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Background. Osteosarcoma (OS) is a bone malignancy frequently seen in pediatrics and has high mortality and incidence.
Ferroptosis is an important cell death process in regulating the apoptosis and invasion of tumor cells, so constructing the risk-
scoring model based on OS ferroptosis-related genes (FRGs) will benefit the evaluation of both treatment and prognosis.
Methods. The OS dataset was screened from the Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) database, and OS-related FRGs were found through the Ferroptosis Database (FerrDb) using a multivariate Cox
regression model, followed by the generation of the risk scores and a risk-scoring prediction model. Further systematical
exploration for immune cell infiltration and assessing the prediction of response to targeted drugs was conducted. Results.
Based on OS-related FRGs, a risk-scoring model of FRGs in OS was constructed. The six FRGs played a role in the carbon
metabolism, glutathione metabolism, and pentose phosphate pathways. Results from targeted drug sensitivity analyses were
concordant to pathway analyses. The response to targeted drugs statistically differed between the two groups with different
risks, and the high-risk group presented a high sensitivity to targeted drugs. Conclusions. We identified a 6-ferroptosis-gene-
based prognostic signature in OS and created and verified a risk-scoring model to predict the prognosis of OS at 1, 3, and 5
years for OS patients independently.

1. Introduction

Osteosarcoma (OS) is one of the malignancies frequently
seen in pediatrics with high disability rates and mortality
[1]. The 5-year survival rate of OS patients is improved to
50–60% with developed understanding of cancer pathogene-
sis and the updating of diagnostic methods [2]. The under-
standing of tumor biology has advanced considerably over
the past decades [3]. As one of the vital cell death processes
participating in the pathophysiology of cells, ferroptosis is
involved in regulating apoptosis, invasion, and metastasis
of tumor cells [4]. As a new programmed cell death, ferrop-

tosis is iron-dependent and in contrast to apoptosis, cell
necrosis, and autophagy. The primary mechanism is that
unsaturated fatty acids from the cell membrane are catalyzed
in the presence of divalent iron or ester oxygenase, which
activates lipid peroxidation and induces cell death.

With the exploration of ferroptosis, plenty of evidence
may hold out molecularly targeted therapies for OS patients.
A previous study indicated that the mitogenic actions on
osteoblasts were related to stimulation of G6PD activity
[5]. Marinkovic et al. demonstrated that the correlation of
p63 with G6PD and PGD predicts a poor prognosis using
bioinformatics [6]. The other four FRGs were not subject
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to OS-related evidence, but they also played essential roles in
other tumor pathways. For example, ACSF2 could be one of
the FRGs to predict breast cancer [7]. Similarly, FADS2 was
proved as a predicting FRG of bladder cancer.

As yet, the traditional approaches based on histopathol-
ogic diagnosis and tumor staging system for prognostic pre-
diction of OS patients are not sufficient for precisely
evaluating the outcomes [8]. It forces the development of
robust and accurate prognostic biomarkers to assist clini-
cians to optimize therapy strategies. Hence, establishing an
effective risk-scoring model based on FRGs in OS could
assist in evaluating therapy and prognosis.

There are many online databases now, but there are few
samples in the data set about OS. As a database for pediatric
tumors, the TARGET database utilizes an integrative geno-
mic approach to determine the molecular alterations during
the onset and development of pediatric tumors and is aimed
at using data to help guide the development of more effective
and less toxic therapies [9]. And through data analysis, it
generates useful drug targets and prognostic markers for
researchers to develop new and more effective treatment
options [10].

In this study, an OS dataset from TARGET was down-
loaded for the prediction of the OS occurrence based on fer-
roptosis. FRGs were screened and normalized. Then, a risk-
scoring prediction model was constructed through the multi-
ple COX regression model [11], and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and gene ontology (GO)
database were utilized to determine related biological process
enrichment signaling pathways of FRGs.

2. Methods

2.1. Data Preparation. The gene set information including
85 samples (TARGET-OS) was contained as a training set
derived from the TARGET database [11]. The patient infor-
mation consisted of survival time and status, sex, age, disease
at diagnosis, primary tumor site, specific tumor region, and
eventual surgery (Table 1). The Ferroptosis Database
(FerrDb) was utilized for the ferroptosis information collec-
tion of FRG selection [12].

2.2. Model Establishment. To establish our model, we com-
bined univariate Cox-LASSO–multivariate Cox regression
with the clinical factors and finally constructed the risk-
scoring model using the selected FRGs. Univariate and mul-
tivariate Cox regression analyses were performed using R’s
“survival” package, and P < 0:01 was used as the filtering
condition of univariate Cox [13]. To prevent large variance,
we performed LASSO regression analysis using R’s
“GLMNET” package and determined K value by minimum
lambda [11]. The gene at the minimum of the Akaike infor-
mation criterion (AIC) was calculated and used as the vari-
able to be included in the model, and each patient’s gene
expression level was used to evaluate the risk score, with
the algorithm according to the previous studies [14, 15].
The median risk score of each patient is considered the ref-
erence standard for classifying the high and low groups,
followed by the analysis of the survival of the two groups

and drawing the survival curves using the Kaplan-Meier
method (K-M method) [16]. In virtue of the critical param-
eters and model scores and in combination with various
clinical factors, we drew a clinically relevant nomogram to
predict the 1-, 3-, and 5-year survival, and the scales on
nomograms represented the numerical ranges of each vari-
able [17].

2.3. Model Validation. We used the package of “Survival
ROC” to draw receiver operating characteristic curves
(ROC) and “RMS” for the calibration to evaluate the accu-
racy of the predicted survival rates and ROC curves for the
validation of each grouping variable [18].

2.4. GO and KEGG Analysis. We investigated the cellular
components (CC), BP, and molecular function (MF) in the
FRGs from the GO database. Furthermore, screened FRGs
were analyzed for the functional pathway analysis of KEGG
and for the functional enrichment analysis using R software
and ClusterProfiler package [19]. We then used the “corr-
plot” package to analyze the relationships between FRGs
by Pearson’s correlation coefficient.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA is imple-
mented to enrich gene sets and determine the distribution
differences between whole gene sets and phenotypes,
thereby achieving enrichment. The grouping file of the
FRG expression differences and the downloaded expres-
sion matrix file of OS common transcription group were
input into GSEA4.0.3 software [20]. The data sets used

Table 1: Clinicopathological characteristics of OS patients from
TARGET database.

Characteristics
Patients
(N = 85)

No. %

Sex

Female 37 43.53

Male 47 55.29

Unknown 1 1.18

Age

≤14 (median) 44 51.76

>14 (median) 40 47.06

Unknown 1 1.18

Race

Race 51 60.00

Asian 6 7.06

Black or African American 7 8.24

Unknown 21 24.71

Disease at diagnosis

Metastatic disease 21 24.71

Nonmetastatic disease 63 74.12

Unknown 1 1.18

Primary tumor site

Arm/hand 6 7.06

Leg/foot 76 89.41

Pelvis 2 2.35

Unknown 1 1.18

Vital status
Dead 27 31.76

Alive 58 68.24
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for enrichment were C2 and C5 molecular sets from the
Molecular Characteristic Database (MSigDB), and the out-
put results were adjusted to 100 sheets [21]. Finally, the
enrichment gene sets were screened according to
Normalized Enrichment Score ðNESÞ > 1, False‐Discovery
Rate ðFDRÞ < 0:25, and P < 0:05.

2.6. Immune Cell Infiltration. The visualization was con-
ducted for proportions of immune cell signatures in the
training set. The cell infiltration level and the stromal con-
tent for OS samples were collected through the single-
sample GSEA (ssGSEA) algorithm, and consensus clustering
through the “ConsensuClusterPlus” package.
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Figure 1: Development of prognostic ferroptosis-associated gene signature. (a) Forrest plot of univariate Cox regression. (b) Forrest plot of
multivariate Cox regression.
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2.7. Prediction of Response to Targeted Therapy. Half-maxi-
mal inhibitory concentrations (IC50) of targeted therapeutic
drugs were plotted using R’s “ggplot2” and “pRRophetic”
packages. Box plots represented the connection of the
IC50s to two risk groups.

3. Results

3.1. Collation of FRGs. Combining gene expression infor-
mation of 85 OS patients obtained from TARGET and
61 FRGs on FerrDb, the OS-related FRGs as well as the
expression information and clinical information were
found. Nine survival-related FRGs were obtained as shown
in Figure 1(a). We then used multivariate Cox regression
and LASSO method to generate a categorizer to forecast
OS according to the expression of FRGs. Finally, a com-
bination of six genes (ACSF2, CBS, FADS2, G6PD,
MT1G, and PGD) remained as predictors in the model
(Figure 1(b)).

3.2. Data Preprocessing and Risk-Scoring Model
Establishment. Based on the median risk score in the train-
ing set, the patients were separated into two risk groups:
the low and the high. Survival analysis between groups
showed that the risk score negatively correlated to the prog-
nosis in the OS patients (Figures 2(a) and 2(b)). A heatmap
was drawn to display the six genes level from their signatures
(Figure 2(c)), showing lower expression of PGD, G6PD, and

ACSF2 of the high-risk group, together with higher levels of
MT1G, FADS2, and CBS. The survival rates and gene expres-
sion levels of each hub FRG are shown in Figures 3 and 4.

3.3. Nomogram Development and Verification. As shown in
Figure 5, an OS risk estimation nomogram was formed com-
bining the risk score and five independently related risk fac-
tors, including sex, age, disease at diagnosis, definitive
surgery, and risk score. K-M curves indicated that over time,
the survival rate of the low-risk group was higher than that
of the high-risk group (Figure 6(a)). The prediction accuracy
was evaluated in C-index (0.822) and calibration curve
(Figures 6(b) and 6(c)).

3.4. KEGG and GO Analysis. The KEGG signaling pathway
and GO functional process analysis were carried out specify-
ing the biology pathways and processes associated with the
six FRGs. The results indicated that these FRGs were func-
tional in ferroptosis-related processes such as carbon metab-
olism, glutathione metabolism, and pentose phosphate
pathway (Figure 7).

3.5. GSEA. The stratification was conducted in OS patients
depending on the median risk scores. The results disclosed
the enrichment of six FRGs in the provenzani metastasis,
peroxisomal protein import, neutrophil degranulation,
amino acids regulating mTORC1, peroxisome, T cell recep-
tor signaling pathway, regulation of calcium-mediated
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Figure 2: Establishment and validation of prognostic ferroptosis-associated gene signature. (a) Risk score plot, (b) survival status scatter
plot, and (c) heatmap for the levels of ACSF2, CBS, FADS2, G6PD, MT1G, and PGD.
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Figure 3: Survival rates of ACSF2, CBS, FADS2, G6PD, MT1G, and PGD.
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signaling, positive regulation of protein targeting to the
mitochondrion, and B cell activation involved in immune
response (Figure 8).

3.6. Immune Infiltrating. Except for activated dendritic cells
(aDCs) and immature dendritic cells (iDCs), the numbers of
other immune cells and immune functions of the low-risk
group were significantly eminent compared to that of the
high-risk group (Figures 9(a)–9(c)).

3.7. Response to Targeted Therapy. Based on the predicted
IC50s, the response to various targeted drugs differed signif-

icantly between the two groups with different risks. IC50s
were lower in the high-risk group, indicating a higher sensi-
tivity to targeted drugs (Figure 10).

4. Discussion

OS is the most common malignant tumor originated from
mesenchymal tissue, which is prone to teenagers, recurrence,
and lung metastasis with a poor prognosis. The main treat-
ment of osteosarcoma is extensive or radical amputation,
combined with chemotherapy. However, the multidrug
resistance of osteosarcoma restricts its chemotherapy effect
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Figure 4: Expressions of ACSF2, CBS, FADS2, G6PD, MT1G, and PGD.
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and long-term prognosis. Therefore, it is necessary to find
new treatment methods.

Our research sifted six FRGs relating to OS that were
possibly targeted for novel molecular therapy. The results
from the risk prediction model in accordance with these
six key FRGs showed noticeably separated survival curves
between the two risk groups. In the time-dependent model,
the risk score and death number have been elevated remark-
ably over time, suggesting the critical importance of these six
FRGs on the prognosis prediction of OS. The key FRGs were

good predictors of prognosis for OS patients, as shown by
the ROC prediction results of 1-, 3-, and 5-year survival
rates. Similarly, the six FRGs have shown promising out-
comes in terms of clinical characterization studies.

According to the enrichment analyses results, OS’s fer-
roptosis is closely related to carbon metabolism, glutathione
metabolism, and the pentose phosphate pathway. Metabolic
adaptation of cancer occurs as efficient cellular energy and
biomass production alterations are indispensable for cancer
onset and progression [22]. The catabolic and anabolic
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procedures in cancer metabolism can easily adjust to the ele-
vated energy, and biological mass demands resulting from
rapidly proliferating tumors. Malignant and metastatic cells
of OS have elevated energy metabolism in comparison with
the benign cells [23]. Among these metabolic pathways, the
cysteine synthesis glutathione (GSH) pathway plays a lead-
ing role in the initiation of ferroptosis (Erastin induction
pathway). Erastin is one of the small molecules found in
chemical screening that can induce iron death in carcino-
genic Ras mutant cell lines [24, 25]. In the process of iron
death induced by Erastin, glutamate cysteine transporter,
also known as X-C system, is the most important target of

Erastin molecule. Cystine (the main form of intracellular
cysteine) is mainly transferred into cells through glutamate
cysteine transporter in the ratio of 1 : 1. Then, GSH and glu-
tathione peroxidase 4 (GPX4) are synthesized in cells. GSH
is mainly used as a cofactor in the process of protecting cells
from oxidative damage, and GPX4 catalyzes the reduction of
lipid peroxide to alcohols [26]. Therefore, targeting to cancer
metabolism is ongoing to develop new therapies for cancer.

The risk-scoring model revealed the positive correction
of risk scores with the sensitivity to targeted drugs. Prior
investigations documented the effect of these drugs on can-
cer cytology. For example, axitinib is a potent and selective
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inhibitor of VEGFR-1–3. In transfected or endogenous
RTK-expressing cells, axitinib potently blocked growth
factor-stimulated phosphorylation of VEGFR-2 and
VEGFR-3, thereby effectively inhibiting tumor growth,
angiogenesis, and distant metastasis [27, 28]. Fritsche-
Guenther et al. proved that AKT2 is a critical signal mole-
cule in the insulin signaling pathway, which needs to induce
glucose transport [29]. In our study, the group with high risk
presented high sensitivity to AKT inhibitor VIII. Therefore,
inhibiting AKT to interfere with glucose metabolism and
then controlling the occurrence or development of ferropto-
sis can be considered the future research direction.

It has been reported that ferroptosis can improve the
antitumor effect of immunotherapy by activating CD8+ T
cells, but whether FRG affects the occurrence and develop-
ment of OS by regulating the immune state of the tumor
microenvironment is still unclear [30]. In the process of
establishing and verifying the risk-scoring model, we found
that OS patients with different FRG expression matrixes
showed different immune states, and patients with more
active immune states had better prognosis. The tumor-
associated immune response vitally partakes in tumor cell
infiltration, whereas ferroptosis critically regulates the
tumor-related immune responses [31]. The immune cell
infiltration analysis in this study indicated that the immune
functions and the numbers of immune cells, except for aDCs
and iDCs, are noticeably higher in the low-risk group, indi-
cating the ferroptosis-related, antitumor immune response
processes that reduce the risk of death in low-risk patients.

Some limitations exist in this study. For example, the
sample size is comparatively insufficient, which needs future
study to include more samples to evaluate the model perfor-
mance further and elucidate the latent mechanism.

5. Conclusions

To sum up, a prognostic signature of OS based upon six
FRGs was determined, and a risk-scoring model based on
six OS-related FRGs was established. This risk-scoring
model shows commendable performance to independently
evaluate the prognosis of OS at 1, 3, and 5 years, which will
provide the potential guidance of OS targeted therapy.
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