferred
into a high-pressure reaction kettle heated with polytetrafluoroethylene lining at 180 ◦C for
5 h and then air-cooled to room temperature. The reaction mixture was a brown yellow
solution. Then, it was dialyzed for 12 h with an MWCO 3500Da dialysis bag, and the water
was changed at every 2 h until the dialysate was colorless. The CDs solution was adjusted
to neutral with 50 mmol/L NaOH and then diluted to 30 mL with water. The CD-CN was
0.025 g/mL.

3.3. Procedure

First, 20 µL of 1.5 µmol/L Apt, a certain amount of BPA, and 15 µL of a 0.02 g/L CD
solution were added to a 5 mL graduated tube, mixed well and reacted for 20 min. Then,
200 µL of 0.01 mol/L AgNO3 and 70 µL of 0.1 mol/L TSC were added, and the mixture was
diluted to 1.5 mL with water. The mixture was subsequently heated for 21 min in an 85 ◦C
water bath and cooled with ice water. Next, 50 µL of 1.0 × 10−5 mol/L VBB and 40 µL of
1 mol/L NaCl were added and mixed well. The SERS spectra were recorded using a Raman
spectrometer. The reaction solution SERS intensity at 1614 cm−1 (I1614 cm

−1) and that of a
blank solution without BPA (I0) were recorded, allowing the value of4I = I1614 cm−1 −I0 to
be calculated.

4. Conclusions

The prepared CDs had a high surface effect and effectively catalyzed the reaction of
TSC and silver nitrate to produce yellow AgNPs. The generated AgNPs showed strong
SERS effects, with the SERS intensity linearly increased with the CD loading. When
CDs were enwrapped using an Apt, the CD–silver ion binding was blocked, suppressing
the catalytic activity. BPA specifically conjugated with the Apt, releasing the CDs and
recovering the catalytic activity. The system SERS intensity linearly increased with the
increasing BPA content. Therefore, an Apt-adjusted nanocatalysis and an SPR effect spectral
analysis for BPA detection were established with excellent sensitivity, selectivity, simplicity,
and rapidness.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12081374/s1, Figure S1: SERS spectra of CDGN–AgNO3–TSC, Figure S2: SERS spectra
of CDCa–AgNO3-TSC, Figure S3: SERS spectra of CD-CN–AgNO3–TSC, Figure S4 SERS spectra of
Apt–CD-CN–AgNO3–TSC, Figure S5: SERS spectra of BPA–Apt–CD-GN–AgNO3–TSC, Figure S6:
SERS spectra of BPA–Apt–CDCa–AgNO3–TSC, Figure S7: SERS spectra of BPA–Apt–CD-CN–AgNO3–
TSC, Figure S8: The effect of AgNPs on the SERS intensity, Figure S9: Laser scattering image of
Apt–CD-FN–AgNO3–TSC–BPA system, Figure S10: Effect of AgNO3 concentration on the4I value,
Figure S11: Effect of TSC concentration on the4I value, Figure S12: Effect of temperature on the4I
value, Figure S13: Effect of time on the4I value, Figure S14: Effect of Apt on the4I value, Figure S15:
Effect of binding time on the 4I value, Figure S16: Working curve for the SERS determination of
Apt–CD-GN–AgNO3–TSC–BPA, Figure S17: Working curve for the SERS determination of Apt–CDCa–
AgNO3–TSC–BPA, Figure S18: Working curve for the SERS determination of Apt–CDCN–AgNO3–
TSC–BPA, Figure S19: Working curve for the SERS determination of Apt–AgNP –AgNO3–TSC–BPA,
Table S1: The catalytic effects of various catalyst and the inhibiting effect of Apt, Table S2: Selectivity
of the analysis of BPA by the SERS method, Table S3: Sample analysis results (n = 5).
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