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Abstract
Purpose Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy.
Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury.
Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the
needle tip is challenging and a careful calibration is required to obtain good force estimates.
Methods We describe a fiber-optic needle tip force sensor design using a single OCT fiber for measurement. The fiber
images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study
different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In
particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing.
Results The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise,
calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest
mean absolute error of 1.59±1.3mN and a cross-correlation coefficient of 0.9997 and clearly outperforms the other methods.
Ex vivo experiments in human prostate tissue demonstrate the needle’s application.
Conclusions Our OCT-based fiber-optic sensor presents a viable alternative for needle tip force estimation. The results
indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the
epoxy layer can be effectively used by deep learningmodels. Particularly, we demonstrate that the convGRU-CNNarchitecture
performs favorably, making it a promising approach for other spatio-temporal learning problems.

Keywords Force estimation · Optical coherence tomography · Convolutional GRU · Convolution neural network · Needle
placement

Introduction

For minimally invasive procedures such as biopsy, neuro-
surgery or brachytherapy, needle insertion is often utilized
to minimize tissue damage [1]. To facilitate accurate needle
placement, needle steering, image guidance and force esti-
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mation [2] can be used. Accurate measurement of the forces
affecting the needle tip is of particular interest, e.g., to keep
track of the needle–tissue interaction and to detect poten-
tial tissue ruptures, or to generate haptic and visual feedback
[3]. Therefore, various force-sensing solutions for needles
have been proposed. A simple approach is to place a force
sensor externally at the needle shaft which would allow for
the use of conventional force–torque sensors. However, dur-
ing insertion, large frictional forces act on the needle shaft
which mask the actual tip forces. Therefore, forces acting on
the needle shaft either need to be decoupled from the force
sensor or the force sensor needs to be placed at the needle
tip [4]. This complicates building force sensors as they are
usually constrained to a fewmillimeters in width [5] which is
particularly difficult for mechatronic force sensors [4,6]. For
these reasons, fiber-optic force sensors have been developed
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which are often smaller, biocompatible andMRI-compatible
[7]. In particular, sensor concepts using Fabry-Pérot inter-
ferometry [7,8] or Fiber Bragg Gratings [9–11] have been
proposed. These methods have shown promising calibration
results; however,manufacturing and signal processing can be
difficult when different temperature ranges and lateral forces
need to be taken into account. Another optical method uses
the imaging modality optical coherence tomography (OCT)
to estimate strain and deformation from images of deformed
material such as silicone [12,13]. Also, direct force estima-
tion from volumetric OCT data has been presented [14,15].
Other approaches have integrated single OCT fibers that pro-
duce 1D images into needle probes [16]. This concept has
been used to classify malignant and benign tissue [17].

In this work, we present an OCT needle concept for force
estimation at the needle tip. A single OCT fiber is embedded
into a ferrule with an epoxy layer applied on top of it. A sharp
metal tip is mounted on top of the epoxy layer to facilitate
tissue insertion. Axial forces acting on the needle tip lead to a
deformation of the epoxy layer which is imaged by the OCT
fiber. Thus, forces can be inferred from the OCT signal. In
general, this needle design is easy to manufacture and flexi-
ble as no precise fiber placement is required; the needle tip’s
shape can be changed and the epoxy layer’s thickness and
composition can be varied. Thus, softer epoxy resin could
be used for application scenarios which require a high sen-
sitivity such as microsurgery and stiffer epoxy resin could
be used for large forces which occur, e.g., during biopsy [7].
However, this approach comes with challenges for calibra-
tion and force estimation. In particular, a robust, nonlinear
model is required which maps the deformations observed in
the OCT images to forces. The signal can be understood as
2D spatio-temporal data with a spatial and a temporal dimen-
sion. Using the current observation ti and previous ones has
been shown to be effective for vision-based force estimation
with RGBD cameras as the current force estimate is likely
reflected in prior deformation [18]. In contrast to previous
approaches [18], we directly learn relevant features from the
data using deep learning models. This eliminates the neces-
sity to engineer new features for othermaterialswith different
light scattering properties.

For deep learning-based spatio-temporal data processing,
various method have been proposed in the natural image
domain, e.g., for action recognition [19,20] or video clas-
sification [21,22]. Spatial and temporal convolutions have
been employed [23,24] and models using convolutional neu-
ral networks (CNNs) with a subsequent recurrent part have
been proposed [21,25]. We adapt these approaches for our
new 2D spatio-temporal learning problem where a series of
1D OCT A-scans needs to be processed. In addition, we pro-
pose a novel convolutional gated recurrent unit-convolutional
neural network (convGRU-CNN) architecture. The key idea
and difference to other methods is to first learn temporal

relations using recurrent layers while keeping the spatial data
structure intact by using convolutions for the recurrent gating
mechanism [26]. Then, a 1D CNN architecture processes the
resulting spatial representation.We provide an in-depth anal-
ysis of this concept and compare it to previous approaches
for deep learning-based spatio-temporal data processing. In
addition, we provide qualitative results for tissue insertion
experiments, showing the feasibility of the approach. This
work extends preliminary results we presented at MICCAI
2018 [27]. We substantially revised and extended the origi-
nal paper with an extended review of the relevant literature,
a more detailed explanation of our novel convGRU-CNN
model and additional experiments for the model. In particu-
lar, we rerun all quantitative experiments for more consistent
results, we perform additional experiments to analyze the
temporal dimension and properties of the convGRU-CNN
andwe improve themodelwith recurrent batch normalization
[28] and recurrent dropout [29]. To highlight the proposed
model’s advantages, we consider additional spatio-temporal
deep learning models and a conventional model. We provide
a more detailed comparison of the spatio-temporal models’
errors and their significance. Furthermore, we provide infer-
ence times of our models to demonstrate real-time capability.

Summarized, the key contributions of this work are three-
fold. (1) We propose a new design for OCT-based needle tip
force estimation that is flexible and easy to manufacture. (2)
We present a novel convGRU-CNN architecture for spatio-
temporal data processing which we use for calibration of our
force-sensing mechanism. (3) We show the feasibility of our
approach with an insertion experiment into human ex vivo
tissue.

Materials andmethods

Problem definition

Our force-sensing needle design uses OCT which produces
series of 1D images (A-scans) that need to be mapped to
forces. Thus, we consider a 2D spatio-temporal learning
problem with a set of ts consecutive, cropped 1D A-scans
(Ati , Ati−1 , . . . , Ati−ts

) with Ati ∈ R
dc where dc denotes the

crop size. The resulting matrix Mti ∈ R
ts×dc is used to esti-

mate a force Fti ∈ R.

Deep learning architectures

We consider different deep learning models to map Mti to
Fti . First, we introduce our novel convGRU-CNN architec-
ture. Then, we consider model variants that use alternative
ways of data processing.

convGRU-CNN combines spatial and temporal data pro-
cessing in a newway. First, a convolutional GRU (convGRU)
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Fig. 1 The convGRU-CNN model we employ. The metal tip’s flat sur-
face at the epoxy layer cannot be penetrated by infrared light which is
why that signal part is considered noise. σ and tanh denote a convo-
lutional gate with sigmoid and hyperbolic tangent activation function,
respectively. The subsequent CNN is a ResNet-like network. The first

block in a series of ResBlocks uses a stride of 2 for the convolutionswith
kernel 31 and increases the number of feature maps. Subsequent blocks
have a stride of 1 and keep the same feature map size. The change in
the number of feature maps Fj is denoted in each group of ResBlocks

takes care of temporal processing. The convGRU outputs a
1D spatial feature representation which is then processed by
a ResNet-inspired [30] 1D CNN. The model is shown in
Fig. 1. The convGRU is a combination of convLSTM and
gated recurrent units [31]. We replace the matrix multiplica-
tions in the GRU with convolutions such that the output of
the convGRU unit is computed as

zt = σ(Kz ∗ ht−1 + Lz ∗ RBN(xt ))
rt = σ(Kr ∗ ht−1 + Lr ∗ RBN(xt ))
ct = tanh(Kc ∗ (rt ht−1) + Lc ∗ RBN(xt ))
ht = zt ct + (1 − zt )ht−1

(1)

where h is the hidden state, x is the input, K and L are filters,
∗ denotes a convolution, σ denotes the sigmoid activation
function and RBN(.) denotes recurrent batch normalization
[28]. Furthermore, we employ recurrent dropout for addi-
tional regularization [29] at the cell input with probability
pdi = 0.1 and at the cell output with probability pdo = 0.2.
Recurrent batch normalization and dropout are extensions
to the original model presented in [27] and the new model
is named convGRU-CNN+. We add these augmentations to
all recurrent models.

1D CNN processes A-scans Ati individually without
considering a history of data which resembles a single-
shot learning approach. The CNN architecture is the same
ResNet-based model that is depicted in Fig. 1.

GRU processes a set a of A-scans, without taking spatial
structure into account as it consists of three GRU layers with
standard matrix multiplications being performed inside the
gates.

CNN-GRU also uses a set a of A-scans and follows the
classic approach of first performing spatial processing and
feature extraction with a CNN and then temporal processing
with a recurrent model. The CNN part is the ResNet-based
model as shown in Fig. 1 and the recurrent part is a two-layer
GRU.

2DCNN is fed with a set a of A-scans and performs
data processing with convolutions over both the spatial
and temporal dimensions. This architecture also follows the
ResNet-like CNN part shown in Fig. 1. The kernels are of
size 3× 3, and strides are used to simultaneously reduce the
spatial and the temporal dimensions.

GRU-CNN is a variant of convGRU-CNN with normal
GRU cells. Here, the A-scans are directly treated as feature
vectors. This architecture is used to demonstrate the neces-
sity of using convolutional GRUs when performing temporal
processing first.

CNN-convGRU is a variation of CNN-GRU with con-
vGRU cells. Before the global average pooling operation,
the convGRU cells perform temporal processing while keep-
ing the spatial structure that resulted from CNN processing.
Afterward, global averagepooling is applied and the resulting
feature vector is fed into the output layer. This architecture
serves as a comparison to convGRU-CNN in terms of the
position of the convGRU units in the network.

MIP-GPM is a simple reference model using classic fea-
ture extraction with a Gaussian process regression model
[32]. We extract the needle tip’s high-intensity surface using
1D maximum intensity projection (MIP) on the median-
filtered A-scans. The normalized pixel index of the MIP
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Fig. 2 Schematic drawing of
the needle and the calibration
setup. Not to scale. The needle
contains an OCT fiber that
images a deformable epoxy
layer below the needle tip.
Forces are measured by the force
sensor at the base. The setup is
moved with a linear stage
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Fig. 3 Needle design (left) and photograph of the experimental setup
for the prostate insertion experiment (right). The brass tip (a) is attached
to the epoxy layer (b) which is glued to the ferrule with the embedded
OCT fiber (c). The ferrule is attached to the needle base (d) with a diam-

eter of 1.25 mm. For the prostate (e) insertion experiment, the needle
is decoupled with a shielding glass tube (f). The linear stage (g) moves
the needle and the force sensor (h) acquires reference data

represents a simple feature that captures deformation. This
scalar feature serves as a comparison to the deep learning
models.

All networks are trained end-to-end. We use the Adam
algorithm for optimization with a batch size of B = 100. Our
implementation uses Tensorflow [33]. The initial learning
rate is lr = 10−4. We halve the learning rate every 30 epochs
and stop training after 300 epochs.

Needle design and experimental setup

Our proposed needle tip force-sensing mechanism and cal-
ibration setup are shown in Fig. 2. The needle’s base is a
ferrule with a diameter of 1.25 mm which holds the OCT
fiber. On top, we apply an epoxy resin layer with a height of
0.5 mm using Norland Optical Adhesive (NOA) 63. On top
of the layer, a cone-shaped brass tip is attached. The epoxy
resin layer’s stiffness is varied by mixing the resin with dif-
ferent concentrations of NOA 1625. The needle’s OCT fiber
is attached to a frequency-domain OCT device (Thorlabs
Telesto I). A force sensor (ATI Nano43) for ground-truth
annotation is mounted between the needle and a linear stage
that moves the needle along its axial direction. For calibra-
tion, the tip is deformedwith randommagnitude and velocity
to create a large dataset with extensive force variations being
covered. Next, we validated the needle in tissue insertion

experiments, see Fig. 3. Obtaining ground-truth tip forces
is challenging for this case as the force sensor at the base
measures both axial tip forces and friction forces acting on
the shaft. Therefore, we use a shielding tube which is decou-
pled from the needle and the force sensor. This allows for
measurement of axial tip forces for comparison to our nee-
dle tip sensing mechanism. Note that the shielding tube is
a workaround for validation experiments but not for practi-
cal application as the stiff tube would increase trauma. We
perform insertion experiments into a freshly resected human
prostate. In the supplementary material, video, ultrasound,
force and OCT signal recordings are provided.

Data acquisition and datasets

The OCT device we use is a frequency-domain-OCT which
uses interferometry with near-infrared light to acquire 1D
depth profiles (A-scans) with a rate of 5500 Hz. The light’s
wavelength of 1325 nm allows for imaging of the inner struc-
ture of scattering materials with up to 1 mm depth. The force
sensor for ground-truth annotation acquires data at 500 Hz.
Therefore, the OCT and force sensor data streams need to
be synchronized and matched. We use the streams’ times-
tamps for synchronization and nearest neighbor interpolation
to assign an A-scan to each force measurement. To construct
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Table 1 Comparison of needles with different epoxy layer stiffnesses.
The convGRU-CNN+ model was used for this experiment

MAE rMAE CC Max

Needle 1 1.59 ± 1.3 0.0199 ± 0.0172 0.9997 379

Needle 2 7.12 ± 5.8 0.0266 ± 0.0226 0.9995 974

Needle 3 22.97 ± 20.6 0.0345 ± 0.0301 0.9991 3202

a sequence, we add ts previous A-scans to each A-scan with
an assigned force value.

We acquire calibration datasets for three needles with dif-
ferent stiffness of the epoxy layer. The datasets each contain
approximately 90000 sequences of A-scans, each labeled
with a scalar, axial force. We use 80 % of the data for
training and validation and 20 % for testing. There is no
overlap between the sequences from the different sets. We
tune hyperparameters based on validation performance. In
terms ofmetrics, we report themean absolute error (MAE) in
mN with standard deviation, the relative MAE (rMAE) with
standard deviation and correlation coefficient (CC) between
predictions and targets. To ensure consistency, we repeat all
experiments five times and provide the mean values over all
runs. We test for significant difference in the median of the
models’ absolute errors with the Wilcoxon signed-rank test
(α = 5% significance level). Furthermore, we provide the
inference time (IT) in ms of each model for a single forward
pass, averaged over 100 repetitions.

Results

First, we report the results for the three different needles
with different stiffness of the epoxy layer. Stiffness increase
from needle one to three. The results with the correspond-
ing maximum force magnitudes are shown in Table 1. With
increasing stiffness, the MAE increases, as the overall cov-
ered force range increases.Betweenneedle 1 and2, the rMAE
increases by a factor of 1.33. Between needle 2 and 3, the
rMAE increases by a factor of 1.29. The CC remains similar
among the needles.

Next, we compare our proposed convGRU-CNN model
to other spatio-temporal deep learning methods. The results
are shown in Table 2. Overall, the models that perform
spatio-temporal processing (convGRU-CNN+, convGRU-
CNN, CNN-GRU, CNN-convGRU, 2DCNN) clearly outper-
form 1DCNN andGRU.Overall, convGRU-CNN+ performs
best. Boxplots in Fig. 4 show a more detailed analysis of the
spatio-temporal deep learningmodels. The null hypothesis of
an equal median for the absolute errors of convGRU-CNN+
can be rejected with p-values of 6.15×10−10, 1.32×10−11,
7.72×10−12 and 1.16×10−12 compared to convGRU-CNN,
CNN-GRU, CNN-convGRU and 2DCNN, respectively.

In terms of inference time, the spatio-temporal deep
learning models can provide predictions with approximately
100 Hz. The fastest spatio-temporal deep learning model is
2DCNNwith an IT of 8.6 ms and the overall fastest model is
GRU with an IT of 2.5 ms. Note that these values are highly
hardware (NVIDIAGTX1080Ti) and software (Tensorflow)
dependent.

The previous results showed a clear performance increase
for joint spatio-temporal processing. Therefore, we perform
experiments to analyze the effect of the temporal dimension.
In Fig. 5, we show results for different ts and the associated
training durationswith our convGRU-CNN+ andCNN-GRU
model. Increasing ts leads to improved performance with a
lower MAE for both models. With increasing ts , the overall
training time also increases substantially. Across all values
for ts , the training time of convGRU-CNN+ is lower than the
time for CNN-GRU.

Last, we present results for the needle insertion experi-
ments shown in Fig. 6. We performed one experiment with
the shielding tube and without. When using the decoupled
tube, the force sensor’smeasurements for ground-truth anno-
tation closely match the the values predicted by our model.
Without the tube, friction forces induce a large difference
between measurements and predictions.

Discussion

We present a new technique for needle tip force estimation
using an OCT fiber embedded into a needle that images the
deformation of an epoxy layer. OCT has been used for multi-
ple needle-based tissue classification scenarios [17,34]which
could lead tomorewidespread application in clinical settings.
Our needle is flexible in design and easy tomanufacture. This
is highlighted by our results for three needles with epoxy lay-
ers of different stiffness.With increasing stiffness, the rMAE
increases slightly by 30 % between needles which indicates
that there is a decrease in relative performance for stiffer nee-
dles but the decrease appears to be bounded as it is similar for
needles 1 and 2 and needles 2 and 3. Also, the CC remains
high in a range of 0.9997 to 0.9991. This indicates that our
method generalizes well for different epoxy stiffness levels.
Overall, this allows for flexible adaptation of our needle to
scenarioswith different requirements for force sensitivity and
range.

The OCT fiber within the needle produces series of A-
scans that can be treated as spatio-temporal data, i.e., 1D
images over time. To process this type of data, we propose
a novel convGRU-CNN+ architecture. The model performs
both temporal and spatial processing and outperforms the
pure temporal GRU and pure spatial 1D CNN with an MAE
of 1.59 ± 1.3 compared to an MAE of 3.02 ± 3.7 and
3.26 ± 3.9, respectively. Also, we compared to the spatio-
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Table 2 Comparison of several
architectures. Needle 1 was used
for this experiment

MAE rMAE CC IT

convGRU-CNN+ 1.59 ± 1.3 0.0199 ± 0.0172 0.9997 10.3 ± 1.5

convGRU-CNN 1.75 ± 1.5 0.0211 ± 0.0182 0.9996 9.6 ± 1.7

GRU 3.02 ± 3.7 0.0377 ± 0.0479 0.9982 2.5 ± 0.4

1DCNN 3.26 ± 3.9 0.0393 ± 0.0482 0.9980 6.9 ± 1.3

CNN-GRU 2.01 ± 3.2 0.0247 ± 0.0411 0.9989 9.5 ± 1.4

CNN-convGRU 2.03 ± 3.3 0.0242 ± 0.0426 0.9990 11.1 ± 1.7

2DCNN 2.11 ± 3.5 0.0255 ± 0.0438 0.9987 8.6 ± 1.5

GRU-CNN 11.79 ± 8.6 0.1253 ± 0.1001 0.9948 10.1 ± 1.4

MIP-GPM 45.38 ± 38.7 0.4820 ± 0.4114 0.7767 14.8 ± 2.2

The best values are marked in bold

Fig. 4 Boxplots of the absolute
errors for the top-performing
spatio-temporal deep learning
models. The red line marks the
median, the boxes’ bottom and
top line mark the 25th and 75th
percentiles, respectively. Red
marks above the whiskers
represent outliers. Notches
around the median mark
comparison intervals where
non-overlapping intervals
between boxplots indicate
different medians at 5%
significance level. With respect
to the frequency of outliers,
consider that the errors are
likely not normally distributed

convGRU-CNN+ convGRU-CNN CNN-GRU CNN-convGRU 2DCNN
0

1

2

3

4

5

6

7

A
bs
ol
ut
e
E
rr
or

in
m
N

Fig. 5 Comparison between
convGRU-CNN+ and
CNN-GRU for different
numbers of timesteps ts . The
calibration data for needle 1 was
used for this experiment

10 25 50 100 150
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of Past A-Scans ts

M
A
E
in

m
N

convGRU-CNN
CNN-GRU

10 25 50 100 150
0

10

20

30

40

50

Number of Past A-Scans ts

T
ra
in
in
g
T
im

e
in

h

CNN-GRU
convGRU-CNN

temporal models CNN-GRU, CNN-convGRU and 2DCNN
which are variants adopted from the natural image domain
[25,26,35]. The three models are closer in terms of perfor-
mance but overall, convGRU-CNN+ performs best. Notably,
the differences in the median of the errors are significant
which is also highlighted by the boxplots showing the test
set error distribution in Fig. 4.

The key difference between all spatio-temporal deep
learning models is that convGRU-CNN(+) and GRU-CNN
first perform temporal processing, then spatial process-
ing, CNN-GRU and CNN-convGRU first performs spatial,
then temporal processing and 2DCNN performs concur-
rent processing. Overall, our proposed model significantly
outperforms all other variants. The lower performance of
the previous spatio-temporal models CNN-GRU [25] and

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1485–1493 1491

Fig. 6 Predicted and measured
force values are shown for an
insertion with the shielding tube
(left) and without (right). For
the case without tube,
differences between needle tip
force estimation and force
sensor is caused by friction.
Needle 2 and convGRU-CNN+
were used for this experiment
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CNN-convGRU [35] indicates that temporal processing fol-
lowed by spatial processing is preferable for the problem
at hand. To highlight the necessity of convGRU units, we
consider GRU-CNN without convolutional gates. The MAE
is significantly higher which demonstrates the necessity to
preserve the spatial structure during temporal processing.
In addition, we show that recurrent dropout and recurrent
batch normalization can improve the spatio-temporal mod-
els’ performance further. For reference, MIP-GPM shows
that conventional feature extraction without extensive engi-
neering cannotmatch deep learningmodels’ performance for
this problem.

Furthermore, we perform a more detailed analysis of our
convGRU-CNN+ model compared to the more common
CNN-GRUmodel. The results in Fig. 5 showadecrease in the
MAE when a longer history of A-Scans is considered. This
highlights the value of exploiting temporal information for
force estimation. However, this improvement is bought with
a substantial increase in training time as the computational
effort increases. For example, for convGRU-CNN+, using
ts = 100 instead of ts = 50 previous measurements leads
to a performance increase of 7 % and an increase in training
time of 82 %. Training time is an important aspect to con-
sider for application as newly designed needles will require
an initial calibration, i.e., model training. If a new needle
with adjusted epoxy layer for a particular force range needs
to be available quickly, performance needs to be traded off
against shorter training times. Overall, both models benefit
similarly from the additional temporal information, however,
convGRU-CNN+ trains faster. This is due to the convGRU
units which have significantly fewer parameters than their
GRU counterpart in CNN-GRU.

Besides performance and training time, the models’ infer-
ence time is important for application and real-time feedback
of forces. Overall, the high-performing spatio-temporal deep
learnings models can process samples at 100 Hz which indi-
cates real-time capability. Notably, 2DCNN is almost as
fast as 1DCNN due to the fact that 2D convolutions are
muchmore common and highly optimized in Tensorflow and

CUDA. Thus, our convGRU-CNN model’s inference time
could improve further with software optimization as a 1D
CNN is also part of the model. Also, note that inference
times are hardly affected by the number of previous mea-
surements ts . After initial processing, the recurrent part of
the models stores previous information in its cells’ states and
only requires one additional sample to be processed at each
step.

Also, it is important how the estimated forces are trans-
ferred to the physician effectively [36]. Previous approaches
used a haptic feedback device [37] or visual feedback [38] to
provide the forces to the physicians. In this context, the appli-
cation scenario and required force resolution are important as
rough estimates might be sufficient for qualitative feedback
methods. Other settings such as retinal microsurgery require
highly accurate force measurements [39] where our high-
performing models might be particularly beneficial. Thus,
future work could examine our proposed force estimation
method in the context of different application scenarios and
force feedback methods.

Last, we validated our needle design in a realistic inser-
tion experiment with a freshly resected human prostate. Our
results in Fig. 6 show that the needle tip forces closely match
the actual, decoupled, base measurements. While the decou-
pling is not perfect, we can show that our method accurately
captures events such as ruptures. Without tip measurements
or decoupling, large friction forces overshadow the actual
tip forces. Overall, the experiments show that our method is
usable for actual force estimation in soft tissue.

Conclusion

We introduce a newmethod to measure forces at a needle tip.
Our approach uses an OCT fiber imaging the deformation
of an epoxy layer to infer the force that acts on the nee-
dle tip. To map the OCT data to forces, we propose a novel
convGRU-CNN+ architecture for spatio-temporal data pro-
cessing. We provide an analysis of the model’s properties,
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and we show that it outperforms other deep learning meth-
ods. Furthermore, validation experiments in ex vivo human
prostate tissue underline the method’s potential for practical
application. For future work, our convGRU-CNN+ architec-
ture could be employed for other spatio-temporal learning
problems.
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