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The occurrence of coronavirus disease 2019 (COVID-19) has become a serious challenge
to global public health. Definitive and effective treatments for COVID-19 are still lacking,
and targeted antiviral drugs are not available. In addition, viruses can regulate host innate
immunity and antiviral processes through the epigenome to promote viral self-replication
and disease progression. In this study, we first analyzed the methylation dataset of COVID-
19 using the Monte Carlo feature selection method to obtain a feature list. This feature list
was subjected to the incremental feature selection method combined with a decision tree
algorithm to extract key biomarkers, build effective classification models and classification
rules that can remarkably distinguish patients with or without COVID-19. EPSTI1,
NACAP1, SHROOM3, C19ORF35, and MX1 as the essential features play important
roles in the infection and immune response to novel coronavirus. The six significant rules
extracted from the optimal classifier quantitatively explained the expression pattern of
COVID-19. Therefore, these findings validated that our method can distinguish COVID-19
at the methylation level and provide guidance for the diagnosis and treatment of
COVID-19.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) was announced as a “public health emergency of international
concern” by the World Health Organization (WHO) on January 30, 2020 and was assessed as a global
pandemic on March 11, 2020 (Rodríguez-Morales et al., 2020; Eurosurveillance Editorial Team, 2020).
The causative agent of COVID-19 is a new type of coronavirus, whose complete gene sequence is
approximately 79.5% similar to that of severe respiratory syndrome coronavirus SARS-CoV. Therefore, it
was named SARS-CoV-2 by the International Virus Laboratory Classification (Zhou et al., 2020; Zhu
et al., 2020). SARS-CoV-2 is a group 2B ß-coronavirus, which is a linear single-stranded positive-stranded
RNA virus. It is similar to other coronaviruses and consists of four structural proteins, namely, spike
protein, envelope protein, membrane protein/matrix protein, and nucleocapsid protein. COVID-19 has a
huge impact on global public health. According to WHO, SARS-CoV-2 had caused 156,496,592
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infections and 3,264,143 deaths worldwide until May 8, 2021, and a
total of 1,171,658,745 vaccine doses had been administered
worldwide till May 5, 2021 (World Health Organization, 2020).
However, definite and effective treatments for COVID-19 are still
lacking, and no antiviral drug has been confirmed by a rigorous
“randomized, double-blind, placebo-controlled” study.

As early as 1975, researchers (Holliday and Pugh, 1975; Riggs,
1975) found that in vertebrates, cytosine methylation at the CpG site
can be used as a genetic marker and can be passed on to the next
generation by cell division. In plants and mammals, methylation on
the 5th carbon atom of cytosine residues is the most widely studied
epigenetic modification. In mammals, cytosine methylation mostly
exists on the CG sequence; plants have CHG and CHH methylation
(H = A, C, or T) in addition to CGmethylation. DNAmethylation is
relatively stable and can exist persistently during DNA replication.
The position of DNA methylation can be determined and its
relationship with gene regulation can be explored with the
development of whole-genome methylation sequencing technology.
The DNA methylation of the promoter region can suppress gene
expression by preventing transcription factor accessibility. Moreover,
theDNAmethylation of the gene body can affect chromatin structure,
alternative splicing, and transcription efficiency (Lorincz et al., 2004).
In mammals, such as Homo sapiens and Mus musculus, DNA
methylation is necessary to maintain normal embryonic
development (Yin et al., 2012; Guo et al., 2014), and abnormal
methylation has remarkable effects on diseases (Robertson, 2005).
In addition, methylation plays an important role in the regulation of
the expression of tissue-specific genes or developmental stage-
dependent genes (Gehring and Henikoff, 2007).

Strong evidence showed that epigenetic markers, including
histone modifications, DNA methylation, chromatin remodeling,
and non-coding RNAs, affect gene expression profiles and increase
individual vulnerability to virus infections (Fang et al., 2012;
Menachery et al., 2014). Meanwhile, viruses have developed a
complex, highly evolved, and coordinated process that can
regulate the host’s epigenome, control the host’s innate immune
and antiviral defense processes, and thus promote the powerful
replication of the virus and the onset of disease (Schäfer and Baric,
2017). Circulating blood DNA methylation profiles are altered in
patients with severe diseases, including severe sepsis and pediatric
critical illness (Binnie et al., 2020; Güiza et al., 2020).

In this study, we obtained methylation data from 106 SARS-
CoV-2-positive patients and 26 SARS-CoV-2-negative patients.
Machine learning algorithms, such as Monte Carlo feature
selection (MCFS) (Dramiński et al., 2007) and decision tree
(DT) (Safavian and Landgrebe, 1991), were applied to identify
methylation features and decision rules that clearly distinguish
different cases and to build classification models with excellent
performance to provide insight into the diagnosis, susceptibility,
and potential pathogenesis of COVID-19.

MATERIALS AND METHODS

Datasets
We downloaded the methylation data of the 128 samples from
Gene Expression Omnibus with accession number GSE174818

(Balnis et al., 2021), which contains 102 samples from patients
with COVID-19 and 26 samples from patients without COVID-
19. For each sample, 86,5807 methylation sites were identified by
the Illumina Human Methylation EPIC platform.

Monte Carlo Feature Selection
For the investigated methylation data, features (methylation sites)
were much more than sample numbers. Evidently, not all features
were related to COVID-19. It is necessary to analyze all features
and extract essential ones. As different feature selection methods
may produce quite different results, selection of proper methods
was quite essential. To our knowledge, MCFS is good at dealing
with data containing few samples and large features. Thus, it was
adopted in this study.

The MCFS method (Dramiński et al., 2007) is an effective and
broadly adopted feature selection method that is composed of
various DTs and builds various bootstrap sets with subsets of
randomly selected features. First, m bootstrap sets and t feature
subsets are created from the primary data set. Then, one tree is
constructed for m bootstrap sets and t feature subsets. Overall,
m × t DTs are created. The relative importance (RI) score for
each feature can be calculated based on the resultant DTs. RI
score is calculated as the frequency of a target feature in the
growing DT as follows:

RIf � ∑mt

t�1 (wAcc)uIG(nf(τ))(no.in nf(τ)no.in τ
)v

, (1)

where f indicates a feature; wAccmeans the weighted accuracy of
the DT τ; IG(nf(τ)) refers to the information gain of node nf(τ);
no.in nf(τ) and no.in τ denote the number of samples of nf(π)
and τ, respectively; and u and v are weighting factors, which are
set to 1. More significant features have higher RI values.
Therefore, the features were sorted in decreasing order based
on their RI values in the new feature list after MCFS processing.

The MCFS program used in this study was loaded from http://
www.ipipan.eu/staff/m.draminski/mcfs.html. For convenience,
the program was run using the default parameters, and u and
v were set to 1.

Incremental Feature Selection
Although the MCFS method can rank features by their
importance, it cannot determine which features are essential.
Therefore, the incremental feature selection (IFS) method (Liu
and Setiono, 1998) was used to determine the optimal number of
essential features required for the classification algorithm. First,
IFS yields a series of feature subsets based on step size from the list
of features received from the MCFS method described above. For
example, when the step size is 5, the first feature subset includes
the top 5 features, the second feature subset includes the top 10
features, and so on. Afterward, IFS trains the classifier on the
training samples, which contain these features on each feature
subset. The best subset was determined based on the evaluation
metrics of the obtainedmodel by evaluating this classifier through
10-fold cross-validation (Kohavi, 1995; Chen et al., 2021; Liu
et al., 2021; Li X. et al., 2022; Tang and Chen, 2022; Yang and
Chen, 2022).
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Decision Tree
DT is one of the most classic machine learning algorithms
(Safavian and Landgrebe, 1991). Although it is not very
powerful, even much weaker than several strong machine
learning algorithms, it also has its merits. In fact, DT is a
white-box model, meaning it is possible for users to
understand its classification principle. This cannot be achieved
for all black-box models, which is always more powerful than DT.
In the field of biomedical research, such merit is quite helpful as
investigators want to not only build efficient models but also
obtain helpful clues to understand the complicated underlying
mechanism. Accordingly, DT is widely accepted in the field of
biomedical research (Zhang et al., 2021a; Zhang et al., 2021b;
Huang et al., 2021; Li Z. et al., 2022; Chen et al., 2022; Ding et al.,
2022). Generally, DT uses the IF–THEN format to accomplish
classification or regression tasks through a tree structure. It often
yields satisfactory performance at a low computational cost. In
this work, we applied the Scikit-learn module in Python to build
the DT classifier.

Synthetic Minority Oversampling Technique
As described in the Datasets Section, a considerable variation in
the sample sizes of patients with COVID-19 was observed. In this
case, a classifier with excellent performance is difficult to build,
because the predicted results are suitable for the type with the
largest sample size. Synthetic minority oversampling technique
(SMOTE) (Chawla et al., 2002) was performed in the present
work to address this problem. This method ensures that the
number of samples in the minority class is equal to the number of
samples in the majority class after processing by adding new
samples to the minority class. In detail, x is a randomly selected
sample in the minor class, and some samples with the same class
that are closest to x are identified. Next, sample y is randomly
selected from the closest samples mentioned above, and a novel
sample is produced by choosing a randomly selected point
between x and y in the feature space. The newly produced
sample is deeply associated with x and y; thus, it has a high
probability of belonging to the same class as x and y and is
therefore considered to be in the same class. The above procedure
executes several times until the minority class has same number
of samples in the majority class.

In this study, we employed the SMOTE procedure acquired
from https://github.com/scikit-learn-contrib/imbalanced-learn
and directly used the default parameters.

Performance Measurement
For the binary model used in this study, its predicted results can be
counted as a confusion matrix, which contains four entries: true
positive (TP), false positive (FP), true negative (TN) and false
negative (FN). According to these entries, several measurements
can be calculated. In this study, we adopted the following
measurements: sensitivity (SN, also called recall), specificity (SP),
prediction accuracy (ACC), Matthews correlation coefficient
(MCC), precision and F1-measure (Sasaki, 2007; Powers, 2011;
Zhao et al., 2018; Wu and Chen, 2022). They can be computed by

SN � TP

TP + FN
, (2)

SP � TN

TN + FP
, (3)

ACC � TP + TN

TP + FN + TN + FP
, (4)

MCC � TP × TN − FP × FN�������������������������������������(TN + FN)(TN + FP)(TP + FN)(TP + FP)√ , (5)

Precision � TP

TP + FP
, (6)

F1 −measure � 2 × precision × recall
precision + recall

. (7)

Among above measurements, we selected F1-measure as the
key measurement as it can better reflect the stability of the model.
A higher F1-measure indicates a more robust
classification model.

RESULTS

As shown in Figure 1, we applied an analysis flow to extract key
features and build the classification model and rules. The results
are summarized in the following sections.

Results of MCFS Method on Methylation
Profiles
We employed the MCFS method to assess the importance of each
feature and select key sites from the COVID-19 methylation
dataset. These features were ranked in decreasing order of RI
scores, and the results are presented in Supplementary Table S1.

Results of IFS Method With DT
After the MCFS analysis, we brought the obtained feature list into
the IFS with the DT algorithm. The step size of the IFS was set to
5. Since the list was very large, it would take lots of time to
consider all possible feature subsets. Furthermore, not all
methylation features are related to COVID-19. Thus, only top
10,000 methylation features in the list were considered, that is,
2000 feature subsets were investigated. DT model was
constructed on each feature subset and was evaluated by 10-
fold cross-validation. The obtained evaluation metrics, including
SN, SP, ACC, MCC, precision and F1-measure are listed in
Supplementary Table S2. To display the DT models on
different feature subsets, we plotted an IFS curve using the
number of features as the X-axis and F1-measure as the
Y-axis, which is shown in Figure 2. It can be observed that
the highest F1-measure was 0.990, which was obtained by using
top 50 features in the list. The other five measurements of such
model are illustrated in Figure 3. The ACC and MCC were 0.984
and 0.954, respectively. As for SN, SP and precision, they were
0.980, 1.000 and 1.000, respectively. This result indicated that the
constructed optimal DT model has a near-perfect performance
and proved the effectiveness of the analysis method.
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Comparison of DT Models With Informative
Features
In this study, the IFS method was adopted to extract best features
for DT and the best DT model was constructed with these
features. In fact, MCFS can yield essential features, called
informative features, by only analyzing the methylation data.
With these informative features, a DTmodel can also be built. It is
interesting to compare the performance of these two models.

For the methylation data, 257 informative features were
obtained by MCFS. The DT model with these features was
evaluated by 10-fold cross-validation. The F1-measure was
0.944, which was much lower than that of the best DT model
(0.990). As for other five measurements, they are provided in

Figure 3. It can be observed that each measurement was lower
than that produced by the best DT model. This indicated the
superiority of the best DTmodel. The employment of IFS method
can help to build a more efficient model.

Classification Rules
As described in the previous section, DT yielded the highest F1-
measure on the COVID-19 methylation dataset when the top 50
features are used. Therefore, we applied DT to all samples using
these 50 features to obtain six rules, which are provided in
Table 1. Three rules each were related to COVID-19 and non-
COVID-19. These rules clearly expressed the expression patterns
of these features. These rules were described in detail in
Discussion Section.

FIGURE 1 | Flowchart of the computational method in this study. A systematic analysis process that integrates feature selection, DT algorithms, and rule learning
was applied to identify COVID-19 methylation site features. The optimal classifier, methylation sites, and rules were determined based on the performance of the DT
model and the importance of the features in each model.

FIGURE 2 | IFS curves obtained by DT classification models on the top
1000 features of the COVID-19 dataset. The model produced the highest F1-
measure of 0.990 when the top 50 features were used.

FIGURE 3 | Performance of the best DT model and DT model with
informative features. The best DT model is superior to the DT model with
informative features.
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DISCUSSION

Our research is dedicated to search for pathogenic clues of SARS-
CoV-2 infection based on the methylation profiles of COVID-19
in confirmed and suspected patients. Epigenetic markers, such as
histone modifications, DNAmethylation, chromatin remodeling,
and non-coding RNAs, can affect gene expression profiles and
increase individual susceptibility to the virus. For example, DNA
methylation is the basis for antigen presentation and host
adaptive immune response in Middle East respiratory
syndrome coronavirus infection (Menachery et al., 2018).
Therefore, we aimed to explore how DNA methylation
influences SARS-CoV-2 infection.

Meanwhile, our research proposed a novel and creative
pattern with a high distinguishing degree in confirmed and
suspected COVID-19 cases through MCFS. Although the real-
time polymerase chain reaction test of sputum is the gold
standard for the diagnosis of COVID-19, it takes a long time
to confirm the diagnosis of patients because of the high level of
false negatives. Therefore, researchers conducted various
methods to better identify SARS-CoV-2 infection. (Hemdan
et al., 2020) constructed a novel deep learning classifier to
diagnose COVID-19 through X-ray images, which are cheaper,
more convenient, and accessible compared with traditional chest
X-ray and computed tomography. (Siddiqui et al., 2020) focused
on the correlation of temperature with suspected, confirmed, and
death cases by machine learning and found that temperature
presents diverse trends in most cities and cannot be the decisive
factor in different cases or situations. We focused on several top
features and decision rules because they have a crucial impact on
the classification and discussed them further through a wide
literature publication to prove that our findings are reliable and
convincing.

Epithelial stromal interaction 1 (EPSTI1, probeID:
cg03753191) is an interferon (IFN)-responsive gene that was
originally isolated from mixed cultured human breast cancer
cells and fibroblasts (Nielsen et al., 2002). This gene is located on
chromosome 13q13.3; is 104.2 kb in length; contains 11 exons;
and is involved in tumor cell metastasis, epithelial–mesenchymal
transition, chronic inflammation, tissue reconstruction,
embryonic development, and other biological processes (De
Neergaard et al., 2010). EPSTI1 plays an important role in the
regulation of cell apoptosis. (Capdevila-Busquets et al., 2015)
confirmed by in vitro experiments that EPSTI1 can inhibit breast
cancer cell apoptosis by interacting with caspase 8. In addition,
EPSTI1 has an antiviral effect against hepatitis C virus (HCV) by

affecting the life cycle, viral replication, assembly, and release of
HCV. (Meng et al., 2015) confirmed that EPSTI1 can promote the
expression of protein kinase-R (PKR)-dependent genes, including
IFNβ, IFIT1, OAS1, and RNase L, by activating the promoter of
PKR to play an antiviral effect during the process of HCV
infection. Without the involvement of IFN treatment, EPSTI1
overexpression effectively suppressed HCV replication, whereas
the lack of EPSTI1 enhanced the viral activities. Current research
discovered that EPSTI1 expression influences the performance of
immune cells. (Kim et al., 2018) found that EPSTI1 expression is
remarkably upregulated after macrophage activation with IFNγ
and lipopolysaccharide. The proportion of M2-type macrophages
is increased in the bone marrow-derived macrophage deficiency
of EPSTI1. In EPSTI1 knockout mice, the number of M1
macrophage cells in the peritoneal cavity was significantly
reduced. These findings demonstrate an important regulatory
role of EPSTI1 in macrophage polarization. Therefore, EPSTI1
methylation may participate in the process of SARS-CoV-2
infection and affect inflammatory and immune function by
regulating EPSTI1 expression.

NACAP1 (probeID: cg15959262) is a pseudogene of nascent
polypeptide-associated complex-alpha (NACA). Phosphatase and
tensin homolog (PTEN) pseudogene 1 (PTENP1) has been first
revealed to contain microRNA response elements (MREs), which
also exist in its corresponding protein-coding gene, PTEN
(Poliseno et al., 2010). Increasing pseudogenes are found to
have a similar phenomenon, that is, pseudogenes and their
corresponding protein-coding genes function as competitive
endogenous RNAs for binding to the same microRNAs
(Lujambio and Lowe, 2012; Karreth et al., 2015). NACA
encodes the a chain of nascent polypeptide-associated complex
(NAC), which performs multiple functions, including protecting
newborn peptides and regulating the translocation of new
peptides into the endoplasmic reticulum and mitochondria
(Rospert et al., 2002). The alpha chain of NAC alone acts as a
transcriptional co-activator for developmental regulation (Yotov
et al., 1998). Furthermore, NACA can regulate the conformation
of Fas-associated death domain protein oligomer, which is an
important mediator in the signal transduction pathway and can
be activated by several members of the tumor necrosis factor
(TNF) receptor family (Liguoro et al., 2003). NACA is related to
neurodegenerative diseases. Patients with Alzheimer’s disease
and Down’s syndrome have lower NACA expression levels in
their brain cells (Kim et al., 2002). More importantly, the
inhibition of NACA can induce the proliferation and
differentiation of CD8+ T cells and enhance cytotoxicity. (Al-

TABLE 1 | Rules yielded by decision tree on top 50 features.

Index Condition Result

Rule0 cg03753191 ≤ 0.1398 cg15959262 > 0.5931 cg17439158 > 0.5681 Patient with COVID-19
Rule1 cg03753191 > 0.1398 cg17439158 ≤ 0.6170 Patient without COVID-19
Rule2 cg03753191 ≤ 0.1398 cg15959262 ≤ 0.5931 cg08399733 ≤ 0.9130 Patient without COVID-19
Rule3 cg03753191 > 0.1398 cg17439158 > 0.6170 Patient with COVID-19
Rule4 cg03753191 ≤ 0.1398 cg15959262 > 0.5931 cg17439158 ≤ 0.5681 Patient without COVID-19
Rule5 cg03753191 ≤ 0.1398 cg15959262 ≤ 0.5931 cg08399733 > 0.9130 Patient with COVID-19
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Shanti and Aldahoodi, 2006) used anti-sense technology to
reduce the concentration of mRNA that translates NACA and
found that CD8+ T cells will differentiate and activate to a higher
degree in the presence of antisense oligonucleotide chains.
Compared with the control group, the lethality of CD8+

T cells on target cells was enhanced.
SHROOM3 (probeID: cg17439158), a member of the Shroom

family, encodes an actin-binding protein, which is important in
epithelial cell shape and tissue morphogenesis (Haigo et al., 2003;
Hildebrand, 2005). Shoom3 overexpression in epithelial cells
induces rho kinase (Rock) recruitment and increases myosin 2
(Myo2) accumulation through phosphorylation and activation.
The activation of the Rock/Myo2 signaling pathway leads to the
local contraction of the actomyosin network on the top surface of
the cell, which results in changes in cell morphology. Recent
research has proved the indispensable role of SHROOM3 in
glomerular filtration barrier integrity (Yeo et al., 2015). Forced
Shroom3 expression in fawn-hooded hypertensive rat and
endogenous shroom3 knockdown zebrafish improved kidney
glomerular function. Moreover, multiple genome-wide
association studies and in vivo experiments strongly
demonstrated the correlation between SHROOM3 and
congenital kidney disease (Khalili et al., 2016).

C19ORF35 (probeID: cg08399733), also named PEAK3, is a
member of the New Kinase Family 3 (NKF3) that can regulate
cytoskeleton stability and cell motility by binding with an adaptor
protein, CrkII (Lopez et al., 2019). C19ORF35 is associated with
cancer progression. C19ORF35 overexpression has been detected in
various cancers, including pancreatic, breast, and colon cancers
(Wang et al., 2010; Kelber et al., 2012; Fujimura et al., 2014).
C19orf35 methylation is related to early carcinogenesis. According
to a DNA methylation sequencing study on 12 patients with early
gastric cancers (EGCs), C19orf35 is remarkably hypomethylated in
the diffuse type of EGC tissue compared with adjacent corresponding
non-tumor mucosal tissue (Chong et al., 2014).

IFN-induced with helicase C domain 1 (IFIH1, probeID:
cg21060789) and IFN-induced protein 44-like (IFI44L, probeID:
cg13452062) are IFN-stimulated genes. IFIH1, also known as
melanoma differentiation-associated gene-5, is a cytoplasmic RNA
receptor protein composed of 1025 amino acids. IFIH1 recognizes
double-stranded RNA with a length of more than 1 kb. It is an
important member of the retinoic acid-inducible gene I (RIG-I)-like
receptor family, which can activate type I IFN signaling pathway and
participate in the pathogenesis of a variety of autoimmune diseases.
IFIH1 and IFN-β interact to activate the body’s anti-tumor immune
response. IFIH1 can promote type I IFN response and increase the
secretion of TNF-α and IFN-β. The upregulation of IFIH1 expression
may increase the effectiveness of IFN therapy (Pappas et al., 2009).
IFN-β can also stimulate the upregulation of IFIH1 and RIG-I,
mediate innate immune response, kill tumor cells with low
neurotoxicity, and therefore inhibit tumor growth (Wu et al.,
2017; Bufalieri et al., 2020). IFI44L is a paralog gene of IFI44 and
functions as a regulator of cell apoptosis, virus infection, and
congenital immune response. The DNA methylation level of the
IF144L promoter may be related to kidney damage in patients with
systemic lupus erythematosus (SLE). (Zhao et al., 2016) found that
the DNA methylation level of IFI44L promoter in patients with SLE

was remarkably lower than that of the normal control group. In
addition, the DNA methylation level of the IFI44L promoter in
patients with SLE and renal involvement was also remarkably lower
than that of patients with SLE without renal involvement. IFI44L
participates in the antiviral process of IFN-mediated innate immune
response and is a confirmedmarker of early viral infection. IFN is the
earliest discovered cytokine that can inhibit viral infection and
replication and is activated in the early stage of viral infection
(within a few minutes to a few hours) (Zaas et al., 2009).
(Henrickson et al., 2018) pointed out that when influenza virus
and respiratory syncytial virus infections occur, IFI44L acts as an
IFN-stimulated factor regulatory gene, and its expression level
increases. Therefore, the mRNA expression of IFI44L can be used
as an early indicator of virus infection. According to (Kaforou et al.,
2017), in 111 bacterial-infected children less than 60 days old, the
detection sensitivity of IFI44L mRNA expression is 88.8% (95% CI,
80.3–94.5%), and the specific degree is 93.7% (95% CI, 87.4–97.4%).
Therefore, aberrant IFI44L methylation may occur during SARS-
CoV2 infection and lead to abnormal IFI44L expression.

MX1 (probeID: cg26312951) belongs to human mycovirus
resistance genes (MX) with biological functions, such as GTP
binding and GTP enzyme activities. The two kinds of MX
proteins, namely, MX1 and MX2, differ greatly in virus specificity
and mechanism of action. MX1 has antiviral activity against a variety
of RNAviruses and certainDNAviruses induced by type I and type II
IFNs, including negative-strand RNA viruses and hepatitis B virus.
MX1 is enriched in the IFN-γ and Toll-like receptor signaling
pathways (Haller et al., 2015). A 2020 study detailed the
expression of MX1 in 403 patients with COVID-19 and 50
patients without COVID-19 (Bizzotto et al., 2020). The expression
of MX1, MX2, ACE2, and BSG/CD147 can cluster individuals with
and without COVID-19 through principal component analysis,
which indicated that the expression levels of MX1 and MX2
between patients with and without COVID-19 are remarkably
different. MX1 can directly act on the ribonucleoprotein complex
of the virus, so it has a wide range of antiviral activity. This feature has
been proven to be suitable for RNA viruses and DNA viruses.
(Verhelst et al., 2012) have reported that Mx1 interfering with
functional viral ribonucleoprotein complex assembly led to
inhibition of influenza virus and high MX1 expression can result
in a better prognosis to influenza A (H1N1) pandemic in 2009. It is
worth noting that GTPase activity is also positively correlated with its
antiviral function. Different fromMX1, the antiviral function of MX2
is limited to certain viruses, such as HIV. Although the expression of
MX1 and MX2 in patients with COVID-19 were significantly higher
than those in non-COVID-19 groups, MX1 shows a greater positive
correlation with patients with COVID-19 and may be more specific
than MX2 in response to SARS-CoV-2. Therefore, MX1 is a key
responder to SARS-CoV-2 infection.

Collectively, the top identified discriminative feature genes
and settled rules have a crucial role in virus infection and IFN-
mediated immune response. This method demonstrates that our
method is reliable and convincing. Our newly presented
computational approach based on methylation profiles also
provides a new perspective for exploring the mechanism of
COVID-19. Furthermore, it is a new method that
distinguishes confirmed and suspected COVID-19 cases and
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has applicable clinical value in the differential diagnosis of
patients with confirmed and suspected COVID-19.

CONCLUSION

The current study aimed to apply computational methods to extract
the best biological features and decision rules from COVID-19
methylation profiles. This study has shown that the extracted
optimal methylation site signatures and expression rules have
been validated by previous work and are reliable and valid for
distinguishing COVID-19. This study provides a new set of potential
biomarkers/rules that can be used to differentiate patients with
COVID-19 at the methylation level. These findings enhance our
understanding of COVID-19 expression at themethylation level and
could offer guidance for future studies on COVID-19.
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