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Calculation of the Gibbs–Donnan 
factors for multi‑ion solutions 
with non‑permeating charge 
on both sides of a permselective 
membrane
Jacek Waniewski, Mauro Pietribiasi & Leszek Pstras*

Separation of two ionic solutions with a permselective membrane that is impermeable to some of the 
ions leads to an uneven distribution of permeating ions on the two sides of the membrane described 
by the Gibbs–Donnan (G–D) equilibrium with the G–D factors relating ion concentrations in the two 
solutions. Here, we present a method of calculating the G–D factors for ideal electroneutral multi-
ion solutions with different total charge of non-permeating species on each side of a permselective 
membrane separating two compartments. We discuss some special cases of G–D equilibrium for 
which an analytical solution may be found, and we prove the transitivity of G–D factors for multi-ion 
solutions in several compartments interconnected by permselective membranes. We show a few 
examples of calculation of the G–D factors for both simple and complex solutions, including the case 
of human blood plasma and interstitial fluid separated by capillary walls. The article is accompanied by 
an online tool that enables the calculation of the G–D factors and the equilibrium concentrations for 
multi-ion solutions with various composition in terms of permeating ions and non-permeating charge, 
according to the presented method.

The Gibbs–Donnan theory describes the equilibrium conditions for ion solutions separated by a permselective 
(semipermeable) membrane when one of the solutions contains species that cannot pass through the membrane 
(non-permeating charge), which distorts the distribution of permeating ions on the two sides of the membrane1–4. 
The restriction of ion permeability may be due to its size, as for macromolecules, such as proteins, or due to the 
membrane charge, as in ion exchange membranes5,6. The theory proposed by J.W. Gibbs in 1878 and proved 
experimentally by F.G. Donnan in 19112 has practical applications in several fields, e.g. material and membrane 
sciences7–9, chromatography10, and biology11–13. In medicine and biomedical engineering the Gibbs–Donnan 
theory is most often used to describe the composition of blood plasma (rich in proteins) separated by a capil-
lary wall from the interstitial fluid (with low protein content)14–17 or by a dialyzer or filter membrane from a 
protein-free dialysis fluid18–20. The theory introduces a parameter, called the Gibbs–Donnan (G–D) factor (or 
coefficient), that, when multiplied by the known concentration of the given ion in the macromolecule-rich fluid 
(such as plasma), provides its equilibrium concentration in the macromolecule-free fluid (such as dialysis fluid). 
The G–D factor depends on the charge and concentrations of both permeating and non-permeating species1. 
The proper estimation of this factor is important for the description of transport processes across the membrane, 
both in equilibrium and under non-steady conditions1,21.

The G–D theory is typically applied to simple sets of ions, such as dissociated NaCl or CaCl2, with the charged 
macromolecules present only on one side of a permselective membrane1, see Fig. 1. In real life, however, more 
complex multi-ion cases are present, often with the macromolecules on both sides of the membrane at differ-
ent concentration (and therefore different total charge), see Fig. 2. For instance, the protein-rich blood plasma 
contains several small ions with different charge numbers17 and is separated by the capillary walls from the 
interstitial fluid, which also contains some charged proteins. This study presents and discusses the method for 
calculation of the G–D factors for such more complex cases and is accompanied by an MS Excel-based calculator 
of the G–D equilibrium for any mixture of ions (see Supplementary material).
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Theoretical derivations
The Gibbs–Donnan theory for multi‑ion solutions.  Let us consider two compartments separated by 
a selectively permeable membrane. Each compartment contains an aqueous solution with multiple charged spe-
cies, some of which the membrane is permeable to (permeating ions) and some other to which the membrane is 
not permeable (non-permeating charged species).

The solution in each compartment contains n permeating ions with charge number zi and molar concentra-
tion ci, i = 1,2,…n. In total, all permeating ions have s different values of the charge number vα, α = 1,2,…s. The 
non-permeating (np) species in each solution are described by Znp Cnp, where Znp is their average (concentration-
weighted) charge number and Cnp is their total molar concentration (fixed in each compartment). Note that this 
is an aggregated description of non-permeating species, as in general there might be multiple non-permeating 
species with different charge numbers and concentrations; therefore, Znp Cnp denotes the sum of the respective 
ZC products over all non-permeating species.

The electroneutrality of the solution in each compartment requires:

for the compartment 1, and

for the compartment 2.
The product of ion charge number and concentration, zc, may be referred to as ionic equivalent (for example 

in mEq/L). Thus, ionic equivalent multiplied by a constant that describes the charge of the corresponding amount 
of elementary positive charges (e.g. the charge of a millimole of monovalent cations), gives us the charge density 
of the ion (including the sign of charge).

(1)
n∑

i = 1

zici,1 + Znp,1Cnp,1= 0

(2)
n∑

i = 1

zici,2 + Znp,2Cnp,2 = 0

Figure 1.   Gibbs–Donnan equilibrium: compartment 1 and compartment 2 are separated by a permselective 
membrane; non-permeating charged species (np) are present only in compartment 1. Symbols: Z charge 
number, C concentration, DF Gibbs–Donnan factor.

Figure 2.   Extended Gibbs–Donnan equilibrium: compartment 1 and compartment 2 are separated by 
a permselective membrane; non-permeating charged species (np) are present in both compartments. Symbols: Z 
charge number, C concentration, DF Gibbs–Donnan factor.
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The equilibrium of two multi-ion solutions separated by a permselective membrane requires the intercom-
partment equilibration of the electrochemical potentials of each permeating ion as well as the equilibration of 
the chemical potential of the solvent in both compartments. Let us assume that the considered permselective 
membrane is either uncharged (size-selective) or that it has a much higher charge density compared to the bulk 
charge of either of the solutions (charge-selective). Let us also assume that there is no electrochemical gradient 
across the membrane caused by mechanisms other than the G–D effect discussed here (e.g. active transport of 
ions across biological cell membranes). In particular, we assume that there is no chemical gradient caused by a 
hydrostatic or hydraulic pressure difference across the membrane (here, we consider only the electro-diffusive 
transport of ions and not the possible osmotic shifts of the solvent across the membrane).

At the state of equilibrium, the activities of a permeating ion i (ai) in two compartments separated by a 
permselective membrane are related to the Nernst potential as follows:

where R is the perfect gas constant, F the Faraday constant, and T the absolute temperature of the mixture.
The ratios of the activities of each permeating ion in compartments 1 and 2 are hence related as follows:

The above equations hold for individual ion species, but one can also sum up the activities of all ions with 
the same charge number vα, Aα=

∑

zi = vα

ai , and then:

for all charge numbers vα. This may be shown formally as follows:

From now on, we will assume ideal solutions in which ion activity is equal to ion concentration and inde-
pendent from the concentrations of other ions in the mixture, ai = ci (for a general, non-ideal case, see Appendix 
A in the Supplementary material). We also assume that all considered permeating ions are present only in fully 
dissociated form, i.e., that they do not form any chemical compounds (pairs or complexes) with their counterions 
(for the description of a general case with the ions present in various chemical forms, see Appendix B in the Sup-
plementary material). We also assume that none of the permeating ions are bound to non-permeating species; 
in other words, we assume that ci denotes the concentration of the free-fraction of ion i in the mixture. Moreover, 
we assume that the permeating ions do not adsorb on the membrane. Finally, we assume that ions with the same 
charge number (e.g. Na+ and K+, or Mg2+ and Ca2+) interact with other charged species in the same way, which 
is a simplification of complex ion-ion interactions in non-ideal multi-ion solutions.

Based on the above assumptions and Eq. (5), for any two charge numbers vα and vβ (α, β = 1,2,…s), we have:

where Cα is the total concentration of all ions with the same charge number vα, Cα=
∑

zi = vα

ci.

From Eqs. (1, 2) we have:

Let us assume now that we know the equilibrium concentrations of all permeating ions in compartment 1 
and want to calculate the equilibrium concentrations in compartment 2. Let us also select all permeating ions 
with the charge number v1 as a reference species (note that this selection is arbitrary and that permeating ions 
with any charge number present in the mixture may be selected as a reference species). Then, using Eq. (7):
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(9)
s∑

α=1

vαCα,2 + Znp,2Cnp,2= 0



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22150  | https://doi.org/10.1038/s41598-021-00899-y

www.nature.com/scientificreports/

for all α = 1,2,…s.
Thus, we can reduce the problem to calculation of the ratio x = C1,2/C1,1 or, equivalently, calculation of C1,2. 

Using Eqs. (9, 10) we have:

where γα = vαCα,1/
(

v1C1,1

)

 and γnp,2 = Znp,2Cnp,2/
(

v1C1,1

)

 are relative ionic equivalents versus the equivalent 
of the selected reference ion in compartment 1. Note that γ1= 1.

To avoid negative exponents in the above equation, let vmax be the maximal value of vα and − vα. Then:

or, for y = x1/v1:

is the polynomial that can be solved in closed formulas for some simple mixtures of ions. For s = 1 one has 
x = −γnp,2.

Furthermore, if s (the number of distinct charge numbers of permeating ions) is higher than 1, from Eq. (8) 
we get:

where γs = vsCs,1/
(

v1C1,1

)

, γα = vαCα,1/
(

v1C1,1

)

 , and γnp,1 = Znp,1Cnp,1/
(

v1C1,1

)

 , and then:

or

The above equations are presented for the total concentrations Cα of all permeating ions with the same charge 
number vα but they may also be rewritten for individual species concentrations ci.

The Gibbs–Donnan factor (often referred to as Donnan factor) for ions with the charge number vα is:

or:

and allows for calculation of Cα,2 if Cα,1 is known:

The G–D factor depends on the overall composition of the ionic mixture, i.e. the number of different charge 
numbers of permeating ions, s, and their values z, and the relative ionic equivalents, γ. Therefore, for the given 
ionic mixture, the G–D factor has a scaling property and does not change if the ion concentrations change with-
out modification of relative ionic equivalents. In general, the G–D factor depends on the relative ionic equivalents 
of all permeating and non-permeating species.

In the case of s = 1, i.e. with all permeating ions with the same charge number, from Eqs. (1, 2) we get:

and:

(10)Cα,2=

(
C1,2

C1,1

)vα/v1

Cα,1

(11)
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α=1

xvα/v1γα+γnp,2= 0

(12)
s∑
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vmax/v1= 0

(13)
s∑
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vmax= 0

(14)γs= −

(
s - 1∑
α=1
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)

(15)
s - 1∑
α=1

γαx
(vmax + vα)/v1−

(
s - 1∑
α=1

γα+γnp,1

)
x(vmax + vs)/v1+γnp,2x

vmax/v1= 0

(16)
s - 1∑
α=1

γαy
vmax + vα−

(
s - 1∑
α=1

γα+γnp,1

)
yvmax + vs+γnp,2y

vmax= 0

(17)DFα,21 = xvα/v1

(18)DFα,21 = yvα

(19)Cα,2 = DFα,21Cα,1

(20)v1C1,1 + Znp,1Cnp,1= 0

(21)v1C1,2 + Znp,2Cnp,2= 0
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because, by Eq. (8), γnp,1= −1 if s = 1 (compare Eqs. (12, 13), and the comment that follows them). Note that in 
this case Znp,1Cnp,1 and Znp,2Cnp,2  have the same sign, as it results from the above electroneutrality conditions 
for the two compartments.

Transitivity of Gibbs–Donnan factors
Let us consider four compartments 1–4 arranged in series with permselective membranes (not permeable to 
certain charged species) separating compartment 1 from compartment 2, compartment 2 from compartment 4, 
and compartment 1 from compartment 3 (see Fig. 3).

The compartments 1 and 2 contain non-permeating charged species with the equivalents Znp,1Cnp,1 and 
Znp,2Cnp,2, respectively, whereas the compartments 3 and 4 do not contain non-permeating species. The whole 
system of compartments contains also a mixture of positively and negatively charged permeating ions. The G–D 
factor for ions with the charge number vα and compartments k and r is defined as:

where xkr = C1,k/C1,r.
Then, for each α : Cα,3 = Cα,4 and:

or:

For the proof see Appendix C in the Supplementary material.
The above implies that if two compartments with different equivalents of non-permeating species are both in 

equilibrium with another compartment without non-permeating species, then they are also in equilibrium with 
each other. Furthermore, the G–D factor for two compartments with different equivalents of non-permeating 
species may be calculated from the G–D factors for these compartments versus the compartment without non-
permeating species.

Special cases
Below we show the calculations of the G–D factor for a couple of special cases of equilibrium between two 
compartments with multi-ion solutions.

Case 1 Let us assume that all positive and negative permeating ions have the same absolute charge number 
(s=2, v1 = - v2> 0). Then, given that γ1= 1 (by definition), from Eq. (15) we get:

(22)DF1,21=
C1,2

C1,1

=
Znp,2Cnp,2

Znp,1Cnp,1

=
γnp,2

γnp,1
= −γnp,2

(23)Cα,k = x
vα/v1
kr

Cα,r = DFα,krCα,r

(24)DFα,21 = DFα,31DFα,24

(25)DFα,21 = DFα,31/DFα,42

Figure 3.   Transitivity of Gibbs–Donnan factors: compartments 1 and 2, 2 and 4, and 1 and 3 are separated by 
identical permselective membranes; non-permeating charged species (np) are present in compartments 1 and 
2 only. In equilibrium, the concentrations of permeating ions in compartments 3 and 4 are equal, Ci,4 = Ci,3. The 
Gibbs–Donnan factors for equilibrium between compartments with non-permeating species, compartment 1 vs. 
2, can be calculated using Gibbs–Donnan factors for compartments without non-permeating species, 1 vs. 3 and 
2 vs. 4: DFi,21 = DFi,31 /DFi,42. Symbols: Z charge number, C concentration, DF Gibbs–Donnan factor.
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The solution of this equation is:

In terms of concentrations Eq. (27) reads:

If the concentrations in compartment 2 are known, then we have the symmetrical expression for concentra-
tions in compartment 1:

If Znp,2Cnp,2= 0 then:

For two cations with the charge number + 1 and one anion with the charge number − 1, as for example in a 
solution of Na+, K+ and Cl−, one can express the G–D factor using the combined concentration of cations K+ 
and Na+ (C1) as in Eq. (27) or using individual concentrations of each cation separately (c1 and c2), as follows 
(derived from an equation analogous to Eq. (15) for individual ions with concentration ci and charge number 
zi, and assuming z1 = z2= 1, z3= −1):

where �i = zici,1/
(

z1c1,1
)

 , �np,1 = Znp,1Cnp,1/
(

z1c1,1
)

 , and �np,2 = Znp,2Cnp,2/
(

z1c1,1
)

.
Case 2 Let us consider one bivalent cation and one monovalent anion, as in a solution of Ca2+ and Cl−. Then, 

taking the bivalent cation as a reference species (v1 = 2), Eq. (15) takes the form:

and, denoting y = x1/2:

Equilibrium distribution of permeating ions among compartments
In many real-world problems related to multi-ion solutions separated by a permselective membrane we know 
the total mass of each permeating ion and the equivalents of non-permeating charged species in each compart-
ment. Regardless of the initial distribution of permeating ions, the electroneutral system tends to an equilibrium 
described by Eq. (7), with the balance of charge described by Eqs. (8, 9), and the balance of mass for each ion 
as follows:

where V denotes the equilibrium volume of the compartment and Mi denotes the total mass of the i-th ion. Here 
we assume that V1, V2 and Mi for all i are known, and the equilibrium concentrations in the two compartments, 
ci,1 and ci,2, for all permeating ions need to be found.

For ions with the same charge number vα we have:

or, using the G–D factor:

and therefore:

(26)x2+γnp,2x -
(
1 + γnp,1

)
= 0

(27)x = DF1,21=
C1,2

C1,1

=
−γnp,2+

√
γ2
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+4
(
1 + γnp,1

)

2
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√(
Znp,2Cnp,2

)2
+ 4v1C1,1

(
v1C1,1 + Znp.1Cnp,1

)

2v1C1,1

(29)C1,1
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=
1

DF1,21
=

- Znp,1Cnp,1+

√(
Znp,1Cnp,1

)2
+ 4v1C1,2

(
v1C1,2 + Znp,2Cnp,2

)

2v1C1,2

(30)DF1,21=
C1,2

C1,1

=
√

1 + Znp,1Cnp,1/v1C1,1

(31)x =
−�np,2+

√
λ2
np,2

+4
(
1 + �2

)(
1 + �2+�np,1

)

2
(
1 + �2

)

(32)x3∕2−
(
1 + γnp,1

)
+γnp,2x

1∕2= 0

(33)y3+γnp,2y -
(
1 + γnp,1

)
= 0

(34)ci,1V1 + ci,2V2 = Mi

(35)Cα,1V1 + Cα,2V2 = Mα

(36)Cα,1V1 + DFα,21Cα,1V2 = Mα

(37)Cα,1=
Mα

V1 + DFα,21V2
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In the case of monovalent permeating ions (s = 1) the solution of the above problem is straightforward, given 
the simple form of DFα,21 that depends only on the ratio of equivalents of non-permeating species on the two 
sides of the membrane (see Eq. (22)):

In general, however, the G–D factors depend on the equivalents of all permeating ions and therefore Eq. (37) 
cannot be used directly to calculate Cα,1 . Instead, all equations for mass and charge balance Eqs. (8, 9, 36) need 
to be solved together. Thus, using Eq. (17), DFα,21 = xvα/v1 , one gets from Eq. (37):

where Aα = Mα/V2 is an apparent concentration of ions with the charge number vα if their total amount was 
distributed in compartment 2, and B = V1/V2 . Then, the coefficients γ in Eq. (11) may be transformed to:

and:

Therefore, Eq. (11) transforms to:

and finally:

where φα = vαAα/(v1A1) and φnp,2 = Znp,2Cnp,2/(v1A1) are apparent relative ionic equivalents for the distribu-
tion of all permeating ions in compartment 2.

In general, Eq. (44) needs to be solved numerically, and once the G–D factors are found, the equilibrium 
concentrations may be calculated using Eq. (40).

Equation (44) may be also presented in other forms, as for example the one analogous to Eq. (16) with 
y = x1/v1:

where φnp,1 = Znp,1Cnp,1/(v1A1).
In the case s = 1 one has x = φnp,2

φnp,1
.

In the special case of the same absolute charge number of positive and negative permeating ions, i.e. s = 2 , 
v1 = - v2> 0 , as for example in a solution of Na+ and Cl− ( v1= 1, v2= −1 ), Eq. (45) can be reduced to:

and:

with the solution:

For another case of s = 2 and v1= 2, v2= −1 , as in a solution of Ca+ and Cl−:

(38)Cα,2=
Mα - Cα,1V1

V2

(39)Cα,1=
Znp,1Cnp,1V1

Znp,1Cnp,1V1 + Znp,2Cnp,2V2

Mα

V1

(40)Cα,1=
Aα

B + xvα/v1

(41)γα=
vαAα

v1A1

B + x

B + xvα/v1

(42)γnp,2=
Znp,2Cnp,2

v1A1

(B + x)

(43)(B + x)

(
s∑

α=1

vαAα

v1A1

xvα/v1

B + xvα/v1
+
Znp,2Cnp,2

v1A1

)
= 0

(44)
s∑

α=1

ϕα

xvα/v1

B + xvα/v1
+ϕnp,2= 0

(45)
s - 1∑
α=1

ϕα

yvmax + vα

B + yvα
−

(
s - 1∑
α=1

ϕα

B + yvα
+ϕnp,1

)
yvmax + vs+ϕnp,2y

vmax= 0

(46)x2−1

B + x
+ϕnp,2x - ϕnp,1= 0

(47)
(
1+ϕnp,2

)
x2−

(
ϕnp,1−ϕnp,2B

)
x -

(
1+ϕnp,1B

)
= 0

(48)x =

(
ϕnp,1−ϕnp,2B

)
±

√(
ϕnp,1−ϕnp,2B

)2
+4

(
1+ϕnp,2

)(
1+ϕnp,1B

)

2
(
1+ϕnp,2

)
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This equation requires numerical solution.

Examples
Example 1 Two compartments, two monovalent permeating ions, non‑permeating charge in 
one compartment only (a classic example of the Gibbs–Donnan equilibrium).  Let us consider 
the distribution of two main ions in human blood plasma and interstitial fluid, Na+ and Cl−, with the two fluids 
being separated by permselective capillary walls. Let us also assume that the non-permeating charged species 
(proteins) are present only in plasma (compartment 1) with the equivalent Znp,1Cnp,1 , and that there are no other 
ions in the two solutions. Then, from Eq. (27), the G–D factor for sodium is given by:

where γnp,1 = Znp,1Cnp,1/cNa,1.
Then, for example, if we know that in equilibrium cNa,1= 140  mmol/L, cCl,1 = 124  mmol/L, and 

Znp1Cnp1= −16 mEq/L, we have cNa,2cNa,1
= 0.941 , cCl,2cCl,1

= 1.063 , and the concentrations in the interstitial fluid (com-
partment 2) are cNa,2 = cCl,2= 131.8 mmol/L.

Let us assume now (ignoring the physiology) that the non-permeating proteins are present in compartment 
2 instead of compartment 1. Then, from Eq. (27):

Assuming, for example, that in equilibrium cNa,1 = cCl,1= 140 mmol/L, and Znp2Cnp2= −16 mEq/L, we have 
cNa,2
cNa,1

= 1.059 , cCl,2
cCl,1

= 0.944 , and the concentrations in compartment 2 are cNa,2= 148.2  mmol/L, 
cCl,2= 132.2 mmol/L.

Example 2 Three compartments, two monovalent permeating ions, non‑permeating charge 
in two compartments.  Let us consider again a simplified case of human blood plasma separated by 
permselective capillary walls from the interstitial fluid and a dialysis fluid separated from plasma by a permselec-
tive dialyzer membrane, with all fluids containing two monovalent permeating ions (Na+ and Cl−). Let us also 
assume that the non-permeating charged species (proteins) are present in plasma (compartment 1; equivalent 
Znp,1Cnp,1 = − 16 mEq/L) and in the interstitial fluid (compartment 2; equivalent Znp,2Cnp,2 = − 8 mEq/L), whereas 
the dialysis fluid (compartment 3) contains only the permeating ions. If we know the equilibrium ion concentra-
tions in compartment 3, for example cNa,3 = cCl,3= 140 mmol/L, then the equilibrium concentrations in com-
partment 1 are cNa,1= 148.2  mmol/L, cCl,1= 132.2  mmol/L, and in compartment 2: cNa,2= 144.1  mmol/L, 
cCl,2= 136.1 mmol/L (calculated similarly as in the second part of the previous example). The corresponding 
G–D factors are therefore cNa,2cNa,1

= 0.972 and cCl,2cCl,1
= 1.029 , which can be also estimated directly using Eq. (28), 

based on the known protein equivalents in compartments 1 and 2, and known concentrations of Na+ and Cl− in 
compartment 1.

Example 3 Two compartments, two monovalent permeating ions, non‑permeating charge in 
both compartments.  As is clear from Eq. (15) and from the previous examples, if we know the equilibrium 
concentrations of permeating ions on one side of a permselective membrane, then their concentrations on the 
other side of the membrane, or their G–D factors, depend on the equivalents of non-permeating charged species 
on the two sides of the membrane. Figure 4 shows how the G–D factor depends on the ratio of the equivalents 
of non-permeating species on the two sides of the membrane ( γnp,2/γnp,1 = Znp,2Cnp,2/Znp,1Cnp,1 ) for two spe-
cial cases discussed earlier, i.e. a solution of Na+ and Cl− (Eq. (27)) and a solution of Ca2+ and Cl− (Eq. (33)), for 
different levels of the relative equivalent of non-permeating species in compartment 1 (γnp,1). Note that for the 
same equivalent of non-permeating species and with the ratio γnp,2∕γnp,1 in the range 0–1, the G–D factor for a 
bivalent cation (Ca2+ in the solution with Cl−) is always lower than that of a monovalent cation (Na+ in the solu-
tion with Cl−).

Figure 5 shows a similar relationship as Fig. 4 but for the case when, instead of knowing the equilibrium 
concentrations of permeating ions on one side of the membrane, we know the total amounts of permeating ions 
distributed among the two compartments (Eq. (45)) assuming the same volume of both compartments at equi-
librium (B = 1). Note that in this case the equivalent of non-permeating species in compartment 1 is expressed 
in relation to the equivalent of the reference permeating ion in both compartments (φnp,1), and hence, for small 
values, φnp,1 in Fig. 5 corresponds roughly to γnp,1 = 2φnp,1 in Fig. 4.

Example 4 Blood plasma and interstitial fluid separated by a capillary wall.  Here, we consider 
a more detailed description of the human blood plasma and interstitial fluid that are in contact in the capillary 
beds of various body tissues, with the capillary walls acting as permselective membranes enabling the exchange 
of certain solutes between blood and tissues, while keeping some other solutes and blood cells within the vascu-
lature. Both fluids contain multiple small permeating ions as well as proteins, which, for simplicity, are treated 

(49)
y4 - y

B + y2
+ϕnp,2y

2−ϕnp,1y = 0

(50)DF1,21=
cNa,2

cNa,1
=
√

1 + γnp,1

(51)cNa,2

cNa,1
=

−γnp,2+
√

γ2
np,2

+4

2
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here as non-permeating charged species, even though some of them (e.g. albumin and small globulins) are actu-
ally able to pass through the capillary walls, and hence under physiological conditions (even in a steady state) 
there is a continuous flow of proteins from plasma to the interstitial fluid.

Exemplary concentrations of main small ions in human plasma and interstitial fluid (expressed in osmoles 
per liter of water) are shown in Table 1. 17. Assuming that these nine ions along with the negatively charged, 
non-permeating proteins constitute most of the charged species in plasma and interstitial fluid, one may calcu-
late the equivalent of proteins using the condition of electroneutrality of the two fluids as follows: the protein 
equivalent in plasma − 12.2 mEq/L and in the interstitial fluid − 4.3 mEq/L (for simplicity, we ignored here the 
fact that proteins have a non-negligible volume, and hence the ion concentrations in plasma or interstitial fluid 
differ from their concentrations in the water fractions of these fluids reported in Table 1). Using these protein 
equivalents and the equilibrium concentrations of small permeating ions in plasma (where they are typically 
measured) we have calculated the G–D factors for all permeating ions and their equilibrium concentrations in 
the interstitial fluid using Eqs. (16, 18), see Table 1. Note that the empirical concentrations provided in Table 1 
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Figure 4.   The relationship between the Gibbs–Donnan factor for the reference permeating monovalent 
(left panel) or bivalent (right panel) cation (for example Na+ or Ca2+ in a solution with Cl−) and the ratio 
γnp,2∕γnp,1 = Znp,2Cnp,2∕Znp,1Cnp,1 of equivalents of non-permeating species on the two sides of a permselective 
membrane, calculated according to Eq. (15) for different values of γnp,1 (the case with known ion concentrations 
in compartment 1).
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Figure 5.   The relationship between the Gibbs–Donnan factor for the reference permeating monovalent 
(left panel) or bivalent (right panel) cation (for example Na+ or Ca2+ in a solution with Cl −) and the ratio 
φnp,2/φnp,1 = Znp,2Cnp,2/Znp,1Cnp,1 of equivalents of non-permeating species on the two sides of a permselective 
membrane, calculated according to Eq. (45) for different values of ϕnp,1 (the case with known total amounts of 
permeating ions distributed among the two compartments of the same volume, i.e. B = 1).
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do not come from any systematic measurements but are rather examples of typical values seen in the general 
population, which may explain some discrepancy between the empirical and theoretical (estimated) ion con-
centrations in the interstitial fluid. This discrepancy can be further explained by the aforementioned disregard 
of water fractions of the considered fluids, the somewhat limited number of ions considered, as well as by the 
fact that both plasma and interstitial fluid are non-ideal solutions in which some of the ions form various species 
with their counterions or are bound to proteins (therefore, the empirical concentrations provided in Table 1 are 
not necessarily the activities of free ion fractions, as considered in the presented theory). We also ignored here 
the fact that on the tissue side of the capillary walls there are some non-permeating negative charges other than 
proteins (fixed negative charges of the extracellular matrix) that affect the G–D effect and the electroneutrality 
conditions. Moreover, the provided empirical concentrations may not correspond to a static equilibrium, since 
physiological fluids are often in dynamic equilibrium. The largest difference can be observed for bicarbonate ions 
(HCO3−), which constitute the base buffer, and hence are subject to various chemical reactions not considered 
in the theory presented here.

In the same way we calculated the G–D factors of small permeating ions in the two considered fluids versus 
a protein-free solution (assuming that such a solution would be present on the other side of a permselective 
membrane)—see Table 2 for plasma and Table 3 for interstitial fluid. The transitivity of the G–D factors (Eq. 
(25)) can be now easily checked based on the G–D factors provided in Tables 1, 2, 3.

Note that in all three tables we present the G–D factors with two decimals only. Given that the G–D factor 
can be calculated directly from the known concentrations of any individual ion in the two considered compart-
ments (DFi,21 = ci,2/ci,1), according to the theory of error propagation and assuming ci,1 ≈ ci,2 = c (as observed in 
the considered physiological example), the expected error of the G–D factor may be approximated as 2Δc/c, 
where Δc is the error of measurement of ion concentration. Assuming that the G–D factor was calculated from 
the concentrations of sodium (the most abundant ion in human blood plasma) measured with the accuracy of 
0.1 mmol/L (as provided in Tables 1 and 2), the expected error amounts to 0.0014, which is why we used the 
conservative level of accuracy of 0.01.

Table 1.   Empirical equilibrium concentrations of main small ions (in mOsm/L H2O) in human blood plasma 
(assumed total protein equivalent: − 12.2 mEq/L) and interstitial fluid (assumed total protein equivalent: 
− 4.3 mEq/L) from Guyton and Hall17 and the associated equilibrium concentrations of ions in the interstitial 
fluid along with the theoretical values of the Gibbs–Donnan factor calculated using the presented method (Eq. 
(16)).

Ion
Empirical equilibrium concentrations: 
plasma

Empirical equilibrium concentrations: 
interstitial fluid

Estimated equilibrium concentrations: 
interstitial fluid Estimated Gibbs–Donnan factor

Na+ 142.0 139.0 138.3 0.97

K+ 4.2 4.0 4.1 0.97

Ca2+ 1.3 1.2 1.2 0.95

Mg2+ 0.8 0.7 0.8 0.95

Cl− 108.0 108.0 110.9 1.03

HCO3
− 24.0 28.3 24.7 1.03

Lactate− 1.2 1.2 1.2 1.03

SO4
2− 0.5 0.5 0.5 1.06

HPO4
2− 2.0 2.0 2.1 1.06

Table 2.   Empirical equilibrium concentrations of main small ions (in mOsm/L H2O) in human blood 
plasma (assumed protein equivalent: − 12.2 mEq/L) from Guyton and Hall17 and the associated equilibrium 
concentrations of ions in a protein-free fluid along with the theoretical values of the Gibbs–Donnan factor 
calculated using the presented method (eq. (16)).

Ion
Empirical equilibrium concentrations: 
plasma

Estimated equilibrium concentrations: 
protein-free fluid Estimated Gibbs–Donnan factor

Na+ 142.0 136.3 0.96

K+ 4.2 4.0 0.96

Ca2+ 1.3 1.2 0.92

Mg2+ 0.8 0.7 0.92

Cl− 108.0 112.5 1.04

HCO3
− 24.0 25.0 1.04

Lactate− 1.2 1.3 1.04

SO4
2− 0.5 0.5 1.09

HPO4
2− 2.0 2.2 1.09
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In the case considered here, given that there are four different charge numbers of permeating ions, the Eq. 
(16) requires a numerical solution. The Excel-based calculator provided as a supplementary material enables the 
calculation of the G–D factors for such complex cases. The calculator includes a predefined (editable) example 
with the present case describing the equilibrium of main ions seen in human plasma and interstitial fluid. The 
user may freely change the composition of both fluids (including their water fractions ignored above) to see how 
it affects the calculated G–D factors and equilibrium ion concentrations. The calculator can also be used for the 
calculation of the G–D factors for other multi-ion solutions with various equivalents of non-permeating species 
in the two compartments separated by a permselective membrane.

Discussion
In mixtures of ions separated by a permselective membrane that is permeable to some of them (permeating 
ions) and not permeable to other (non-permeating charged species), the G–D equilibrium depends on the ionic 
equivalents of all ions present in the mixture on one or both sides of the membrane. However, in many studies, 
particularly in physiology and medicine, the G–D equilibrium is often assumed for each permeating ion as if it 
was the only ion in the solution, and as if the non-permeating charges were present on one side of the membrane 
only, even if they are actually present on both sides. Yet, even for such complex ideal solutions the equilibrium 
ion concentrations can be calculated using relatively simple mathematics. Namely, we showed that the problem of 
finding the G–D equilibrium for such ideal multi-ion mixtures can be solved using a polynomial equation for the 
concentration ratio of one (arbitrarily selected) permeating ion on the two sides of the membrane or one group 
of permeating ions with the same charge number, as demonstrated by Eq. (16). This ratio, called the G–D factor, 
is a function of the equivalents (i.e. products of molar concentration and charge number) of all permeating ions 
on one side of the membrane and the equivalents of non-permeating species on both sides of the membrane. 
Assuming that these equivalents are known, one can calculate the concentration ratio for the selected ion using 
Eq. (16) and then for other ions using Eq. (18). In some cases, Eq. (16) can be reduced to the second order 
polynomial, as for the monovalent ions, Eq. (26), and then it may be solved analytically. If the mixture includes 
both monovalent and bivalent ions, then the equation is of the third order, see Eq. (33). Finally, the unknown 
equilibrium concentrations of all permeating ions on the other side of the membrane may be calculated.

In the presented equations and examples, we assumed that the considered ion mixtures are ideal solutions 
(with ion activities equal to ion concentrations and independent from other ion concentrations) and that there 
are no chemical compounds (pairs or complexes) formed by individual ions and their counterions. In the Sup-
plementary material (Appendix A and B) we provide a generalized version of the G–D theory for non-ideal 
solutions (with ion activities depending on the concentrations of all ions in the mixture), in which ions may 
form various species with their counterions. This may be particularly important for multivalent ions, for which 
ion activities may strongly deviate from ion concentrations. In such cases, the solutions of the equations become, 
however, much more complex.

Typical applications of the G–D theory include permselective membranes separating multi-ion solutions 
with non-permeating, charged macromolecules, as is often the case with biological fluids studied in physiology, 
microbiology, food industry, and wastewater treatment. Within the field of physiology and medicine, the G–D 
effect applies to fluid and solute exchange across the capillary walls (microvascular exchange)22, across the cellular 
membranes (in this case, active transport across the membrane needs to be considered for some ions, such as 
sodium or potassium11), or across extracorporeal membranes, such as during hemodialysis23. In particular, the 
G–D effect is crucial when considering osmotic equilibria between the intra- and extracellular fluids as well as 
between the intra- and extravascular fluids24,25, e.g. for the analysis of cellular or tissue edema16,26.

We showed that the G–D factors have an important feature of transitivity: if we know the standard G–D fac-
tors of two solutions with different equivalents of non-permeating macromolecules against a macromolecule-free 
solution, then the G–D factors that describe the equilibrium between the two solutions with macromolecules can 
be calculated from those standard G–D factors using Eqs. (24, 25), as can be seen in Example 4.

Table 3.   Estimated equilibrium concentrations of main small ions (in mOsm/L H2O) in human interstitial 
fluid (assumed protein equivalent: − 4.3 mEq/L) taken from Table 1 and the equilibrium concentrations of 
ions in a protein-free fluid along with the theoretical values of the Gibbs–Donnan factor calculated using the 
presented method (eq. (16)).

Ion
Estimated equilibrium concentrations: 
interstitial fluid

Estimated equilibrium concentrations: 
protein-free fluid Estimated Gibbs–Donnan factor

Na+ 138.3 136.3 0.99

K+ 4.1 4.0 0.99

Ca2+ 1.2 1.2 0.97

Mg2+ 0.8 0.7 0.97

Cl− 110.9 112.5 1.02

HCO3
− 24.7 25.0 1.02

Lactate− 1.2 1.3 1.02

SO4
2− 0.5 0.5 1.03

HPO4
2− 2.1 2.2 1.03
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Another important feature of the presented formulas is the additivity of the concentrations (or activities) of 
all ions with the same charge number, i.e. to calculate the G–D factors one may use the sum of concentrations 
of all ions with the same charge number instead of considering all ions separately.

Note that in our equations we use a certain (arbitrarily selected) order of permeating ions (concentrations C1, 
C2,…Cs of ions or groups of ions with charge numbers v1,v2,…vs), with the first ion, or group of ions, treated as a 
reference species for which the G–D factor (x) is calculated using Eqs. (16, 45). If one changes the order of ions, 
in particular if one changes the reference species, the obtained equations will be different polynomials but the 
ultimate global solution for the multi-ion mixture will remain the same, i.e. regardless of the applied ion order, 
the G–D factors for individual ions and their equilibrium concentrations will be the same.

From a practical point of view, when discussing the G–D factors one should take into account the incomplete 
dissociation of salts into ions and the potential binding of ions to macromolecules (the G–D factor should be 
applied only to free ions27). Depending on the case, the role of pH needs also to be critically evaluated, especially 
for proteins and buffer ions. One should also remember that the concentrations of ions are often measured per 
volume of the whole fluid, whereas their distribution is solvent (e.g. water); therefore, a correction for the volume 
of macromolecules (or solvent/water fraction of the fluid) may be necessary21. Moreover, some experiments 
may need a correction for absorption of ions and their accumulation inside the membrane, or, especially in long 
experiments, for non-ideal semi-permeability of the membrane that might be somewhat leaky to some of the ions 
treated as non-permeating. It is worth noting, however, that our method assumes constant equivalents of non-
permeating species on the two sides of the membrane, and hence such a leak may still be acceptable, provided 
that some other mechanisms keep those equivalents constant on each side of the membrane (as for example 
the lymphatic drainage of interstitial fluid that keeps plasma and interstitial protein levels relatively constant 
in normal conditions despite the natural leakage of some proteins through the capillary walls). On the other 
hand, by considering total equivalents of non-permeating species, we ignore the fact that the individual non-
permeating species may have a largely different charge per molecule (even of opposite sign), which could affect, 
in a non-linear way, ion binding (not considered here). In particular, in the case of blood plasma and interstitial 
fluid, different types of proteins (albumin and various globulins) not only have a different net molecular charge 
(depending on the pH level) but have many isolated charged residues on their surface, thus affecting local ion 
binding. Finally, note that the G–D factors for small ions in biological fluids are relatively close to unity but their 
precise value may be of importance for ions whose concentrations are similar on both sides of the membrane, 
as for example in sodium and calcium transport in hemodialysis or peritoneal dialysis21,27.

Conclusions
In this study we presented a comprehensive method for calculating the Gibbs–Donnan factors for ideal electro-
neutral multi-ion solutions separated by a permselective membrane for cases when non-permeating charged 
species are present on both sides of the membrane, such as the case of capillary walls separating blood plasma 
and interstitial fluid with different amounts of negatively charged proteins in the two fluids.

The presented equations for the Gibbs–Donnan equilibrium may be used both when one needs to calculate 
ion concentrations in one compartment based on their concentrations in the other compartment or when one 
wants to calculate the equilibrium concentrations in the two compartments based on the total amount of ions 
to be distributed among them.
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