Golgi Apparatus, GERL, and Secretory Granule Formation

within Neurons of the Hypothalamo-Neurohypophysial

System of Control and Hyperosmotically Stressed Mice

RICHARD D. BROADWELL and CONSTANCE OLIVER

Laboratory of Neuropathology and Neuroanatomical Sciences, National Institute of Neurological and
Communicable Diseases and Stroke, and Laboratory of Biological Structure, National Institute of Dental
Research, National Institutes of Health, Bethesda, Maryland 20205. Dr. Broadwell’s present address is
the Division of Neuropathology, Department of Pathology, University of Maryland School of Medicine,
Baltimore, Maryland 212071

ABSTRACT The vasopressin-producing neurons of the hypothalamo-neurohypophysial system
are a particularly good model with which to consider the relationship between the Golgi
apparatus and GERL and their roles in secretory granule production because these neurons
increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme
cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase
(TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the
supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt
water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated
preparations of control supraoptic perikarya, immature secretory granules at the trans face of
the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified
as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity
was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and
attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary
lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory
granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be
demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive.
During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase
activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules
during hyperosmotic stress persisted. These results suggest that under normal conditions GERL
is the predominant site for secretory granule formation, but during hyperosmotic stress, the
Golgi saccules assume increased importance in this function. The observed cytochemical
modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally
related to the Golgi saccules.

In mammalian exocrine and endocrine cells, the elaboration of
secretory protein is believed to follow six successive steps
collectively termed the secretory process (46). Secretory pro-
teins are: (a) synthesized on ribosomes associated with the
endoplasmic reticulum; (b) segregated within the cisternal
space of the rough endoplasmic reticulum; (c) transported to
the vicinity of the Golgi apparatus; (d) concentrated and
further processed in Golgi saccules or condensing vacuoles; (e)
stored in secretory granules; and ( f) discharged from secretory
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granules to the outside of the cell. Although much is known
about the secretory process, many specific details remain spec-
ulative. Included among the poorly understood aspects of the
secretory process are the roles of the Golgi apparatus and/or
GERL' in the processing and packaging of secretory proteins.

! Novikoff (32, 33, 35) has assigned the acronym GERL to an acid-
phosphatase reactive, smooth membrane cisterna that lies adjacent to
the trans side of the Golgi apparatus, is connected to the endoplasmic
reticulum, and gives rise to lysosomes.
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Secretory granules may arise from the trans Golgi saccule (2),
from GERL or a similar acid phosphatase-positive structure
(5, 15, 18-20, 22, 35, 37, 40, 47), or by coalescence of Golgi-
associated condensing vacuoles (9, 25, 26). Whether or not
GERL is morphologically and functionally distinct from the
Golgi apparatus (34, 35, 38) or is part of the Golgi apparatus
(24, 29, 55) remains unresolved.

The details of the secretory process or its variations in
peptidergic neurons have not been thoroughly studied. Among
the different classes of peptidergic neurons in the central and
peripheral nervous systems, the best known from morphologi-
cal, functional, and biochemical viewpoints are those affiliated
with the hypothalamo-neurohypophysial system (21). The neu-
rosecretory neurons of the hypothalamic supraoptic and para-
ventricular nuclei produce the peptide hormones vasopressin
and oxytocin along with their associated carrier proteins, the
neurophysins. Biochemical (16, 50), autoradiographic (30), and
immunocytochemical (7) data have combined to conclusively
demonstrate that the basic steps of the secretory process are
followed within the peptidergic neurons of the hypothalamo-
neurohypophysial system; these investigations, however, have
not provided evidence for the precise role of either the Golgi
apparatus or GERL in the secretory process.

In the present study we have examined GERL, the Golgi
apparatus, and their participation in secretory granule produc-
tion in supraoptic neurons from normal and hyperosmotically
stimulated mice. Hyperosmotic stimulation was accomplished
by having the animals drink 2% sodium chloride, a physiolog-
ical stimulus known to increase the synthesis and release of
vasopressin (12, 16, 17, 27). Thiamine pyrophosphatase
(TPPase) activity was used as a marker for the trans Golgi
saccules, and acid phosphatase (AcPase) activity was used to
identify GERL (35).

MATERIALS AND METHODS

70 young adult, female, NIH (National Institutes of Health) Swiss mice weighing
30-35 g each were used. 25 of these animals received tap water to drink and
served as controls. The remaining 45 mice were given 2% salt water to drink for
5-8 d. 20 of these hyperosmotically stressed mice were then rehydrated by giving
them normal tap water to drink for 5-10 d. All animals were perfused through
the heart with fixative consisting of 1% paraformaldehyde, 1.25% glutaraldehyde
(Ladd Research Industries, Inc., Burlington, Vt.), and 0.025% calcium chloride in
0.1-0.2 M cacodylate buffer (pH 7.4). Each brain was removed from the skull,
immersed in fixative for 1 h at room temperature, and then transferred to
cacodylate buffer at 4°C overnight. Blocks of the hypothalamus, brain stem, and
pituitary gland were cut into 50-um thick sections using a Sorvall TC-2 tissue
sectioner (DuPont Instruments, Sorvall, DuPont Co., Newtown, Conn.). Only
sections containing the neurohypophysis, supraoptic nucleus, and VII, X, and
XII cranial motor nuclei were saved for processing,

To demonstrate TPPase activity, sections were incubated at pH 6.8-7.2 in the
Novikoff and Goldfischer (36) medium for 60-90 min at 37°C with thiamine
pyrophosphate (Sigma Chemical Co., St. Louis, Mo.) serving as substrate. For
demonstration of acid hydrolase activity, sections were incubated for 40-60 min
at 37°C in the medium described by Novikoff (31) (pH 5.0) with cytidine 5'-
monophosphate as substrate, in the medium described by Barka and Anderson
(1) (pH 5.0) with B-glycerophosphate as substrate, or in the medium described by
Doty et al. (11) (pH 3.9) with trimetaphosphate as substrate (each from Sigma
Chemical Co.). Each incubation medium was replaced with fresh medium at 20~
30-min intervals. After incubation, the sections were washed several times in
cacodylate buffer and rinsed briefly in a solution of 1% sodium sulfide in
cacodylate buffer in order to visualize the reaction product for light microscopy.
Sections incubated in medium not containing substrate served as controls.

All sections were postfixed in 1% osmium tetroxide in cacodylate buffer for 2
h. Nonincubated sections and some sections incubated for enzyme cytochemistry
were stained en bloc with 0.5% aqueous uranyl acetate for 2 h. All sections were
dehydrated in ethanol and embedded in Araldite resin (Cy 0655, British Grade,
Polysciences, Inc., Warrington, Pa.). I-um thick sections of the material incubated
for trimetaphosphatase (TMPase) activity were mounted on glass slides and
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observed under dark-field light microscopy. Ultrathin sections cut from the
nonincubated material were poststained with 2% uranyl acetate in 50% ethanol
and Reynolds’ lead citrate (49). Some uitrathin sections from the incubated
tissues were stained lightly with lead citrate.

RESULTS

Emphasis was placed on results obtained from neurons of the
supraoptic nucleus in mice under control, salt-stimulated, and
rehydrated or recovery conditions. Perikarya from the cranial
motor nuclei have been included to indicate that the localiza-
tions of, and alterations in, enzyme activities, as well as mor-
phological changes induced by salt treatment, were specific to
neurons of the hypothalamo-neurohypophysial system. These
alterations appeared in cell bodies throughout the supraoptic
nucleus, suggesting that oxytocin-producing perikarya, like
those synthesizing vasopressin, responded to hyperosmotic
stress.

Control Supraoptic Somata

The Golgi apparatus of the neurosecretory cell was located
in the perinuclear cytoplasm. It consisted of several discrete
stacks of saccules that, for the most part, had their inner or
trans face oriented toward the nucleus. At the outer or cis face,
ribosome-studded or ribosome-free portions of endoplasmic
reticulum and small, smooth-surfaced vesicles were plentiful.
Each Golgi stack contained three to seven saccules of irregular
width and length. The saccules at the cis face were consistently
greater in width than those at the trans face. The cis saccules
frequently appeared as several short, dilated, and discontinuous
segments. The two to four trans face saccules were narrow,
regular in contour, and rarely dilated. Secretory granules mea-
suring 100-220 nm in diameter and containing an 80-nm wide
electron-dense core were scattered throughout the perikaryal
cytoplasm. Many of the secretory granules were located in the
vicinity of the Golgi apparatus. Similar sized granules in the
hypothalamo-neurohypophysial system are immunoreactive
with antisera against neurophysin, vasopressin, or oxytocin (7,
28, 51, 56).

In control cells immature, dense-core secretory granules were
rarely observed to be confluent with Golgi saccules but were
frequently seen in continuity with a narrow (3040 nm wide),
smooth-membrane cisterna located either adjacent to the trans
Golgi saccule or separated from it by a few intervening vesicles
(Fig. 1). This smooth membrane cisterna is equivalent to
GERL on the basis of its morphology, proximity to the Golgi
apparatus, and cytochemical properties (see below). Although
cisternae of the rough endoplasmic reticulum were often posi-
tioned close to GERL, our preparations have not revealed a
direct continuity between these two structures or between
GERL and any organelle other than the secretory granule.
GERL and the Golgi apparatus in the neurosecretory neuron
were similar morphologically to these same organelles in other
cell types (3, 13, 14, 19, 20, 23, 24, 42, 44, 45, 47).

ACPASE: Incubation of supraoptic perikarya for AcPase
activity yielded reaction product in GERL and in 0.2- to 0.6-
pm-wide secondary lysosomes (Fig. 24). Reaction product was
usually absent from Golgi saccules except in a few instances
when the trans Golgi saccule did contain slight AcPase activity
(Fig.'2a). This saccule may be a transition saccule undergoing
conversion to GERL. As we previously reported (6), coated 40-
to 60-um-wide vesicles confluent with GERL or located adja-
cent to secondary lysosomes were also AcPase positive. These
reactive vesicles may represent primary lysosomes.
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When cut in cross-section, GERL appeared as a thin, dense
cisterna sometimes exhibiting one or two 120- to 180-nm-wide
dilations (Fig. 24 and b). The dilations were AcPase positive
and corresponded in morphology to the immature neurosecre-
tory granules forming from the cisterna considered to be GERL
in nonincubated preparations. Infrequently, the GERL cisterna
would overlap itself, forming a double saccule (Fig. 2a). When
portions of GERL were oriented parallel to the plane of section,
the peripheral segments of GERL were fenestrated and ap-
peared as a network of anastomosing tubules (Fig. 2 ¢). These
tubular or fenestrated segments were continuous with the cis-
ternal portion of GERL.

TPPASE: After incubation for TPPase activity, one or two

of the trans Golgi saccules contained reaction product (Fig.
3a); GERL appeared consistently unreactive. On a few occa-

FiGure 1 Control supraoptic neuron. Formation of secretory gran-
ules (SG) occurs predominately from GERL (arrowheads). Golgi
saccules (GS). Lysosome (Ly). X 48,000. Bar, 0.25 pm.

sions one or two of the reactive Golgi saccules contained a 120-
to 180-nm dilation similar to that associated with the AcPase-
positive GERL (Fig. 3 b). Such dilations of the Golgi saccules
most likely represent immature secretory granules. On very
rare occasions an immature secretory granule attached to
GERL contained TPPase activity (Fig. 3 c). TPPase reaction
product was never seen in secretory granules detached from
Golgi saccules or GERL. No other organelle contained TPPase
reaction product.

Salt-stimulated Supraoptic Somata

Compared with controls, two demonstrable changes in the
morphology of the Golgi apparatus resulted from hyperosmotic
stimulation. First, when the saccules of the Golgi apparatus
and GERL were cut in cross-section, the saccules of the hype-
rosmotically stimulated samples appeared noticeably longer
but not necessarily wider (Fig. 4a). When the Golgi apparatus
was cut more or less parallel to the plane of section, it appeared
broader and exhibited numerous fenestrations or anastomosing
tubules. The second noticeable change was the increased num-
ber of immature secretory granules, in the stimulated samples,
in continuity with all Golgi saccules (Fig. 4). GERL, likewise,
had a greater number of immature secretory granules associ-
ated with it. Some of the secretory granules arising from GERL
were confluent with coated vesicles measuring 40-60 nm in
diameter (Fig. 4a and c). These vesicular profiles were never
observed in relation to secretory granules forming from Golgi
saccules under salt-stimulated conditions and thus aided in the
identification of GERL in incubated preparations. The overall
number of secretory granules within the cell body was also
increased compared with the controls. Even though the con-
centration of lysosomal dense bodies was elevated in hyperos-
motically stressed supraoptic perikarya (6), no autophagic vac-
uoles or dense bodies were seen attached to GERL.

ACPASE: AcPase activity in GERL from salt-stimulated
mice (Fig. 5 a) appeared consistently reduced in comparison to
that in the controls and to AcPase-positive GERL in cranial

FiGure 2 Control supraoptic neuron; AcPase. (a) Reaction product is restricted to GERL, an immature secretory granule
(arrowhead) forming from GERL, and secondary lysosomes (Ly). Reaction product is rarely seen in the trans Golgi saccule (arrow).
This saccule may represent a transition saccule in its conversion to GERL (see Discussion). X 40,000. (b) The dense core of a
secretory granule forming from GERL is rimmed by reaction product (arrow). X 38,000. (¢) Fenestrated portions of GERL are
particularly evident at the ends of the cisterna. X 40,000. Bar, 0.25 um.
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motor perikarya from hyperosmotically stressed mice. Secre-
tory granules attached to GERL were rarely reactive for AcPase
activity (Fig. 5b).

TPPASE: Asaresult of hyperosmotic stress, TPPase activity
in the Golgi apparatus was demonstrably increased and ap-
peared in nearly all saccules of all the Golgi stacks in supraoptic
perikarya (Fig. 6). The Golgi apparatus was hypertrophied
with abundant fenestrations and anastomosing tubules among
the Golgi saccules (Fig. 7). GERL cisternae and secretory
granules attached to all Golgi saccules or GERL were TPPase
reactive as well (Figs. 6 and 7). In some of the preparations a
network of anastomosing tubules appeared to interconnect the
trans Golgi saccule and the GERL cisterna (Fig. 75). On
occasion, GERL was confluent with a secretory granule that
had a 40- to 60-nm vesicle attached to it (Fig. 7b). These

FiGure 3 Control supraoptic neuron; TPPase. (a and b) Reaction
product is normally present in one or two trans Golgi complex
saccules and associated forming secretory granules (arrow) but is
usually absent from GERL {arrowheads). Note the coat around the
secretory granule forming from GERL in b. a, X 36,000; b, X 50,000.
(<) infrequently, a secretory grariule (arrow) associated with GERL
(arrowheads) does exhibit TPPase activity. X 52,000. Bar, 0.25 pm.

vesicles presumably correspond to the coated vesicles seen in
nonincubated preparations. Profiles of the agranular reticulum
and secretory granules in the cell body, neurohypophysial
axons, and Herring bodies were unreactive for TPPase.

Supraoptic Somata from Rehydrated Mice

Supraoptic perikarya from mice hyperosmotically stressed
and subsequently given tap water to drink for 5-10 d presented
morphological and enzyme cytochemical alterations interme-
diate between control and salt-stimulated conditions. Neither
the Golgi apparatus nor GERL appeared as extensive as in
salt-stimulated perikarya. The elevated concentration of im-
mature secretory granules in the cell body during salt treatment
was sustained during the recovery period. GERL and Golgi
saccules remained active in the production of secretory gran-
ules. Coated vesicles 40-60 nm in diameter were attached to
secretory granules arising from GERL. The most striking char-
acteristic of supraoptic cell bodies in the recovery state was the
cytoplasmic accumulation of lipid droplets measuring up to 5
pm in diameter (Fig. 8). These droplets were never seen in
control or salt-stimulated cell bodies. Dark-field, light micro-
scopic examination of sections incubated for TMPase activity
revealed that the elevated concentration of perikaryal second-
ary lysosomes resulting from salt stress (4, 6) was reduced in
recovery to a level paralleling that in the controls.

ACPASE: The AcPase activity in GERL, which appeared
reduced during hyperosmotic stress, was returned in recovery
nearly to the level of that in the control state (Fig. 9a).
Secretory granules attached to GERL were likewise reactive.

TPPASE: The increased TPPase activity seen in most Golgi
saccules, GERL, and secretory granules forming from these
structures in salt-stressed supraoptic somata persisted through
the 10-d recovery phase (Fig. 9b). Vesicles in continuity with
reactive secretory granules forming from GERL also exhibited
TPPase reaction product.

DISCUSSION

Our structural and enzyme cytochemical studies of supraoptic
cell bodies in the mouse brain, summarized in Fig. 10, have
focused on GERL, the Golgi apparatus, and the packaging of
secretory proteins by these organelles. Two important obser-
vations have been made: first, a major function of GERL in
supraoptic neurons is the production of secretory granules;
second, GERL does not appear to be functionally separate
from the Golgi apparatus. The peptidergic neurons of the
hypothalamo-neurohypophysial system serve as an excellent
model in which to study the relationship of GERL to the Golgi
apparatus and their participation in the secretory process.
Because the biochemical and physiological activities of the
secretory process in the supraoptic neuron are accelerated by
hyperosmotic stress (16, 17, 27, 50), associated morphological
events, that under normal conditions appear subtle in static
electron micrographs, are dynamically expressed.

The morphological and enzyme cytochemical alterations
described in this study appeared in most somata of the supraop-
tic nucleus and were not observed in a select population of
perikarya. Immunocytochemical studies indicate that, in the
supraoptic nucleus of the rat, vasopressin and oxytocin are
synthesized in different neurons (54); the ratio of vasopressin-
producing neurons to oxytocin-producing neurons is about 5:3
(53). Supraoptic cell bodies responding to salt stimulation and
salt stimulation/recovery were so prevalent in our material that
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FIGURE 4 Hyperosmotically stressed supraoptic neuron. (a) Compared with controls, the length of the Golgi saccules and GERL
(arrowheads) appears increased, and secretory granule production occurs from all Golgi saccules and GERL. Coated vesicle (arrow).
% 30,000. ( b) Secretory granules are seen forming from the cis face of the Golgi apparatus; one secretory granule (arrow) is forming
from GERL. X 40,000. (c) Coated vesicles (arrow, also a) are frequently attached to secretory granules forming from GERL. X 56,000.
Bar, 0.25 um.

oxytocin-producing cells, as well as those synthesizing vaso-
pressin, may have been involved. This interpretation is sup-
ported by experimental data suggesting that, with prolonged
osmotic stress, vasopressin and oxytocin synthesis are increased
(16), while the neurohypophysis becomes depleted of both
hormones (12, 17).

In contrast to the resting state, the Golgi apparatus in the
hyperosmotically stimulated neurosecretory cell assumes
greater importance in the production of secretory granules. The
Golgi apparatus appears to have hypertrophied, and secretory
granule production occurs from all Golgi saccules and GERL.
TPPase, an enzyme thought active in glycosylation (10, 19, 34),
parallels the increased production of secretory granules. Recent
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biochemical data suggest that the precursor molecule for vaso-
pressin is glycosylated (8). The differences, if any, that distin-
guish the neurosecretory granules arising from the cis Golgi
saccules from those forming from GERL remain to be deter-
mined. A similar hypertrophy of the Golgi apparatus has been
observed in rat hepatocytes hyperstimulated by hepatotoxic
drugs (52).

Picard et al. (48) have proposed the concept of a functionally
bipolar Golgi complex in neurosecretory cells. They believe, in
opposition to the view expressed here, that secretory granules
form normally from the cis Golgi saccules and that GERL is
concerned solely with the production of lysosomes. Picard et
al. (48) have based their proposal primarily on the evidence



FIGURE 5 Hyperosmotically stimulated supraoptic neuron; AcPase. (a) Acid phosphatase activity in GERL is demonstrably reduced
during stimulation. X 26,000. { b) Reactive secretory granules forming from GERL are rare. A coated vesicle (arrow) is confluent with

the secretory granule. X 50,000. Bar, 0.25 um.

reported by Novikoff and co-workers (37-42) that GERL is
separate from the Golgi apparatus and is connected directly to
the rough endoplasmic reticulum. Novikoff et al. (37-42),
however, have repeatedly shown that GERL is involved in the
packaging and processing of secretory material. We have never
observed direct continuities between GERL and the rough
endoplasmic reticulum in supraoptic neurons. Other investi-
gators studying additional types of secretory cells have been
equally unsuccessful in confirming this structural association
(19, 20, 24).

The precise relationship of GERL to the lysosomal system
of organelles in the supraoptic neuron is difficult to evaluate
conclusively. GERL in this cell appears to be more involved in
the production of secretory granules than with lysosomes. The
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120- to 180-nm-wide, dilated portions of the GERL cisterna in
nonincubated and incubated preparations of supraoptic cell
bodies should not necessarily be considered prospective lyso-
somes as believed by Picard et al. (48). The assertion that these
dilations in GERL represent immature secretory granules is
supported by the following observations: in nonincubated ma-
terial the dilations contain a dense core, not present in lyso-
somes, that is seen in secretory granules detached from GERL;
in individual Golgi saccules, similar dilations with dense cores
increase in number during salt stimulation and never contain
AcPase activity; neither dense bodies nor AcPase-positive ly-
sosomes in the size range of secretory granules (100-220 nm)
have been observed in the supraoptic perikaryon; no form of
lysosome, other than perhaps the 40- to 60-nm-wide vesicles,
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FIGURE 6 Hyperosmotically stimulated supraoptic neuron; TPPase. Reaction product is present in the Golgi saccules and in GERL-
like cisternae (arrowheads) throughout the cell body. X 16,000. Bar, 1 pm.
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FIGURE 7 Hyperosmotically stimulated supraoptic neuron; TPPase. (a) The Golgi apparatus is hypertrophied and highly fenes-
trated. All saccules and forming secretory granules are positive for TPPase activity. Forming secretory granules (arrows) are
especially numerous in fenestrated regions. X 48,000. (b) TPPase-positive secretory granule with associated coated vesicles is
attached to a GERL cisterna. This cisterna may be continuous with the Golgi saccules at the fenestrated region (arrow). X 36,000.
Bar, 0.25 um.
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' d

FIGURE 8 10-d recovery from salt stimulation. During recovery, large lipid droplets (Li} accumulate in the cytoplasm. The Golgi
apparatus is stiil somewhat enlarged and numerous secretory granules are associated with both faces. X 15,000. Bar, 1 pm.

was seen forming from GERL; and, lastly, GERL and its
dilations contain TPPase activity during hyperosmotic stress.
We (6) and others (13, 14, 23, 34, 41, 45) have observed AcPase-
positive 40- to 60-nm-wide, coated or smooth-surfaced vesicles
attached to the ends of the GERL cisterna, but whether or not
these vesicular profiles are indeed primary lysosomes remains
unclear. Because GERL consists of a system of anastomosing
tubules at the ends of its cisterna, the vesicular profiles may
represent sections cut through the GERL tubules.

The modulations in AcPase and TPPase activities between
GERL and the Golgi apparatus in supraoptic perikarya from
control, hyperosmotically stressed, and rehydrated mice (see
Fig. 10) strongly suggest that, in this cell type, GERL and the
Golgi apparatus are structurally and functionally interrelated.
The occasional localization of AcPase activity in the trans
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Golgi saccule and of TPPase activity in secretory granules
forming from GERL in the resting state lends support to this
proposal. Published reports detailing similar enzyme cytochem-
ical alterations between GERL and Golgi saccules are scarce.
In cells of the guinea pig corpus luteum during progesterone
secretion, AcPase activity is low or absent in GERL but is
intense, along with TPPase activity, in all Golgi cisternae (44).
Only when these cells degenerate does GERL display demon-
strable AcPase activity (45). Enzyme cytochemical changes, not
unlike those reported here, have been documented in rat
parotid acinar cells recovering from ethionine intoxication (43).
In this instance as well, the morphological and cytochemical
alterations were related to increased secretory granule produc-
tion. Studies such as these provide evidence for a functional
relationship between GERL and the Golgi apparatus and



FIGURE 9 10-d recovery from salt stimulation. {a) Compared with salt-stimulated conditions, AcPase activity in GERL has returned
to normal. GERL and a forming secretory granule both contain reaction product. Golgi saccules (GS). X 52,000. Bar, 0.25 um. (b)
Most of the Golgi saccules possess TPPase activity. The cis saccules contain only sparse reaction product, whereas the trans
saccules, GERL (arrowheads), and forming secretory granules are filled with reaction product. Secretory granule formation persists
from all Golgi saccules. X 42,000. Bar, 1 pm.

Hyperosmotically
Control Stimulated Recovery

Transitional
ER

Cis
Golgi
Saccules

Trans
Golgi
Saccule

Transition
Saccules

GERL

Immature

Secreto _.
Granu?t; 7 Thiamine Pyrophosphatase Activity f

Acid Phosphatasé Activity

FiIGUrRe 10 In nonincubated preparations of resting supraoptic cell bodies, immature secretory granules 120-180 nm wide possess
a dense core and appear as expanded cisternal portions of GERL. GERL, along with its forming secretory granules, is AcPase
positive. The trans Golgi saccule rarely contains AcPase activity. This saccule may represent a transition saccule. In contrast to
GERL, secretory granule production from the Golgi saccules is minimal under normal conditions. The few secretory granules in the
process of forming from the Golgi saccules exhibit a size and appearance similar to those associated with GERL. TPPase activity is
present in one or two of the trans Golgi but normally not in GERL; in some instances, a secretory granule forming from GERL does
contain TPPase activity. With salt stimulation, the Golgi apparatus becomes hypertrophied, and secretory granule production is
increased from all saccules. TPPase activity is present in all Golgi saccules, GERL, and secretory granules arising from these
structures. The AcPase activity in GERL is demonstrably reduced compared to controls. When hyperosmotically stressed mice are
given normal tap water to drink for 5-10 d, secretory granule production from Goigi saccules and GERL remains elevated. TPPase
activity is present in all saccules in these structures. The most striking enzyme cytochemical change in supraoptic cells during the
recovery period is the return of AcPase activity to GERL.
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further strengthen the suggestion that in secretory cells GERL
may be derived from the trans Golgi saccule (19, 20). This
saccule may normally lose its TPPase activity and acquire
AcPase activity (see Fig. 24). Through the accelerated produc-
tion of secretory granules, the conversion of the trans Golgi
saccule to GERL may occur at a rate too rapid for normal
enzyme modulation to take place.

An alternative possibility suggested in our experimental
material is that GERL and the trans Golgi saccule may be
connected by anastomosing channels (Fig. 7b). The intimate
structural relationship of the Golgi apparatus, GERL, and
forming secretory granules suggests that a thorough examina-
tion of the function of AcPase in secretory cells may be
warranted. The association of AcPase with forming secretory
granules, the ability to modulate enzyme activity and secretory
granule production, as well as the lack of a clear relationship
between GERL and lysosome formation, indicate that the
AcPase in secretory cells may be primarily involved in the
processing of exportable proteins. Additional investigations of
hyperstimulated secretory cells may provide the necessary doc-
umentation to support a possible structural interrelationship
between GERL and the Golgi apparatus and to define the role
of AcPase in these cells.

Received for publication 5 January 1981, and in revised form 10 April
1981.

REFERENCES

. Barka, T, and P. And 1962. Histoch 1 methods for acid phosphatase using

hexazonium pararosanilin as coupler. J. Histochem. Cytochem. 10:741-753.

Bainton, D., and M. Farquhar. 1966. Origin of granules in polymorphonuclear leukocytes.

Two types derived from opposite faces of the Golgi complex in developing granulocytes.

J. Cell Biol. 39:229-317.

Boutry, ]. M., and A, B. Novikoff. 1975. Cytochemical studies on Golgi apparatus, GERL,

and lysosomes in neurons of dorsal root ganglia in mice. Proc. Nail. Acad. Sci. U. S. A. 72:

508-512.

. Broadwell, R. D. 1980. Cytochemical localization of acid hydrolases in neurons of the
mammalian central nervous system. J. Histochem. Cytochem. 28:87-89.

. Broadwell, R. D., and C. Oliver. 1980. Localization of intravenously injected horseradish
peroxidase (HRP) within cells of the anterior pituitary gland. J. Cell Biol. 87:206a.

. Broadwell, R. D, C. Oliver, and M. W. Brightman. 1980. Neuronal transport of acid
hydrolases and peroxidase within the lysosomal system of organelles: the involvement of
agranular reticulum-like cisterns. J. Comp. Newrol. 190:519-532.

. Broadwell, R. D,, C. Oliver, and M. W. Brightman. 1979. Localization of neurophysin
within organelles associated with protein synthesis and packaging in the hypothalamo-
neurohypophysial system: an immunocytochemical study. Proc. Natl. Acad. Sci. U. S. A.
76:5999-6003.

. Brownstein, M. J., J. T. Russell, and H. Gainer. 1979. Synthesis, transport, and release of
posterior pituitary hormones. Science (Wash. D. C.). 207:373-378.

9. Caro, L. G., and G. E. Palade. 1964. Protein synthesis, storage and discharge in the

pancgreatic exocrine cell. An autoradiographic study. J. Cell Biol. 20:473-495.

10. Dauwalter, N., W. G. Whaley, and J. F. Kephart. 1969. Phosphatases and the differentia-
tion of the Golgi apparatus. J. Cell Sci. 4:455-498.

11. Doty, S. B., C. E. Smith, A. R. Hand, and C. Oliver. 1977. Inorganic trimetaphosphatase
as a histochemical marker for lysosomes in light and electron microscopy. J. Histochem.
Cytochem. 25:1381-1384.

12. Dyball, R. E. J. 1971. Oxytoxin and ADH secretion in relation to electrical activity in
antidromically identified supraoptic and paraventricular units. J. Physiol. (Lond.). 214:
245-256.

13. Essner, E., and H. Haimes. 1977. Ultrastructural study of GERL in beige mouse alveolar
macrophages. J. Cell Biol. 75:381-387.

14. Essner, E., and C. Oliver. 1974. Lysosomes formation in hepatocytes of mice with Chediak-
Higashi syndrome. Lab. Invest, 30:596-607.

15. Farquhar, M. G. 1971. Processing of secretory products by cells of the anterior pituitary
gland. Mem. Soc. Endocrinol. 19:79-124.

16. Gainer, H., Y. Sarne, and M. Brownstein. 1977. Biosynthesis and axonal transport of rat
neurohypophyseal proteins and peptides. J. Cell Biol. 73:366-381.

17. George, J. 1976. Vasopressin and oxytocin are depleted from rat hypothalamic nuclei after
oral hypertonic saline. Science (Wash. D. C.). 193:146-148.

18. Hand, , A R. 1971. Morphology and cytochemistry of the Golgi apparatus of rat salivary
gland acinar cells. Am. J. Anat. 130:141-158.

19. Hand, A. R., and C. Oliver. 1977a. Cytochemical studies of GERL and its role in secretory
granule formation in exocrine cells. Histochem. J. 9:375-392.

20. Hand, A. R, and C. Oliver. 1977b. Relationship between the Golgi apparatus, GERL,

and secretory granules in acinar cells of the rat exorbital lacrimal gland. J. Cell Biol. 74:

399-413.

1

hd

&

w

=

~

oo

484

THE JOURNAL OF CELL BIOLOGY - VOLUME 90, 1981

2L

22,

23.

24.

2

26.

27.

28.

oo

29.

30.

31

32,

33.

©

34.

35.

s

3

3

38.

o0

39.

41,

42.

43.

45,

o

47.

=

4

49.

50.

Sl

52.

53.

54.

55.

56.

b

o

=

=

Handbook of Physiology, Endocrinology, Sect. 7, Vol. IV. 1974. W. H. Sawyer and E.
Knobil, editors. American Physiological Society, Washington, D. C.

Holtzman, E., and R. Domi 1968. Cytoch I studies of lysosomes, Goigi apparatus,
and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of
the rat. J. Histochem. Cytochem. 16:320-336.

Holtzman, E., A, B. Novikoff, and H. Villaverde. 1967. Lysosomes and GERL in normal
and ch lytic of the rat gangli d J. Cell Biol. 33:419-435.

Inoué, K., and K. K i. 1977. Cytoch i and three-di ional studies of Golgi
apparatus and GERL of rat anterior pituitary cells by transmission electron microscopy.
Cell Struct. Funct. 2:171-186.

Jamieson, J. D., and G. E. Palade. 1967. Intracellular transport of secretory proteins in the
pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell
Biol. 34:577-596.

Jamieson, J. D., and G. E. Palade. 1967. Intracellular transport of secretory proteins in the
pancreatic exocrine cell. II. Transport of condensing vacuoles and zymogen granules. J.
Cell Biol. 34:597-615.

Jones, C. W, and B. T. Pickering. 1969. Comparison of the effects of water deprivation
and sodium chloride inhibition on the hormone content of the neurchypophysis of the rat.
J. Physiol. (Lond.). 203:449-458.

Kozlowski, G. P., S. Frenk, and M. S. Brownfield. 1977. Localization of neurophysis in
the rat supraoptic nucleus. I. Ultrastructural immunocytochemistry using the post-embed-
ding technique. Cell Tissue Res. 179:467-473.

Morré, D. J., T. W. Keenan, and C. M. Huang. 1974. Membrane flow and differentiation:
origin of Golgi apparatus membranes from endoplasmic reticulum. Adv. Cytopharmacol.
2:107-125.

Nishioka, R. ., D. Zambrano, and H. A. Bern. 1970. Electron microscope radioautography
of amino acid incorporation by supraoptic neurons of the rat. Gen. Comp. Endocrinol. 15:
477-495.

Novikoff, A. B. 1963. Lysosomes in the physiology and pathology of cells: contributions
of staining methods. /n Ciba Foundation Symposium on Ly A. V.S de Reuck
and M. P. Cameron, editors. Little, Brown & Co., Boston. 35-77.

Novikoff, A. B. 1964. GERL, its form and function in neurons of rat spinal ganglia. Biol.
Bull. (Woods Hole). 127:358.

Novikoff, A. B. 1967. Enzyme localization and ultrastructure of neurons. /n The Neuron.
H. Hyden, editor. Elsvier, Amsterdam. 255-318.

Novikoff, A. B. 1973. Lysosomes: a personal account. In Lysosomes and Storage Diseases.
H. G. Hers and F. VanHofT, editors. Academic Press, Inc. New York. |-41.

Novikoff, A. B. 1976. The endoplasmic reticulum: a cytochemist’s view (a review). Proc.
Natl. Acad. Sci. U. S. 4. 73:2781-2787.

Novikoff, A. B., and S. Goldfischer. 1961. Nucleosidediphosphatase activity in the Golgi
apparatus and its usefulness for cytological studies. Proc. Natl. Acad. Sci. U. S. A. 47:802
810.

Novikoff, A. B., M. Mori, N. Quintana, and A. Yam. 1977. Studies of the SECTELory process
in the mammalian exocrine pancreas. 1. The condensing vacuoles. J. Cell Biol 75:148-
165.

Novikoff, A. B., and P. M. Novikoff. 1977. Cytochemical contributions to differentiating
GERL from the Golgi apparatus. Histochem. J. 9:1-27.

Novikoff, A. B., P. M. Novikoff, M. Ma, W. Shin, and N. Quintana. 1974. Cytochemical
studies of secretory and other granules associated with the endoplasmic reticulum in rat
thyroid epithelial cells. 4dv. Cytopharmacol. 2:349-368.

Novikoff, A. B., A. Yam, and P. M. Novikoff. 1975. Cytochemical study of secretory
process in transplantable insulinoma of Syrian golden hamster. Proc. Natl Acad. Acad.
Sci. U, §. A. 72:4501-4505.

Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. Golgi apparatus,
GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and
thin section cytochemistry. J. Cell Biol. 50:859-886.

Novikoff, P. M., and A. Yam. 1978. The cytochemical demonstration of GERL in rat
hepatocytes during lipoprotein mobilization. J. Histochem. Cytochem. 26:1-13.

Oliver, C., R. E. Auth, and A. R. Hand. 1980. Morphological and cytochemical alterations
of the Golgi apparatus and GERL in rat parotid acinar cells during ethionine intoxication
and recovery. Am. J. Anar. 158:275-284.

. Paavola, L. 1978. The corpus luteum of the guinea pig. 1I. Cytochemical studies of the

Golgi complex, GERL, and lysosomes in luteal cells during maximum progesterone

secretion. J. Cell Biol. 79:45-48.

Paavola, L. 1978. The corpus luteum of the guinea pig. III. Cytochemical studies of the

Golgi complex and GERL during normal postpartum regression of luteal ceils, emphasiz-

ing origin of lysosomes and autophagic vacuoles. J. Cell Biol. 79:59-73.

Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science (Wash.

D. C.). 189:347-358,

Pelletier, G., and A. B. Novikoff. 1972. Localization of phosphatase activities in the rat

anterior pituitary gland. J. Histochem. Cytochem. 20:1-12.

Picard, D., M. Michel-Bechet, A. M. Athouel, and S. Rua. 1972. Granules Neurosecreto-

ries, Lysosomes et Complexe GRL dans de Noyau Supra-Optique du Rat. Bipolarite des

Complexes Golgiens. Exp. Brain Res. 14:331-335.

Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in

electron microscopy. J. Cell Biol. 17:208-212.

Sachs, H., P. Fawcett, Y. Takabatake, and R. Portanova. 1969. Biosynthesis and release

of vasopressin and neurophysin. Recent Prog. Horm. Res. 25:447-484.

Silverman, A. J. 1976. Ultrastructural studies on the localization of neurchypophysical

hormones and their carrier proteins. J. Histochem. Cytochem. 24:816-828.

Sturgess, J. M., and M. A. Moscarello. 1976. Alterations in the Golgi complex and

glycoprotein biosynthesis in normal and discarded tissues. Pathol. Annu. 6:1-29.

Swaab, D. F., F. Nijveldt, and C. W. Pool. 1975. Distribution of oxytocin and vasopressin

in the rat supraoptic and paraventricular nucleus. J. Endocrinol. 67:461-462.

Vandesande, F., and K. Dierickx. 1975. Identification of the vasopressin-producing and of

the oxytocin-producing neurons in the hypothalamic magnocellular neurosecretory system

of the rat. Cell Tissue Res. 164:153-162.

Whaley, W. G., N. Dauwalter, and J. E. Kephart. 1972. Assembly, continuity. and
h in certain cytopl membrane systems. /n Origin and Continuity of Cell

Organelles. J. Reinert and H. Ursprung, editors. Springer-Verlag, Heidelberg, Germany.

1-45.

Zimmerman, E. A. 1976. Localization of hypothalamic hormones by immunocytochemical

techniques. In Frontiers in Neuroendocrinology. L. Martini and W. F. Ganong, editors.

Raven Press, New York 4:25-62.




