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ABSTRACT 

The effects of pesticides on the health of non-target living organisms in agricultural areas are critically important 

aspects for their safe use. Their release into the environment is an inevitable aspect for predicting and evaluation 

of the risk of their application. Roundup, a glyphosate-based herbicide, has been designed as an effective pesticide 

against weeds and now is the most widely used agrochemicals around the world due to its highly specific action 

of the biosynthesis of certain amino acids in plants. Despite it is claimed to be low toxic for not-target organisms, 

due to its broad application Roundup and products of its degradation were detected in organisms of diverse animals 

and humans. In this review, we describe animal and human studies of general adverse effects of Roundup and its 

principal substance glyphosate with focus on endocrine disruption, oxidative stress and behavioral disorders. At 

mechanistic level, we focus on the potential toxicity of the herbicide Roundup and glyphosate as effectors of 

bioenergetic functions of mitochondria. Their effects on mitochondrial membrane potential and oxidative phos-

phorylation are among described to date critical components responsible for its toxicity. Finally, we discuss gen-

eral molecular mechanisms potentially involved in the interaction between glyphosate and mitochondria which to 

some extent are associated with generation of reactive oxygen species.  
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INTRODUCTION  

Using pesticides to increase crop produc-

tion and improve human health can be of great 

benefit to society. In pesticide development, 

these benefits are targeted at specific pests, 

but there is also a need to assess the potential 

impact on non-target organisms including hu-

mans (Annett et al., 2014; Damalas and 

Eleftherohorinos, 2011; Lushchak et al., 

2018).  

Roundup is the most commonly used pes-

ticide in the world (Duke, 2020). Since its ap-

pearance on the market, its use has been in-

creased enormously. Its global use reached 

825,804 metric tons in 2014 (Benbrook, 

2016). Roundup Original® contains active in-

gredient glyphosate, N-(phosphonomethyl) 

glycine, in the form of its isopropylamine salt, 

as well as surfactant polyethoxylated tallow 

amine, whereas Roundup Transorb R® con-

tains the potassium salt of glyphosate with 

surfactants. Both contain different composi-

tions of so-called "inert" ingredients, which 

are believed to aere more toxic than glypho-

sate (Rissoli et al., 2016). Roundup has rela-

tively short half-life in water up to 91 days 

and soil up to 197 days which is affected by 

environmental conditions (Miller et al., 

2010). Due to their cumulative properties, 

they circulate in ecosystems and accumulate 

in non-target organisms and can be included 

in food chains (Bai and Ogbourne, 2016), 

showing significant toxicity to a wide range 

of organisms (Lushchak et al., 2018). Glypho-

sate residues were detected in the urine of 

farmers who live in the roundup treated areas 

suggesting potential impact of Roundup on 

the humans (Rendon-von Osten and Dzul-

Caamal, 2017). Moreover, Roundup compo-

nents are proven to present in rivers (0.1-0.7 

mg/l), sediments (0.0-4.9 mg/kg) and soil 

(0.5-4.3 mg/kg), sometimes even at concen-

trations close to toxic (Peruzzo et al., 2008). 

Investigation of potential toxicity of 

Roundup (Samsel and Seneff, 2015) and its 

major active substance glyphosate on various 

model organisms may help to elucidate the 

role of defense mechanisms in its toxic ef-

fects. Evaluation of the impact of Roundup 

and its components on metabolism, cell sig-

naling, apoptosis and aging with particular at-

tention to mitochondria in order to understand 

interference with bioenergetic functions is 

very important from theoretical and practical 

points of view. In this review, we will high-

light established to date and molecular mech-

anisms of effects of Roundup and its compo-

nents on respiratory chain and oxidative phos-

phorylation in the mitochondria.  

 

IMPACT OF THE GLYPHOSATE AND 

GLYPHOSATE-BASED HERBICIDES 

ON LIVING ORGANISMS  

Absorption, accumulation, transformation 

and release of glyphosate in the organism 

Glyphosate can enter the human body and 

be excreted in unchanged form (Hove-Jensen 

et al., 2014). The bioaccumulation factor for 

glyphosate varies significantly depending on 

species, time of exposure and concentration 

of the acting compound. Some components of 

the formulation of glyphosate-based herbi-

cides enhance entering of glyphosate into or-

ganisms (Contardo-Jara et al., 2009). For ex-

ample, macroinvertebrates namely Chirono-

mids and Gastropoda could accumulate 

glyphosate in their body from the bathing area 

of Lake Lednica up to 10.2 µgkg-1 (Rzymski 

et al., 2013). Glyphosate was found in differ-

ent tissues of slaughtered cows including the 

intestine, liver, muscle, spleen and kidney at a 

concentration of 20 ngkg-1 with no signifi-

cant influence of glyphosate residuals on ani-

mal (Krueger et al., 2014). Approximately 35-

40 % of glyphosate at concentration 10 mg/kg 

was absorbed from the gastrointestinal tract of 

Sprague-Dawley rats (Brewster et al., 1991). 

Within 7 hours after oral glyphosate admin-

istration, almost 40 % of the absorbed mate-

rial was eliminated with the urine, about 50 % 

was associated with the small intestine and af-

ter 7 days nearly all of the absorbed material 

was eliminated from the organism. The au-

thors suggested that urinary and fecal path-

ways of excretion are the main routes for 

glyphosate excretion (Brewster et al., 1991). 

The European Commission (2002) informed 

that glyphosate can absorb rapidly and to 
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small extent (~30 %) and be rather quickly 

excreted from animal body; glyphosate me-

tabolism in animals was found to be very lim-

ited and the effects of glyphosate on the body 

occur when the organism is exposed for a rel-

atively long period.  

While glyphosate is a small molecule it 

can penetrate passively through the cell mem-

brane. For example, glyphosate at low con-

centration can penetrate the epithelial barrier 

of human epithelial cells only to small extent. 

However, exposure to higher concentrations 

of glyphosate (10 mg/ml) reduced the transep-

ithelial electrical resistance and increased per-

meability of mannitol into epithelial cells 

(Vasiluk et al., 2005).  

 

Metabolism of glyphosate in the intestine 

bacterial community  

Glyphosate was patented as an antimicro-

bial agent and was detected in steadily in-

creasing amounts in the genetically modified 

Roundup-Ready corn and soy feed of cows, 

pigs, chickens, farmed shrimp and fish as well 

as it is ubiquitous in the Western diet of hu-

mans (William, 2010). 

Glyphosate affects the commensal bacte-

rial community in the animal intestine (Niel-

sen et al., 2018). Moreover, some amount of 

glyphosate is degraded primarily by intestine 

microorganisms (Mesnage and Antoniou, 

2020). There are at least two ways of glypho-

sate metabolism in bacteria. The first, use of 

glyphosate as a sole source of phosphorus was 

found in Pseudomonas aeruginosa. These 

bacteria is one of a small number of resistant 

bacterial species with the ability to metabolize 

glyphosate, a feature that might be exploited 

for soil remediation (Abdel-Megeed et al., 

2013). Carbon-phosphorus lyase (C-P lyase) 

catalyzes the first step of glyphosate metabo-

lism replacing the phosphonate group from 

glyphosate by H2O molecule to form sarco-

sine (Figure 1). Next, sarcosine dehydrogen-

ase catalyzes sarcosine conversion to glycine 

which, in turn, further may be converted to 

formaldehyde (Kishore and Jacob, 1987; 

Shinabarger and Braymer, 1986). 

 

 

Figure 1: Metabolism of glyphosate in bacteria 
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The second pathway of bacterial glypho-

sate metabolism was found in Escherichia 

coli, Arthrobacter sp. and Pseudomonas sp. 

This pathway occurs in the bacteria that ac-

tively use phosphorus to produce energy. 

These microorganisms convert glyphosate to 

aminomethylphosphonic acid (AMPA) with 

glyphosate dehydrogenase. Next, AMPA is 

cleaved to methylamine by C-P lyase. Finally, 

methylamine dehydrogenase catalyzes me-

thylamine breakdown into formaldehyde and 

ammonia (Hove-Jensen et al., 2014). Interme-

diates and reduced coenzymes at above de-

scribed transformations are used to produce 

ATP. 

Cytochromes P450 are a superfamily of 

enzymes containing heme as a cofactor and 

functioning as monooxygenases. They are 

known to be involved in the metabolism of 

xenobiotics (Esteves et al., 2021) including 

glyphosate. Exposure of rats to sublethal 

glyphosate doses decreased cytochrome P450 

levels in the liver (Larsen et al., 2014).  

A product of glyphosate degradation 

phosphonate AMPA demonstrated toxic ef-

fects on humans at a concentration of 0.25 

mM (Wang et al., 2016). Treatment by 

AMPA enhanced generation of reactive oxy-

gen species (ROS) and resulted in higher level 

of methemoglobin in human erythro-cytes 

(Kwiatkowska et al., 2014). Import-antly, 

AMPA is less toxic as compared to glypho-

sate. Both AMPA and glyphosate exhibited 

genotoxicity for European eel (Anguilla an-

guilla L.) at concentrations 11.8 µg L-1 and 

23.6 µg L-1, however, AMPA did not induce 

marked DNA oxidation (Guilherme et al., 

2012, 2014). 

The European Food Safety Authority 

(2002) reported that degradation of glypho-

sate to AMPA in the human body is very lim-

ited. The bioavailability of glyphosate after 

oral administration was 23.21 % and only 

6.49 % of it was metabolized to AMPA 

(Anadón et al., 2009). Both, glyphosate and 

AMPA, were found in the urine at concentra-

tions of 0.28±0.38 and 0.30±0.33 µg/L, re-

spectively. However, glyphosate and AMPA 

were not found in human milk and in this way 

is supposed not to be dangerous for children 

(McGuire et al., 2016). Therefore, it can be 

concluded that glyphosate is not the only pre-

cursor of AMPA in the environment. Indeed, 

several phosphonates can also degrade to 

AMPA (Huntscha et al., 2018). 

 

MOLECULAR MECHANISMS OF  

INTERACTION BETWEEN  

GLYPHOSATE AND MITOCHONDRIA 

Impact of glyphosate on key bioenergetic 

enzymes and levels of intermediates of  

tricarboxylic acid cycle  

The activity of lactate dehydrogenase 

(LDH) is used as a low specific marker of cel-

lular damage due to exposure to pesticides 

(Jurisic et al., 2015; Klein et al., 2020). The 

activity of LDH indicates about switching of 

anaerobic glycolysis to aerobic respiration. 

The additional function of the enzyme is the 

involvement in the protective mechanisms via 

contributing to DNA repairing processes, 

maintaining lactate and pyruvate homeostasis 

and modulation of redox potential (Lemire et 

al., 2008). The activity of LDH in the serum 

of human was significantly affected by 

glyphosate treatment (El-Demerdash et al., 

2001). Glyphosate exposure decreased LDH 

activity in the human brain (Olorunsogo, 

1990; Cattani et al., 2014). The activities of 

glucose-6-phosphate dehydrogenases 

(G6PDH) and malate dehydrogenases (MDH) 

were affected at glyphosate exposure of rats 

to glyphosate (Daruich et al., 2001).  

Succinate dehydrogenase (SDH) is a 

membrane-bound enzyme linking metabo-

lism and aerobic energy production (Kumari, 

2018). This enzyme couples the oxidation of 

succinate to fumarate in the Krebs cycle with 

the reduction of ubiquinone to ubiquinol. Due 

to hydrophilicity and structural similarity be-

tween glyphosate and succinate (Ugarte, 

2014), glyphosate attaches to the binding site 

of succinate (Burchfield et al., 2019). The 

electron microscopy analysis showed reduced 

respiratory activity of mitochondria under 

Roundup treatment of liver hepatocytes (Ma-

latesta et al., 2008). The activity of SDH, 

which is a key component of the TCA cycle 
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and the respiratory chain, is used as a bi-

omarker to evaluate Roundup cytotoxicity in 

human cells (Mesnage et al., 2015).  

In addition, glyphosate acts as a trigger to 

the pentose phosphate pathway (PPP), which 

is involved in the generation of reducing 

equivalents in NADPH form (De Freitas-

Silva et al., 2017). Enhancement of PPP ac-

tivity also reflects induction of oxidative 

stress within the cell (Tang, 2019). 

 

Influence on mitochondrial membrane and 

membrane potential 

Mitochondria generate chemical energy in 

a form of adenosine triphosphate (ATP) used 

in many biochemical reactions within the cell. 

The functional shift in mitochondria can lead 

to severe alterations of the general metabo-

lism. In 2005 Peixoto showed that rat liver 

mitochondria were negatively affected by a 

glyphosate-based pesticide in combination 

with other compounds (Peixoto, 2005). 

The mitochondrial membrane potential is 

an essential component in the regulatory 

mechanism of respiratory rate, ATP synthesis 

and ROS generation. Protein complexes of 

the respiratory chain in mitochondria are es-

sential components for maintaining the elec-

trochemical potential of hydrogen ions 

needed to synthesize ATP. The shifts in the 

respiratory chain function may result in alter-

ations in mitochondrial membrane potential 

(Zorova et. al., 2018). Hence, membrane per-

meability is believed to be an indicator of 

Roundup and glyphosate-based herbicides 

toxicity. Glyphosate induced hyperpolariza-

tion of the mitochondrial membrane in the mi-

tochondria from brain of zebrafish Danio re-

rio (Pereira et al., 2018). Electron microscopy 

of Cyprinus carpio treated with Roundup re-

vealed myelin-like structures in hepatocytes, 

mitochondria swel-ling and mitochondrial in-

ternal membrane disruption (Szarek et al., 

2000). However, glyphosate exposure at a 

concentration of 10 mg/kg and roundup at a 

concentration of 10 mM for either 4 and 24 

hours had no significant effect on mitochon-

drial membrane integrity in the Substantia 

nigra in male Wistar rats (Astiz et al., 2009a). 

Glyphosate up to 15 mM did not affect mito-

chondrial membrane potential, but Roundup 

at a concentration of 10 mM disrupted mito-

chondrial membrane potential in preparations 

from liver of Wistar rats (Peixoto, 2005). The 

mitochondrial mem-brane potential was 

lower in rat heart H9c2 cells exposed to a mix-

ture of glyphosate and surfactant TN-20 (Kim 

et al., 2013). Roundup also decreased mito-

chondrial potential in rat hepatoma tissue cul-

ture (Malatesta et al., 2008). Glyphosate dis-

turbed mitochondrial membrane potential in 

the immortalized human HaCaT cell line 

(Heu et al., 2012). Glyphosate-based herbi-

cide TouchDown (TD) at a range of concen-

trations 3 % to 10 % decreased proton trans-

membrane gradient in E. coli (Burchfield et 

al., 2019). 

Glyphosate-based herbicides can also 

modify mitochondrial membrane. Disruption 

of mitochondrial membrane potential is asso-

ciated with high levels of ROS and can corre-

late with activation of caspases which can be 

harmful to the cell (Olorunsogo et al., 1980).  

 

Mitochondrial respiratory chain inhibition 

The electron transport chain (ETC) is the 

last step of glucose metabolism associated 

with energy production in ATP form. It con-

sists of a set of protein complexes in the inner 

membrane of the mitochondria. Electrons 

from NADH or FADH2 pass through a series 

of electron transporters to oxygen producing 

water (Kumari, 2018). To test the effect of 

Roundup and glyphosate on the bioenergetic 

functions of mitochondria, numerous experi-

ments were performed. In particular, the in-

vestigation of isolated mitochondria of rat 

liver demonstrated chelating properties of 

glyphosate. Indeed, glyphosate can bind Fe3+, 

Fe2+, Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ in a 

small amount (Harris et al., 2012). The che-

lating properties of glyphosate may partially 

explain its reduced energetic efficiency of mi-

tochondrial respiratory chain.  

Glyphosate inhibited the energy-linked 

function by 46 % in the mitochondria isolated 

from rat liver (Olorunsogo et al., 1979) and 

retarded NAD+/NADH converting process in 
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liver cell bу 34.5 % in albino rats (Olo-

runsogo et al., 1980). It was demonstrated that 

glyphosate at concentrations up to 5 mM had 

no effects on respiratory chain and ratio 

ADP/O. However, 0.5 mM of Roundup sig-

nificantly depressed the respiratory chain and 

ADP/O ratio. Moreover, Roundup at concen-

trations up to 15 mM depressed operation of 

complex ІІІ and uncoupled respiration rates 

(Peixoto, 2005).  

Roundup is known to disrupt mitocho-

ndrial bioenergetic reactions (Figure 2). Al-

terations in membrane potential (∆Ψm) and 

mitochondrial respiration are the classical pa-

rameters to analyze basic mitochondrial func-

tions (Zorova et. al., 2018). Despite glypho-

sate led to higher mitochondrial membrane 

permeability to protons and Ca2+, it is not able 

to act like a protonophore (Olorunsogo, 

1990). Furthermore, the carboxylic group in 

the molecule of glyphosate has a similar pKa 

value (5.6) to the acetic acid pKa value (4.76). 

Acetic acid at pH 7.1 may transport protons 

across the membrane. However, the glypho-

sate mole-cule could not participate in the 

transmembrane transport of protons, since at 

pH 7.1 it is mainly charged. Thereby, glypho-

sate can penetrate via the lipid membrane 

only in a small amount. 

 

Figure 2: Effects of glyphosate and Roundup related to mitochondria
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Exposure of Caenorhabditis elegans to 

glyphosate at the concentrations of 5.5 % and 

9.8 % inhibited the respiratory chain in mito-

chondria (Bailey et al., 2018). Exposure of in 

Escherichia coli to TouchDown at the con-

centrations from 3 % to 10 % decreased oxy-

gen consumption, complex II activity and rel-

ative ATP levels, but increased complex IV 

activity (Burchfield et al., 2019). Glyphosate 

at the concentrations of 0.065 and 1.0 mg/L 

inhibited NADH dehydrogenase and cyto-

chrome c oxidase. Zebrafish exposure to 

glyphosate lowered transcript levels of the 

genes ndufa6, sdhc and cox1 which encoded 

components of the mitochondrial respiratory 

chain (Pereira et al., 2018). 

Roundup reduced the efficiency of the 

electron transport chain via inhibition of suc-

cinate dehydrogenase and succinate cyto-

chrome c reductase (Peixoto, 2005). Roundup 

affected the redox electron transport chain at 

the level of complexes II and III (Peixoto, 

2005). It also exhibited cytotoxicity to the hu-

man embryonic kidney cell line due to the 

suppression of the respiratory activity of mi-

tochondria (Mesnage et al., 2013). The ob-

served alterations in mitochondrial bioener-

getics caused by Roundup cannot be exclu-

sively attributed to glyphosate as the principal 

active ingredient, but either by other compo-

nents of the formulations or even possible 

synergy between them. Moreover, the re-

duced energetic efficiency of mitochondria 

may be a result of toxic effects from the im-

pairment of the energy requirements of the 

cell and the crucial importance of energy me-

tabolism.  

 

Mitochondrial dysfunction and production 

of reactive oxygen species  

Growing evidence suggests that organis-

mal exposure to commercial herbicide formu-

lations may induce oxidative stress and inhibit 

mitochondrial respiratory chain (Bailey et al., 

2018). The molecular mechanisms induction 

of oxidative stress induction by glyphosate 

and glyphosate-based herbicides are well 

characterized. Uncoupling of mitochondrial 

oxidative phosphorylation may be a major ef-

fect of glyphosate and glyphosate-based herb-

icides intoxication (Olorunsogo et al., 1979; 

Peixoto, 2005; Pereira et al., 2018). The im-

paired mitochondrial function caused by 

glyphosate-based herbicides can be related to 

increased ROS generation (Bailey et al., 

2018; Gomes and Juneau, 2016). Moreover, 

glyphosate or glyphosate-based herbicides 

exposure resulted in the alteration of the brain 

antioxidant system activity (Astiz et al., 

2009a, b; Bali et al., 2019; Cattani et al., 2014; 

Gallegos et al., 2020). In order to assess oxi-

dative stress parameters and mitochondrial in-

hibition by the herbicide treatment in vivo, the 

nematode Caenorhabditis elegans was ex-

posed chronically (24 h) to various concentra-

tions of the glyphosate-containing herbicide 

TD. Following TD exposure, the function of 

specific mitochondrial electron transport 

chain complexes was evaluated. Animal in 

vivo exposure to mid- and high-TD concen-

trations lead to inhibition of oxygen consump-

tion by the isolated mitochondrial fractions in 

C. elegans (Bailey et al., 2018). 

In addition, while glyphosate increased 

the permeability of the inner mitochondrial 

membrane for protons and Ca2+, it may induce 

oxidative stress itself or in its formulations in 

vivo (El-Shenawy, 2009; Gehin et al., 2006; 

Olorunsogo, 1990). Roundup opened voltage-

dependent calcium channels and endoplasmic 

reticulum receptors (such as IP3 and 

ryanodine), which caused an increase in intra-

cellular Ca2+ concentration (De Liz Oliveira 

Cavalli et al., 2013; Peixoto, 2005). Indeed, 

Ca2+ is considered to be a key player to in-

crease mitochondrial ROS levels due to in-

duction of structural changes in the inner mi-

tochondrial membrane (Kowaltowski and 

Vercesi, 1999). Furthermore, inhibition of 

complex I and IV increased mitochondrial 

ROS production (Bolter and Chefurka, 1990; 

Sipos et al., 2002). Ca2+ can also influence op-

eration of the mitochondrial respiratory chain 

(Kowaltowski and Vercesi, 1999). 

Consequently, ROS-induced oxidative 

damage to mitochondrial components could 
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be a reason for membrane potential disrup-

tion, which leads to dysregulation of cell 

function and cell death (De Liz Oliveira 

Cavalli et al., 2013).  

 

Involvement of apoptosis  

Apoptosis, a programmed cell death, is a 

highly regulated process. Two main pathways 

are known to trigger apoptosis: the first, the 

intrinsic pathway which is mediated by mito-

chondria and the second, the extrinsic path-

way mediated by death receptors FASR, 

TNFR1, TRAIL R1/R2. The intrinsic path-

way is also called the mitochondrial pathway 

and involves the release of cytochrome c from 

the mitochondria under cellular stress 

(Nirmala and Lopus, 2020). Apoptosis in-

volves also caspases, a family of cysteine pro-

teases (Boatright and Salvesen, 2003). 

Roundup and glyphosate-based herbici-

des may affect the activity of caspases and in-

duce apoptosis (Figure 2). Exposure of rat 

heart H9c2 cells to a mixture of either 5 mM 

or 10 mM of glyphosate and 2.5 mM surfac-

tant TN-20, increased the activity of caspases 

3/7 and 9, but glyphosate alone did not affect 

the activities (Kim et al., 2013). In the hepa-

toma cell line HepG2, caspases 3/7 were acti-

vated after 24 and 48 hours of Roundup expo-

sure (Gasnier et al., 2009). Two hours expo-

sure to Roundup at concentrations 75, 100, 

125 µg/ml increased the activity of caspase-9 

and at concentrations 100-125 µg/ml in-

creased the activity of caspase-3 in the human 

alveolar carcinoma A549 cell line which was 

proposed to be related to cytotoxicity through 

DNA damage (Hao et al., 2019). It has been 

demonstrated that exposure to glyphosate at a 

concentration of 40 mM for 24 hours in-

creased the amount of apoptotic nuclei within 

the cell and activated autophagic pathway in 

neuronal differentiated PC12 cells (Gui et al., 

2012). A higher mRNA level of caspase-3 

was demonstrated under 500 mg/kg glypho-

sate treatment of male Sprague Dawley rats 

(Tang et al., 2017).  

 

Activity of mitochondria in the sperm cell 

The importance of mitochondrial energet-

ics is connected with hyperactivated motility 

of sperm and the phenomenon of sperm ca-

pacitation (Piomboni et al., 2012). Further-

more, mitochondria are the main ROS source 

here and are involved in biosynthesis of ster-

oid hormones and regulation of steroid recep-

tor functions (Psarra and Sekeris, 2008). 

Therefore, sperm mitochondrial functionality 

is an important indicator of gamete function 

and reproductive toxicology. 

Many studies have focused on the effects 

of glyphosate and glyphosate-based herbici-

des on sperm quality. Effects varied accord-

ing to species, type of herbicide and range of 

herbicide concentrations. Exposure to 

glyphosate at the concentrations 5 mg/L and 

10 mg/L for 24 hours and 96 hours reduced 

mitochondrial bioenergetics by 20 % and 

35 % in sperm cells of zebrafish Danio rerio 

(Lopes et al., 2014). Treatment with Roundup 

at a concentration of 1 mg/L reduced the mi-

tochondrial staining in human sperm cells 

(Anifandis et al., 2017). Mitochondrial dys-

function caused by Roundup treatment was 

associated with lower mitochondrial mem-

brane potential and resulted in the progressive 

reduction of sperm motility (Anifandis et al., 

2017). Glyphosate negatively affected mito-

chondrial respiration efficiency in human 

sperm cells (Ferramosca et al., 2021). Thus, 

glyphosate and glyphosate-based herbicides 

can harm the activity of mitochondria in the 

sperm cell that causes a threatening impact on 

reproductive function. Using the pig as a 

model, it was demonstrated that Roundup is 

more toxic than pure glyphosate itself, even at 

equivalent concentrations of glyphosate 

(Nerozzi et al., 2020).  

The impaired mitochondrial activity un-

der Glyphosate/Roundup treatment may de-

crease ATP generation and/or shift in the re-

dox balance. These events significantly im-

pact sperm cell motility and plasma mem-

brane stability (Nerozzi et al., 2020). An in-

crease in mitochondrial-dependent apoptosis 

is another additional consequence of mito-
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chondrial dysfunction under Roundup expo-

sure (Anifandis et al., 2017). Now it is clear, 

that glyphosate and glyphosate-based herbi-

cides may have detrimental effects on fertiliz-

ing ability. 

 

TOXICITY OF "INERT"  

INGREDIENTS OF ROUNDUP 

Studies regarding the effects of other in-

gredients of Roundup formulations are mostly 

limited to the evaluation of surfactant used to 

increase glyphosate bioavailability (Williams 

et al., 2000). Polyethoxylated tallow amine 

(POEA) is the predominant surfactant used in 

Roundup formulations worldwide. Early 

studies of Birch (1977) showed that acute tox-

icity of POEA is higher than of Roundup for-

mulation. LD50 for oral dose in rats was re-

ported as 1200 mg/kg and dermal toxicity in 

rabbits was found at the dose of 1260 mg/kg. 

Based on U.S. EPA POEA falls into second-

least-toxic category (III) an thus is considered 

as these considerations, POEA is considered 

to be only “slightly” toxic and does not repre-

sent an acute toxicity hazard. Later the tox-

icity of POEA were extendiverly evaluated in 

rats. POEA in doses higher that 1500 ppm 

have induced wight gain decrease and inflam-

mation (Ogrowsky, 1989), as well as intesti-

nal irritation, decreased food consumption, 

body weight gain, and some alterations in se-

rum hematology and clinical parameters 

(Stout, 1990). Despite significant maternal 

toxicity in pregrant rats there were no effects 

observed in offspring providing evidence that 

POEA is not teratogenic or developmental 

toxin in rats (Holson, 1990). 

No-Observed-Adverse-Effect Levels 

(NOAEL), and Margins of Exposure (MOE) 

for POEA in human beings were developed 

based on maternal toxicity in the rat develop-

mental toxicity study. The lowest NOAEL of 

15 mg/kg/day was selected as a reference 

point for risk assessment purposes giving 

NOES 577 and 461 in children and adults, re-

spectively. However, calculation of MOE for 

children based on a NOAEL for maternal tox-

icity is not biologically relevant and thus 

MOE of 1380 was estimated using the NO-

AEL of 36 mg/kg/day from the subchronic rat 

study.  

The potential risks to humans were deter-

mined for pesticide applicators, as highest po-

tential group for exposure among adults, and 

farm children age 1 to 6 years because they 

receive the highest dietary intake of all sub-

populations. Chronic aggregate exposure in 

children was calculated to be 26 µg/kg/day 

and 32.5 µg/kg/day in adults. The ingestion of 

food residues accounted for all of the expo-

sure in children, while dermal/inhalation ex-

posure resulting from spraying of formulation 

was the predominant way contributing to ex-

posure of applicators. Estimates of aggregated 

acute exposure in adult applicators was 163 

µg/kg a day and children 9.11 µg/kg/day). 

The acute oral LD50 of POEA is approxi-

mately 1200 mg/kg. The estimated acute ex-

posure values are significatly lower than this 

value.  

 

CONCLUSIONS AND PERSPECTIVES 

This review provides evidence of Round-

up and glyphosate-based herbicides can im-

pact non-target living organisms. Both, 

glyphosate and Roundup, appear to act as or-

ganismal toxicants, detrimentally affect cell 

function and survival. Having a wide range of 

effects on metabolism, cell signaling, apopto-

sis, dysfunction of gametogenesis and aging, 

Roundup and its components appear to act 

through disruption of bioenergetic functions 

of mitochondria. Alterations in the mitochon-

drial bioenergetic reactivity have drastic con-

sequences on cellular function through pertur-

bation of the bioenergetic charge and balance 

of the cell. Disruption of mitochondrial mem-

brane potential is associated with high levels 

of reactive oxygen species and can be corre-

lated with activation of caspases, which is 

harmful to a cell due to the high risk of apop-

tosis. Detrimental consequences of glypho-

sate and Roundup affect mitochondrial func-

tionality that impairs sperm parameters may 

have a deleterious effect on fertilizing ability. 

Hence, mitochondria are supposed to be good 

biomarkers of glyphosate toxicity. Given the 
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growing concern over potential reproductive 

effects of Roundup, the current research pro-

vides valuable mechanistic information for 

their environmental risk assessment. Further 

investigation of molecular mechanisms of 

negative effects of Roundup and glyphosate-

based herbicides on the operation of mito-

chondria in non-target organisms, standardi-

zation of conditions to testing may provide re-

liable biomarkers to access quantitative pa-

rameters of their toxicity. The developed ap-

proaches to test the harmful effects of glypho-

sate-based herbicides may be extended to 

evaluation of detrimental effects of other pes-

ticides. 
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