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Abstract
Up to now, there have been a great number of mechanisms to explain the individual behav-

ior and population traits, which seem of particular significance in evolutionary biology and

social behavior analysis. Among them, small groups and heterogeneity are two useful

frameworks to the above issue. However, vast majority of existing works separately consid-

er both scenarios, which is inconsistent with realistic cases in our life. Here we propose the

evolutionary games of heterogeneous small groups (namely, different small groups pos-

sess different preferences to dilemma) to study the collective behavior in population evacu-

ation. Importantly, players usually face completely different dilemmas inside and outside

the small groups. By means of numerous computation simulations, it is unveiled that the

ratio of players in one certain small group directly decides the final behavior of the whole

population. Moreover, it can also be concluded that heterogeneous degree of preference

for different small groups plays a key role in the behavior traits of the system, which may val-

idate some realistic social observations. The proposed framework is thus universally appli-

cable and may shed new light into the solution of social dilemmas.

Introduction
In evolutionary biology and social science, a challenging problem is to understand the emer-
gence of collective behavior traits and their sustenance under the pressure of a series of compet-
ing strategies [1–5]. To resolve the above issue, evolutionary game theory, which provides a
useful framework, has been extensively investigated from theoretical and experimental view-
points over the past decades [6–11]. In particular, the pairwise interaction game, as a simple
metaphor of illustrating the social conflict between different behaviors, has attracted great in-
terest [12, 13]. Typical examples include prisoner’s dilemma game [14–16], snowdrift game
[14, 17], harmony game [18, 19] and ultimate game [20]. The former three mainly focus on the
origin of cooperation, while the remaining latter gives attention to fairness. Under different
scenarios, different payoff ranking will lead to various dilemmas. For example, in prisoner’s di-
lemma game, players are likely to choose the selfish defection behavior if they wish to maximize
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individual benefit, irrespective of the fact that mutual cooperation could yield a higher collec-
tive benefit [9, 12]. On the other hand, in the snowdrift game, it is worth to cooperate, whatever
the opponent does, and thus the number of cooperator-defector pairs arises [6, 12].

To explain these observations, several mechanisms that support the evolution of collective
behavior have been identified [11, 21–24], such as the tit-for-tat [25] or win-stay-lose-shift
[26], spatially structured populations [10, 23, 27–30], punishment and reward [31], reputation
[32], voluntary participation [33], heterogeneity [34, 35] and diversity [36–38], the mobility of
agents [39, 40], scale of interaction network [41] and co-evolutionary rules [42]. While recent-
ly, Nowak attributed all these to five mechanisms: kin selection, direct reciprocity, indirect reci-
procity, network reciprocity, and group selection [21], these mechanisms can be somewhat
related to the reduction of an opposing player’s anonymity relative to the so-called well-mixed
situation. After this seminal survey, more related scenarios have been intensively explored. In a
recent research [7], where the partner selection of agents was closely related with individual
reputation, it was found that collective cooperation behavior would be guaranteed to an ex-
tremely high level. In addition, the context of traditional network reciprocity [43] was further
extended to the multilayer networks [13, 44, 45] (see [46] for a review).

Though the above mentioned achievements offer new insight into the issue of organization
of collective behavior, the fundamental assumption that all individuals are homogenous and
have the same properties seems inconsistent with realistic scenarios. While in the large-scale
population evacuation, the population is typically composed of many small groups [47, 48].
Moreover, small groups are also ubiquitous in the vision-based investigation of pedestrian
crowds [49]. Nevertheless, the behavioral evolution of small groups still remains largely unex-
plored. Currently, people mainly consider the behavioral evolution with two approaches. The
first method based on the well-mixed population [6] aims to explain evolution of cooperative
behavior by establishing the replicator equation with mean filed theory and evolutionary game
theory [8–12]; while the second one (namely, agent-based method) [50] assumes the existence
of a certain kind of spatial structure between the individuals and plans to study the behavioral
evolution of the population [9, 23, 33, 36, 51]. In addition, the case of two heterogeneous
groups has been explored [7, 24], but the interactions within and between small groups are
partly considered. Furthermore, multiple heterogeneous small groups have been taken into
consideration with the assumptions that the individuals belonging to different groups are well-
mixed and all the interactions fall into the same dilemma [50]. Inspired by these achievements,
an interesting question naturally poses itself, which we plan to address in what follows. If het-
erogeneity between small groups is incorporated into the behavioral evolution of evacuation
scenarios, how do players choose their behavior?

In the present work, we consider the evolutionary games located in the population com-
posed of two small groups. Within and between small groups, there exist different preferences
among players. Then, we introduce characters of small groups in evacuation into simulation
and aim to explore the regularity of behavioral evolution of small groups with heterogeneous
preferences in population evacuation, by means of agent-based method in accordance with the
game theoretical models built.

Methods
Throughout this work, population is distributed on a L×L square lattice with periodic bound-
ary conditions [52, 53]. Each player is initially designated as one of two behaviors: behavior 1
and behavior 2. Besides, since we consider the impact of small groups, the population is divided
into small group 1 with probability f and small group 2 with the remaining probability 1-f, re-
spectively. In particular, once two small groups are assigned, their ratios (f and 1-f) keep
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constant during the whole evolution process (namely, one player always belongs to the identi-
cal small group during the whole process).

With regard to evolutionary games, (since heterogeneity between small groups is taken into
account,) we assume that there exist different dilemmas within and between small groups,
which means that games are different within and between small groups. Along this line, there

are three kinds of games, and the corresponding payoff matrices are
ðr1; r1Þðs1; t1Þ
ðt1; s1Þðp1; p1Þ

" #
,

ðR1; P2ÞðS1; S2Þ
ðT1;T2ÞðP1;R2Þ

" #
and

ðp2; p2Þðt2; s2Þ
ðs2; t2Þðr2; r2Þ

" #
, respectively. According to the principle of equiva-

lent simplification of game theory [6, 9, 24], let Bi = Si–Pi Bi+2 = Si–Pi, Ci = ri–ti, Ci+2 = Ri–

Ti(i = 1,2) and then the payoff matrices can be translated into the form of Tables 1–3, respec-
tively. In order to reflect heterogeneous preferences of different small groups, it is assumed that
the kth small group prefers behavior k (namely, players in small group 1 prefer behavior 1, and
players in small group 2 are opt to behavior 2).

For each small group, there exists only one type of game, which but falls into different di-
lemmas based on different payoff ranking. Take Table 1 as example, the game will be prisoner’s
dilemma game, harmony game, snowdrift game and stag hunt game if the payoffs satisfy B1<0,
C1<0, B1>0,C1>0, B1>0,C1<0, and B1<0,C1>0 respectively. Accordingly, the equilibria of the
four games are all defection, all cooperation, coexistence of defection and cooperation and all
defection or all cooperation (relying on the initial condition), respectively.

When the game types are identical within small groups 1 and 2, such as two harmony
games in Tables 1 and 3, some discussions can be provided as follows. If C1 = B1 = 0.1 and C2 =
B2 = 10 the payoffs for Nash Equilibria of the two small groups are (0.1,0.1) and (10,10), respec-
tively. Compared to small group 1, the players of small group 2 will suffer a great loss once de-
viating from the Nash Equilibrium. Therefore, the players of small group 2 are more reluctant
to deviate from the strategy of Nash Equilibrium, which indicates that the payoff parameters of
the games have significant influence on the cohesion of small groups, and then directly affect
the behavioral evolution of the whole population. So are the other dilemmas. Hence, we define

Table 1. The Payoff Matrix of the Interactions in Small Group 1(Simplified Form).

Behavior 1 Behavior 2

Behavior 1 (C1,C1) (B1,0)

Behavior 2 (0,B1) (0,0)

doi:10.1371/journal.pone.0121949.t001

Table 3. The Payoff Matrix of the Interactions in Small Group 2(Simplified Form).

Behavior 1 Behavior 2

Behavior 1 (0,0) (0,B2)

Behavior 2 (B2,0) (C2,C2)

doi:10.1371/journal.pone.0121949.t003

Table 2. The Payoff Matrix of the Interactions between Small Groups 1 and 2(Simplified Form).

Behavior 1 Behavior 2

Behavior 1 (C3,0) (B3,B4)

Behavior 2 (0,0) (0,C4)

doi:10.1371/journal.pone.0121949.t002
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a key parameter: relative degree of preference for small group 1 (RDP for small group 1 in
short), which depends on Nash Equilibria of games and will be represented by symbol q in this
paper. If the Nash Equilibrium sets of Tables 1 to 3 are supposed to be s�ð1Þ, s

�
ð2Þ, s

�
ð3Þ respectively,

then it can be defined as

q ¼

X
s�ð1Þ2s

�
ð1Þ

uð1Þ
1 ðs�ð1ÞÞ þ

X
s�ð2Þ2s

�
ð2Þ

uð2Þ
1 ðs�ð2ÞÞ

X
s�ð3Þ2s

�
ð3Þ

uð3Þ
2 ðs�ð3ÞÞ þ

X
s�ð2Þ2s

�
ð2Þ

uð2Þ
2 ðs�ð2ÞÞ

ð1Þ

Notably, the magnitude of q reflects the cohesion of small group 1 relative to small group 2. If

Fig 1. Fraction of behavior 1 in population which changes over time when the game parameters are constant. In the figure, the five curves correspond
to five different fractions of small group 1, namely 0.1, 0.3, 0.5, 0.7, 0.9. The used payoff parameters are [B1, B2, B3, B4,C1,C2,C3,C4] = [2, 2, –1, –1, 1, 1, 2, 2].

doi:10.1371/journal.pone.0121949.g001
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q>1, it implies that the cohesion of small group 1 is greater than that of small group 2; other-
wise the better is for small group 2.

After the definition of payoff details, the game is iterated forward in accordance with the se-
quential simulation procedure comprising the following elementary steps. First, each player
gets its payoff by playing the games with its four immediate neighbors, irrespective of same or
different small groups. Then, every player will update its strategy by adopting the strategy of
neighbor who possesses the highest total payoff in the present round. We use the synchronous
updating so that each player updates its strategy simultaneously.

Results
In this section, we first set the parameters of the game models according to the scenarios of
crowd evacuation, and then simulate behavioral evolution of small groups by varying two key
parameters: f and q.

The individuals in the same small group have the identical preference, but some players
sometimes may deviate from the preferred behavior. This character is in line with harmony
game, so the dilemma within the same small group is featured as harmony game. Namely,
game types of Tables 1 and 3 are harmony game, and accordingly the parameters of the games
satisfy Ci,Bi>0(i = 1,2). In the process of emergency evacuation, there also exists the interaction
between different small groups, although whose preference is different. The aim of each player
in the interaction is very clear, which resembles the scenario of snowdrift game. Thus it is as-
sumed that the interaction between two small groups mimics the snowdrift game, that is, the

Fig 2. Direct observations of behavioral evolution for the whole population when f = 0.1 and q = 1. Snapshots are taken at t = 1, 3, 100 and 500 MC
steps. In the figure blue, yellow, green and red are used to represent behavior 1 in group 1, behavior 2 in group 1, behavior 1 in group 2 and behavior 2 in
group 2 respectively. The game parameters in the numerical simulation are set as [B1, B2, B3, B4, C1, C2, C3, C4] = [2, 2, –1, –1, 1, 1, 2, 2].

doi:10.1371/journal.pone.0121949.g002
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payoff parameters of Table 2 satisfy Ci>0,Bi<0(i = 3,4). Since the game parameters are con-
fined to certain ranges stated above, it can be derived straightforwardly that

q ¼ C3 þ C1

C4 þ C2

ð2Þ

according to Equation (1).
Results of computer simulations presented below are obtained on populations comprising

L = 100 (We have verified our results for different sizes L = 200,400, and the main results are
robust to the size L). The results of system is averaged on 500 steps after the fluctuation is
smaller than 0.01 with 500 continuous steps. Moreover, since the heterogeneous preferences

Fig 3. Relationship between the fraction of behavior 1 in population and the fraction of small group 1. The curves in the figure are with the same q
(equal to 1), but the game parameters are not the same. For parameter group 1, [B1, B2, B3, B4, C1, C2, C3, C4] = [2, 2, –1, –1, 1, 1, 2, 2]. For parameter group
2, [B1, B2, B3, B4, C1, C2, C3, C4] = [1, 1, –1, –1, 1, 1, 2, 2]. For parameter group 3, [B1, B2, B3, B4, C1, C2, C3, C4] = [2, 2, –2, –2, 1, 1, 2, 2]. For parameter
group 4, [B1, B2, B3, B4, C1, C2, C3, C4] = [1, 1, –2, –2, 1, 1, 2, 2]. For parameter group 5, [B1, B2, B3, B4, C1, C2, C3, C4] = [2, 2, –1, –1, 2, 2, 2, 2]. For
parameter group 6, [B1, B2, B3, B4, C1, C2, C3, C4] = [2, 2, –1, –1, 1, 1, 3, 3].

doi:10.1371/journal.pone.0121949.g003
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may introduce additional disturbances, final results are averaged over up to 10 independent
runs for each set of parameter values in order to assure suitable accuracy.

The Impact of Fraction of Small Group 1 on Evolution
At first, the impact of the fraction of small group 1, namely f, on behavioral evolution of popu-

lation is explored with fixed q ¼ C3þC1
C4þC2

¼ 1. Fig. 1 shows how the ratio of behavior 1 in popula-

tion changes over time for different values of f. As there is no randomness, the collective
behavior reaches the stabile state at even about the 50th step. It is clear that with the increment
of f, proportion of behavior 1 in population monotonously increases. For a small value, the sys-
tem fast declines to disappearance of behavior 1. However, when f is sufficiently large, behavior
1 is will completely dominate the system.

In order to provide a visual validation of the observations, we show the snapshots of the be-
havioral evolution at t = 1, 3, 100 and 500 MC steps (see Fig. 2), in which f and q are 0.1 and 1,
respectively. At the beginning of the evolution, small group 2 accounts for the great majority of

Fig 4. Fraction of behavior 1 in population which changes over time, when the fraction of small group 1 is fixed. In this figure, the five curves
correspond to five different values of q. In detail, in the simulations f = 0.5, and the game parameters are selected as [B1, B2, B3, B4, C1, C3] = [2, 2, –1, –1, 1,
2], C2 = C1/q, C4 = C3/q and values of q are chosen as 1/9, 1/3, 1, 3, 9, respectively.

doi:10.1371/journal.pone.0121949.g004
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the whole population, while fractions of behavior 1 in both small groups are equal to 0.5. As
time evolves, when the evolution is stable, in both small groups the individuals choosing behav-
ior 2 dominate and the remaining ones in minority who adopt behavior 1 are aggregating in
clusters. Therefore, it can be concluded that as the fraction of small group 2 is greater than that
of small group 1, the behavior which small group 2 prefers is more easily spread in the popula-
tion and becomes the normative behavior of the population ultimately.

In order to study regularity of the impact of fraction of small group 1 on the fraction of be-
havior 1 in the population and discuss the robustness of this regularity, we set q equal to 1 and
choose 6 groups of game parameters, and the results of the simulations are depicted in Fig. 3.
The six curves illustrate that with f increasing, the fraction of behavior 1 in the population after
behavioral evolution will also increase. In detail, if f is smaller than 0.25, fraction of behavior 1
in the population will be smaller than 0.2, so in this case the majority of the population show
the normative behavior preferred by small group 2 ultimately. Likewise, it is recognized that
the population prevailingly exhibit the behavior preferred by small group 1 if f is larger than
0.75. The regularity is similar for different game parameters, so the relationship between frac-
tion of behavior 1 in population and f is robust for different game parameters (q is supposed to
be constant).

To sum up, fraction of small group 1 has an important impact on the behavioral evolution
of the population and the impacting curve is monotonically increasing. When q is close to 1, it
is easier for the larger small group to establish the behavior it prefers as the normative behavior.
In addition, this regularity is robust for different parameters.

Fig 5. Direct observations of behavioral evolution for the whole population when the values of f and q are 0.5 and 9 respectively. Snapshots are
taken at t = 1, 3, 100 and 500 MC steps. The meanings of the four colors are the same with Fig. 2. Specifically, the payoff values are set as [B1, B2, B3, B4, C1,
C2, C3, C4] = [2, 2, -1, -1, 1, 1/9, 2, 2/9] in the numerical simulation.

doi:10.1371/journal.pone.0121949.g005
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The Impact of RDP for Small Group 1 on Evolution
Next, we inspect how RDP for small group 1 impacts behavioral evolution when fraction of
small group 1 is fixed. Fig. 4 shows time courses of behavior 1 in the population corresponding
to different values of q. Similar to Fig. 1, the curves will reach the stable state at about the 50th
step. Importantly, as qincreases, the fraction of behavior 1 in population will also increase.

In order to feature the observations in more details, we have taken snapshots of the evolu-
tion at t = 1, 3, 100 and 500 MC steps (see Fig. 5), in which f and q are set as 0.5 and 9 respec-
tively. At the beginning of the evolution, the four types of agents are equally distributed on the
lattice. As time evolves, when the behavioral evolution of the two small groups is stable, the in-
dividuals with behavior 1 account for the great majority in both small groups, although there
are a few agents adopting behavior 2 and they are gathering in clusters. Therefore, when

Fig 6. Relationship between the fraction of behavior 1 in population and RDP for small group 1. In the numerical simulations corresponding to the
figure, the payoff parameters adopted are specified as [B1, B2, B3, B4, C1, C3] = [2, 2, –1, –1, 1, 2], C2 = C1/q, C4 = C3/q.

doi:10.1371/journal.pone.0121949.g006
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fractions of two small groups are close and RDP for small group 1 is larger than 1, it can be
concluded that small group 1 will win in establishing the behavioral norm due to stronger co-
hesion although there is no advantage in scale for small group 1. In other words, the behavior
small group 1 prefers is more easily spread in the population and will become the normative
behavior of the population ultimately.

Aiming to investigate the impact of qon behavioral evolution and discuss the law of evolu-
tion for different values of f we have scanned a wide range of parameters and the simulation re-
sults are depicted in Fig. 6. As can be seen, when f is fixed, the fraction of behavior 1 in the
population after behavioral evolution comes to an end is positively correlative to q, and q has
the greatest influence on the result of evolution when it lies between 0.1 and 10. Beyond this

Fig 7. Relationship between the fraction of behavior 1 in the population and two variables, namely, f and q. The game parameters used in this figure
are the same with those in Fig. 6.

doi:10.1371/journal.pone.0121949.g007
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scope, in particular when qis smaller than 0.01 or larger than 100, its impact can be neglected
and behavioral evolution of population in this case mainly depends on f.

To sum up, RDP for small group 1 has an important impact on the behavioral evolution of
the population. It imposes its influence by the relative cohesion of small group 1. Through the
study on the impact of qon behavioral evolution for small groups 1 and 2 when f is selected
from a series of fixed values, it can be claimed that when qis in a center range, its influence is
very remarkable, whereas when it is out of the range, the behavioral evolution of the population
mainly relies on f.

Finally, in order to understand the relationship between the result of behavioral evolution
and f as well as q, we have carefully skimmed a wide range of values for them. The results are
demonstrated in Fig. 7. It can be seen from Fig. 7 that the stratification phenomenon is very
clear, so it can be concluded that the two quantities have important impacts on the behavioral
evolution of the population. When f and q are relatively large, the behavior small group 1 pre-
fers will become the normative behavior of the population; likewise, when the two values are
small, small group 2 will establish the behavioral norm.

Conclusions
To conclude, the evolutionary games in small groups with heterogeneous preferences have
been considered. Within and between small groups, there will be different dilemmas. Based on
a great number of computation simulations, it can be concluded that the final behavior of the
whole population is closely related with the ratio of players in one certain small group directly.
Moreover, it is shown that heterogeneous degree of preference for different small groups also
directly determines the behavior traits of the system, which may shed new light into the realis-
tic social observations. We hope that our proposed framework can bring more effective solu-
tions to social dilemmas.
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