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FAK signalling controls insulin sensitivity through
regulation of adipocyte survival
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Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth
and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue
of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1
cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired
adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat
diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these
mice with a PPARy agonist does not restore adiposity or improve insulin sensitivity.
In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates
adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these
results demonstrate that FAK is required for adipocyte survival and maintenance of insulin
sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.
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besity is characterized by massive expansion of adipose

tissue. Although obesity is the strongest risk factor for

type 2 diabetes and insulin resistance, not all obese
individuals are insulin resistant and many with diabetes are not
obese, illustrating the complexity of adipose tissue biology and its
relationship with metabolic dysfunction.

In an environment of caloric excess, expansion of adipose
tissue can result in hypoxia, contributing to adipocyte cell
death, which triggers chronic, low-grade inflammation, fibrotic
extracellular matrix (ECM) accumulation and ultimately insulin
resistance! 3. However, the precise nature of the links between
these processes are unclear, with studies showing that cell death,
inflammation and insulin resistance commonly cluster together
but can also be disassociated under certain conditions*~; thus,
the intracellular mechanisms regulating the adipocyte response to
tissue expansion and contributing to metabolic defects remain
unclear.

Focal adhesion kinase (FAK) is a 125kDA non-receptor
tyrosine kinase essential for development and whole-body
deletion of the FAK gene (Ptk2) is lethal at embyronic day 8.5
(ref. 7). FAK is best recognized for its central role in integrin
signalling, which transmits signals from the ECM intracellularly.
FAK is overexpressed in many human tumours and can play
important roles in a variety of cell processes such as survival,
invasion, migration and growth in this setting®~!%. Major
interactions for FAK include tumour suppressor p53 and
extracellular signal-regulated kinase 1 (ERK1) and ERK2, both
critical for conferring resistance to apoptosis'®~!2, However, little
is known about the role of FAK in metabolic disease and tissue
growth in other contexts such as energy excess, wherein adipose
tissue is the most dynamic organ.

We find that in both mice and humans, FAK increases in
adipocytes with obesity and insulin resistance, suggesting an
important role of adipocyte FAK in metabolism. Disrupting FAK
specifically in adipose tissue of mice results in insulin resistance,
with increased adipocyte cell death and impaired adipose tissue
expansion with high-fat diet (HFD) feeding, as well as in

genetically obese db/db and ob/ob models. Inhibiting apoptosis in
mice with adipocyte FAK deficiency, either via concomitant
Casp3+/~, Casp3~/~ or adipose tissue-specific Casp8~/~
mutations, or treatment with apoptosis inhibitor, restored insulin
sensitivity and adiposity, demonstrating an essential role of FAK
signalling in adipocyte survival that is required for appropriate
adipocyte expansion and maintenance of insulin sensitivity
during metabolic stress.

Results

Adipocyte FAK increases with obesity and insulin resistance.
In an environment of energy excess, adipose tissue is uniquely
capable of undergoing massive growth and expansion. Many
studies have shown that FAK plays an important role in tumour
growth®?, but have not explored its role in tissue expansion
outside this context. To determine whether FAK could play a role
in the setting of obesity and insulin resistance, we examined FAK
protein levels in both mice and humans. FAK protein and gene
expression increased about threefold in adipocytes isolated from
perigonadal white adipose tissue (WAT) from mice fed a HFD for
12 weeks and about fourfold in genetically obese diabetic db/db
mice compared with adipocytes from chow diet-fed wild-type
control littermates (Fig. la and Supplementary Fig. la). FAK
protein also increased 8.8-fold in interscapular brown adipose
tissue (BAT) from mice fed HFD (Fig. 1b). This increase in FAK
was not seen in stromal vascular cells containing macrophages
and preadipocytes (Supplementary Fig. 1b). Similarly, omental
adipocytes from humans with type 2 diabetes showed 2.5-fold
increased expression of FAK when compared with humans
without diabetes (Fig. 1c). Phosphorylation of FAK at major site
of activation, Tyr397, also appeared increased, but this was in
proportion to the increase in total FAK (Fig. la-c and
Supplementary Fig. lc-e). Overall, this identifies that in both
common mouse models of obesity and diabetes, and in humans
with metabolic dysfunction, FAK expression is upregulated in
adipocytes.
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Figure 1 | FAK increases in adipose tissue with obesity and insulin resistance. (a,b) Representative blot and quantification of FAK protein in adipocytes
isolated from perigonadal WAT (n=4 mice) (a) and interscapular BAT (n=5 mice) (b) of 20-week-old mice fed HFD or db/db mice relative to chow
diet-fed mice. (¢) Representative blot and quantification of FAK in protein lysates from omental adipocytes of humans with and without type 2 diabetes
(DM) (n=3 humans). Data are mean+s.e.m. *P<0.05 and **P<0.01 by Student's t-test.
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Figure 2 | FAK is required for adipocyte survival. (ab) Body weight in male (a) and female (b) littermate control or aP2FAK —/~ mice fed chow diet
(n=10). (¢, d) Representative haematoxylin and eosin (H&E) and TUNEL of perigonadal WAT sections from 4- to 6-week-old mice (n=3 mice)

(¢) and 20-week-old mice (n=4 mice) (d) (black scale bar, 100 pm; white scale bar, 100 um, arrows indicate positive nuclei). (e,f) Body composition
expressed as per cent total body weight in 4- to 6-week- (n=5) (e) and 20-week-old (f) male (blue) and female (red) mice (n=6 males, 5 females).
(g-i) Adipocyte size distribution (g), average adipocyte diameter (h) and calculated total adipocyte number (i) in 20-week-old mice (n=4 mice).

Data are mean £ s.e.m. *P<0.05 by Student's t-test between means.

FAK is required for adipocyte survival. Particularly in cancer
cells, FAK has been implicated in playing an important role
in many processes, such as migration, invasion, growth and
survival'?, To definitively study the role of FAK in adipose tissue
in vivo, we used aP2 or adiponectin Cre-loxP systems!3~!> to
generate novel mouse models with adipocf[e—speciﬁc knockdown
of FAK (aP2FAK~/~ or adipogFAK ~/~ mice, respectively).
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aP2FAK =/~ mice had significantly decreased FAK gene and
protein expression in isolated adipocytes and fat pads compared
with control mice (Supplementary Fig. 2a-c). Knockdown was
seen in all adipose tissue fat pads, including inguinal WAT,
perigonadal WAT and interscapular BAT (Supplementary
Fig. 2c). Owing to potential concerns about aP2 promoter
activity in other tissues including macrophages or during
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development, we also measured FAK levels in multiple other
tissues and in macrophages and did not see significant deletion of
FAK (Supplementary Fig. 2d,e), consistent with recent studies
using this Cre-loxP strain'>!4, adipogFAK ~/~ mice also showed
similar results when key experiments were replicated with these
animals (Supplementary Fig. 3a-c).

Both male and female aP2FAK ~/~ mice and adipogFAK ~/~
mice appeared normal and showed no differences in total body
weight or weight gain compared with littermate controls when fed
a standard chow diet and followed up to 6 months of age
(Figs 2a,b and 3a, and Supplementary Fig. 3b). Animals had no
significant difference in nose-to-anus length or femur length
(Supplementary Fig. 3a,d,e). However, when we examined levels
of apoptosis in adipose tissue by transferase-mediated dUTP
nick-end labelling (TUNEL), aP2FAK ~/~ mice had increased
levels of apoptosis in WAT compared with control littermates
starting as early as 4-6 weeks and persisting to 20 weeks of age
(Fig. 2c,d). Consistent with this, cleaved caspase 3, a major
effector of apoptosis, and other mediators of apoptosis, Fas and
Fas ligand, were increased in aP2FAK ~/~ mouse adipose tissue,
with similar results in different adipose tissue fat pads and no
significant difference in proliferation assessed by Ki67 staining
(Supplementary Fig. 4a—c). Adipocyte-specific perilipin, which
is decreased in dead or dying adipocytes, was also lower in
aP2FAK ~/~ mice (Supplementary Fig. 5a). This increase in cell
death was not seen in other tissues such as liver or muscle as
shown by low levels of cleaved caspase 3 and no difference in
expression of pro-apoptotic genes p53 upregulated modulator
of apoptosis (PUMA) (Bbc3) and Bax (Bax) (Supplementary
Fig. 5b,c).

Under basal conditions, in keeping with their similar total
body weight, aP2FAK~/~ and control mice had similar body
composition, including subcutaneous inguinal and visceral
perigonadal WAT, and interscapular BAT fat pad weights
(Fig. 2e,f). However, associated with persistent increase in
adipocyte apoptosis, by 20 weeks of age, aP2FAK ~/~ mice had
a decreased total number of perigonadal fat pad adipocytes as
calculated based on adipocyte diameter and fat pad mass, and a
compensatory increase in average adipocyte diameter (Fig. 2g-1
and Supplementary Fig. 5d,e). Subcutaneous inguinal WAT and
interscapular BAT also demonstrated similar histological changes
(Supplementary Fig. 5f,g). Together, these findings suggest that
FAK is required for ongoing adipocyte survival and disruption of
FAK is associated with increased adipocyte apoptosis and
decreased estimated adipocyte number.

Disruption of FAK impairs adipose tissue expansion. To
further investigate the consequences of FAK knockdown, we
studied both male and female aP2FAK ~/~ mice in the setting of
obesity and insulin resistance induced either by HFD feeding for
12 weeks or on a genetically obese db/db or ob/ob background.
In an environment of energy excess, by 12-16 weeks of HFD,
aP2FAK ~/~ mice gained less weight than control aP2FAK */+
mice on HFD (Fig. 3a-c). Similarly, aP2FAK~/~ db/db or
aP2FAK~/~ ob/ob mice gained less weight than control
aP2FAK '+ db/db or aP2FAK ™/ ob/ob littermates, respectively
(Fig. 3a,d,e).

After 12-16 weeks of HFD, decreased weight gain seen in mice
with FAK knockdown consisted primarily of decreased fat pad
weight for subcutaneous inguinal, visceral perigonadal and
mesenteric fat pads compared with littermate controls (Fig. 3f).
There was no significant difference in average cell diameter in this
setting, but decreased total perigonadal fat pad adipocyte number
as estimated based on adipocyte diameter and fat pad weight
(Fig. 3g-i). Levels of adipocyte apoptosis, as shown by TUNEL,
was increased in WAT of FAK-deficient mice compared with that
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of control littermates (Fig. 4a). Consistent with this, greater
increases were seen in cleaved caspase 3, Fas and Fas ligand, with
a decrease in perilipin and similar results in different adipose
tissue fat pads (Supplementary Fig. 4a—c).

No significant differences were seen in the weight of other
tissues including the liver, pancreas or spleen, and no histological
differences were seen in the liver or muscle between HFD-fed
aP2FAK~/~ and control mice (Fig. 3f and Supplementary
Fig. 5h,i). Measurement of energy expenditure was consistent
with body composition findings. In chow diet-fed mice at
younger (4-6 weeks) or older (20 weeks) age, with no difference
in body weight, there was no difference in energy expenditure,
suggesting that disruption of FAK did not directly alter oxygen
consumption (Supplementary Fig. 6a,b). With 16 weeks on HFD
or on db/db background, aP2FAK ~/~ mice with lower body
weight and decreased adiposity also had similar total levels
of oxygen consumption compared with control littermates,
suggesting that energy expenditure was consistent with similar
lean body mass in the aP2FAK~/~ mice (Supplementary
Fig. 6¢,d). Furthermore, normalizing oxygen consumption to
lean body mass, as determined by magnetic resonance imaging,
confirmed that energy expenditure was proportional to lean body
mass (Fig. 4b). There was no difference in respiratory exchange
ratio, activity level, food or water intake between groups
(Supplementary Fig. 6¢,d). Overall, these results are in keeping
with decreased adipose tissue expansion with FAK deficiency in
an environment of energy excess without any primary defects in
energy expenditure.

FAK promotes survival signalling in adipocytes. A key target of
FAK is tumour suppressor p53, which FAK has been shown to
bind and degrade in fibroblasts, contributing to apoptosis
under cellular stress conditions'®. Disruption of FAK in this
setting thereby activates p53 to promote apoptosis and suppress
tumour growth via regulation of ERK1/2 signalling”! 121718 T¢
determine whether this pathway is also important in adipocytes,
we measured levels of phosphorylated p53, which were increased
in adipocytes from aP2FAK ~/~ mice compared with controls
(Fig. 4c and Supplementary Fig. 7a). In some contexts, p53 also
arrests cell cycle progression; in mouse adipocytes we saw no
change in mRNA levels of cyclin E (Ccne) or protein levels of
cyclin-dependent kinase 5, a cell cycle regulator thought to act
downstream of FAK in some contexts!®?? (Fig. 4c and
Supplementary Fig. 7a,b). Rb, which also plays important roles
in cell cycle inhibition and promoting apoptosis was increased as
shown by mRNA levels, in keeping with increased cell death
(Supplementary Fig. 7b). Importantly, in many contexts, FAK
activates ERK1/2 to promote cell survival. Accordingly,
we measured ERK1/2 phosphorylation, which was decreased
following deletion of FAK (Fig. 4c and Supplementary Fig. 4a,b).
These results were similar under both chow and HFD conditions
(Supplementary Fig. 4a,b). Finally, mRNA levels of a major
downstream target of p53 and activator of apoptosis, Puma®"?2,
but not Bax, was increased in adipocytes from mice with FAK
deletion (Supplementary Fig. 7b). Ultimately, this was associated
with upregulation of apoptosis via cleaved caspase 3 and
adipocyte cell death (Fig. 4c and Supplementary Figs 4a,b and 5a).

To further study the cell-autonomous role of FAK in mature
adipocytes, we used small interfering RNA (siRNA) to knock
down FAK in 3T3-L1 adipocytes starting at day 0 of differentia-
tion (Supplementary Fig. 7c,d). Consistent with findings in vivo,
deletion of FAK directly in adipocytes resulted in increased cell
death, as shown by propidium iodide staining (Fig. 4d). Puma
gene expression was also increased, consistent with findings
in vivo (Supplementary Fig. 7b,e). Apoptosis was upregulated via
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Figure 3 | Disruption of FAK impairs adipose tissue expansion with caloric excess. (a) Photograph of 24-week-old littermate control and aP2FAK =/~
mouse fed chow or HFD for 16 weeks, and littermate control aP2FAKt/+ db/db and aP2FAK =/~ db/db mouse. (b-e) Body weight of male (n=12)
(b) or female (n=38) (c) mice fed HFD starting at 8 weeks of age or mice on db/db (n=10) (d) or ob/ob (n=28) (e) genetic background. (f) Body
composition expressed as per cent total body weight in 20- to 24-week-old male (green) and female (purple) mice fed HFD diet for 12-16 weeks (n=6).
(g-i) Perigonadal WAT sections stained with haematoxylin and eosin (H&E) (scale bar, 100 um; arrows indicate macrophage crown-like structures) with
adipocyte size distribution (g), average adipocyte diameter (h) and calculated total adipocyte number (i) from 20- to 24-week-old mice fed HFD for 12-16
weeks (n=4 mice). Data are mean+s.e.m. *P<0.05 and **P<0.01 by Student's t-test between means.
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Figure 4 | Disruption of FAK decreases survival signalling. (a) Representative TUNEL of perigonadal WAT sections from 20- to 24-week-old mice fed
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day 7 after siRNA knockdown of FAK (scale bar, 100 um; arrows indicate Pl-positive nuclei) with quantification (n =3 replicates). (e) Relative macrophage

F4,/80 gene (EmrT) expression in whole perigonadal WAT of aP2FAK =/~

versus control mice (n =6 mice). (f,g) Macrophage crown-like structures (arrow)

seen with haematoxylin and eosin (H&E) staining with quantification (h) and fibrosis seen with Masson's trichrome staining (i) in perigonadal WAT
sections from 24-week-old HFD-fed mice (scale bar, 100 pm). Data are mean £+ s.e.m. *P<0.05 by Student's t-test.

increased cleaved caspase 3 in 3T3-L1 adipocytes (Supplementary
Fig. 7d) and simultaneous knockdown of FAK and p53
or treatment with caspase inhibitor Z-VAD-FMK (ZVAD)
prevented increases in apoptosis, in keeping with the essential
role of FAK in apoptosis (Supplementary Fig. 7f). In addition,
treatment of mature 3T3-L1 adipocytes with FAK inhibitor
PF573228 also increased cleaved caspase 3, further supporting a
direct pro-survival signalling of FAK in mature adipocytes

6 NATURE CC

)MMUNICATIO

(Supplementary Fig. 7g). Moreover, treatment of primary isolated
adipocytes with PF573228 also resulted in similar findings.
Phosphorylated p53 increased and p-ERK1/2 decreased following
inhibition of FAK (Supplementary Fig. 8a). Puma gene expression
and cleaved caspase 3 protein were increased following treatment
with FAK inhibitor and treatment with ZVAD prevented
increases in apoptosis (Supplementary Fig. 8b,c). These findings
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further show that in adipocytes, FAK provides an essential pro-
survival signal, likely to be via regulation of p53.

With obesity, adipocyte death is thought to be a strong
phagocytic stimulus, driving recruitment of macrophages and
inflammation in adipose tissue*"®?3. Under basal conditions,
aP2FAK =/~ mice had evidence of increased macrophage
infiltration of adipose tissue as shown by macrophage-specific
F4/80 gene (Emrl) expression and immunofluorescence in whole
adipose tissue (Fig. 4e and Supplementary Fig. 8d). With HFD
feeding, adipose tissue inflammation-associated macrophage
recruitment was markedly more pronounced, with increased
numbers of macrophage crown-like structures seen (Fig. 4f).
Fibrosis, another consequence of increased inflammation, was
also seen to a greater degree with Masson’s Trichrome staining
in adipose tissue from HFD-fed aP2FAK ~/~ mice (Fig. 4g).
Overall, this demonstrates that disruption of FAK signalling
resulted in increased cell death and adipose tissue inflammation,
contributing to metabolic disturbance.

Adipocyte FAK is required to maintain insulin sensitivity.
Adipose tissue plays a central role in the regulation of insulin
sensitivity, as shown by studies demonstrating that disruption
of adipocyte function at the molecular level has profound
consequences for whole-body glucose metabolism!®!424,
To determine the role of FAK in adipose tissue regulation of
whole-body glucose homeostasis, we monitored fasting blood
glucose levels in aP2FAK ~/~ mice on chow diet. By 12 weeks of
age, both male and female aP2FAK ~/~ mice had elevated fasting
blood glucose compared with littermate controls (Fig. 5a and
Supplementary Fig. 9a,b). Disruption of FAK increased insulin
resistance in both male and female aP2FAK ~/~ mice as seen by
elevated fasting serum insulin levels, increased B-cell to pancreas
area and insulin tolerance testing (ITT), without changes in
glucose tolerance (Fig. 5b—e and Supplementary Fig. 9¢,d). In
keeping with insulin resistance in adipose tissue, decreased
phosphorylation of Akt was seen in response to insulin in
perigonadal WAT and interscapular BAT, but not in the liver or
muscle of aP2FAK ~/~ mice compared with control littermates
(Supplementary Fig. 9e). Interestingly, Akt phosphorylation was
unchanged in 3T3-L1 adipocytes with direct FAK knockdown,
suggesting that the improved insulin sensitivity in adipose
tissue of aP2FAK~/~ mice was likely to be an indirect effect
(Supplementary Fig. 9f). Consistent with impaired metabolic
dysfunction, other features, including hyperlipidemia, were
present as shown by higher fasting serum free fatty acid
and total cholesterol levels in aP2FAK~/~ mice compared
with littermate controls (Fig. 5f and Supplementary Fig. 9gh).
Similarly, adipogFAK =/~ mice were also more insulin resistant
on ITT compared with littermate controls (Supplementary
Fig. 3¢).

The increase in insulin resistance observed under chow diet
conditions in FAK deficiency was also seen with reduced
adiposity in the setting of HFD or genetic obesity. This was
shown by attenuated glucose lowering during ITT in aP2FAK ~/~
mice compared with littermate controls with HFD feeding or on a
db/db or ob/ob background (Fig. 5g-j). No difference in glucose
tolerance testing was seen, likely to be due to compensation by
pancreatic B-cells (Supplementary Fig. 9i-k). Overall, these
results show that adipocyte FAK is required for maintenance
of insulin sensitivity under both basal and metabolic stress
conditions.

Adiposity and insulin resistance not restored by PPARy. As
FAK is also essential for development’, we hypothesized that a
decrease in adipogenesis could also contribute to the changes in

adiposity in these mice. Accordingly, we measured expression of
genes involved in adipogenesis in aP2FAK ~/~ mice normalized
to control littermates and no major differences in adipocyte
protein 2 (Fabp4), CCAAT/enhancer binding protein-o (Cebpa)
or peroxisome proliferator-activated receptor-y (Pparg) were
observed in either perigonadal or inguinal WAT, under basal
conditions or with HFD (Fig. 6a,b and Supplementary Fig. 91).
Similar results were seen in 3T3-L1 adipocytes following
siRNA-mediated knockdown of FAK on day 0 of preadipocyte
differentiation, which significantly decreases FAK gene and
protein expression by days 3 to 7 (Fig. 6c and Supplementary
Fig. 7¢,d) and in isolated primary mouse adipocytes treated with
FAK inhibitor PF573228 (Supplementary Fig. 9m). There was an
increase in sterol regulatory element-binding transcription factor
1 (SREBP-1c, Srebfl) (Fig. 6a-c), which has been associated
with disruption of adipocyte biology and lipodystrophy?. As
SREBP-1c is also associated with lipogenesis?®~2%, we examined
expression of other genes involved in lipogenesis or lipolysis and
did not see major differences in their expression following
disruption of FAK in vivo (Supplementary Fig. 9n). SREBP-1c has
also been hypothesized to regulate adipogenic gene Prefl (ref. 25),
but we saw no differences in Prefl expression (Supplementary
Fig. 9n). In support of the lack of changes in adipogenesis, oil red
O (ORO) staining did not show significant differences following
3T3-L1 adipocyte differentiation with FAK knockdown (Fig. 6d).

Finally, PPARy agonists are well known for increasing
adipocyte mass and improving insulin sensitivity. To determine
whether impairment of adipose tissue expansion and insulin
resistance could be overcome by a PPARy agonist, aP2FAK ~/~
and control mice were fed HFD with rosiglitazone. Even when
treated with rosiglitazone, aP2FAK ~/~ mice failed to gain as
much weight on HFD as littermate controls and had decreased
adipose tissue mass (Fig. 6e,f). aP2FAK ~/~ mice also remained
more insulin resistant than controls (Fig. 6g). These data suggest
that FAK is required for adipose tissue expansion and
maintenance of glucose homeostasis, including in response to
PPARY agonist, and rosiglitazone was insufficient to overcome
the defect present in aP2FAK ~/~ mice.

Inhibiting apoptosis restores adiposity and insulin response.
Finally, to definitively address the hypothesis that apoptosis is the
primary causal defect in aP2FAK ~/~ mice responsible for their
impaired adipose tissue expansion and increased insulin resis-
tance, we cross-bred them to apoptosis-deficient Casp3 ™/~ mice,
which we have previously generated and characterized?®. Under
chow-fed conditions, aP2FAK+/* Casp3™/*, aP2FAK—/~
Casp3™/~ and aP2FAK=’/~ Casp3™/T mice had no
differences in total body weight (Fig. 7a). Estimated number of
adipocytes in the perigonadal fat pad was similar in aP2FAK */+
Casp3™*/~ compared with aP2FAK*/*+ Casp3*/* controls.
Remarkably, the decrease in adipocyte number present in
aP2FAK ~/~ was restored in caspase 3-deficient aP2FAK ~/~
Casp3t/~ mice (Fig. 7b). Moreover, insulin sensitivity as
assessed by ITT was improved in aP2FAK~/~ Casp3 ™/~
mice compared with aP2FAK~/~ Casp3 ™/ mice (Fig. 7c and
Supplementary Fig. 10a). Finally, the increased apoptosis
measured by TUNEL seen in aP2FAK /= Casp3 ™/ mice
was abolished in aP2FAK~/~ Casp3*/~ mice (Fig. 7d).
Similarly, improved insulin sensitivity was seen with complete
deletion of caspase 3 (Casp3) and in mice with adipocyte-specific
deletion of caspase 8 (Casp8) when compared with littermate
controls (Supplementary Fig. 10b,c). Furthermore, with Casp3
haploinsufficiency, weight gain on HFD was restored in
aP2FAK~/~ mice with comparable adiposity as controls
(Supplementary Fig. 10e,f). Insulin sensitivity in aP2FAK~/~
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Figure 5 | Adipocyte FAK is required for maintenance of glucose homeostasis. (a) Fasting blood glucose in male (n=9) (blue) and female (n=10)
(red) control or aP2FAK =/~ mice at 12 weeks of age. Fasting serum insulin (n=10) (b) and pancreas sections from 20- to 24-week-old mice stained
by IHC for insulin (red; scale bar, 200 um) with quantification (n=5 mice) (¢). ITT and area above the curve (AAC) in male (n=12) (d) and female
(n=10) (e) 20- to 24-week-old mice. (f) Fasting serum free fatty acid levels in 20- to 24-week-old mice (n=6). ITT and AUC in male (n=10)

(g) and female (n=9) (h) 20- to 24-week-old mice fed HFD for 12-16 weeks or 6- to 8-week-old mice on db/db (n=6) (i) or ob/ob genetic background
(n=9) (j). Data are mean+s.em. * P<0.05, **P<0.01 and ***P<0.001 by Student's t-test.

Casp3/~ mice on HFD was also improved compared with
aP2FAK~/~ Casp3™/* mice (Supplementary Fig. 10d). Finally,
HFD-fed aP2FAK ~/~ Casp3™/~ had similar energy expenditure
as controls (Supplementary Fig. 10g).

Moreover, to further determine whether acute inhibition
of adipocyte apoptosis might improve insulin sensitivity, we
treated HFD-fed aP2FAK~/~ mice with caspase inhibitor
ZVAD and performed ITT 24 h later, to assess insulin sensitivity.
Remarkably, acute inhibition of apoptosis partially reduced
TUNEL in perigonadal WAT and improved insulin sensitivity
(Fig. 7e,f). Similarly, in vitro, ZVAD treatment of 3T3-L1
adipocytes with FAK knockdown or primary adipocytes treated
with FAK inhibitor PF573228 reduced levels of cleaved caspase 3,

consistent with a direct role of FAK in mediating cell death
(Supplementary Figs 7f and 8c). Together, using genetic or
pharmacologic approaches in vivo and in vitro, we show a causal
role for apoptosis in promoting insulin resistance following
adipocyte deletion of FAK. These data further support a key role
of FAK in preventing adipocyte cell death due to metabolic stress,
thereby maintaining insulin sensitivity.

Discussion

In this study, we find that the major intracellular signalling node
FAK plays an essential role in adipose tissue, particularly in
response to metabolic stress. FAK is induced in adipose tissue
with metabolic stress from caloric excess. We find that disruption
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Figure 6 | Impaired adipose tissue expansion with disruption of FAK cannot be overcome by PPARYy agonist. (a-c) Relative expression of adipogenic
genes from perigonadal WAT of aP2FAK =/~ versus control 20- to 24-week-old mice fed chow diet (n1=7) (a) or HFD (n=5) (b) and in 3T3-L1 cells
day 3 after FAK versus control scramble siRNA treatment (n=6) (c). (d) QOil red O staining of differentiated 3T3-L1 adipocytes day 7 following siRNA
knockdown of FAK (scale bar, 100 pm). (e) Body weight in 20- to 24-week-old control or aP2FAK =/~ mice fed HFD with rosiglitazone for 12-16 weeks
(n=7). (f) Body composition expressed as percent total body weight (n=10). (g) ITT in 20- to 24-week-old mice fed HFD with rosiglitazone for 12-16

weeks (n=5). Data are mean £ s.e.m. *P<0.05 by Student's t-test.

of FAK impairs adipocyte survival, increasing activation of p53
and decreasing phosphorylation of ERK, resulting in decreased
cell survival in vitro and in vivo. Ultimately, in novel adipocyte-
specific FAK knockout mice and multiple models of obesity and
insulin resistance, decreased FAK signalling reduces adipocyte
number and impairs adipose tissue expansion following pro-
longed caloric excess. Adipocyte FAK is required for maintenance
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of insulin sensitivity under both basal and metabolic stress
conditions. Finally, inhibiting apoptosis genetically or acutely
through pharmacologic means restores adipocyte survival and
insulin sensitivity. Altogether, these data demonstrate that FAK is
required for adipocyte survival and response to metabolic stress.

Studies of FAK to date have mostly focused on its expression in
malignancies. Following its discovery in 1992, FAK was found to
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ND, no stastistically significant difference, P>0.05 by Student's t-test.
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be overexpressed in a number of human tumours, particularly
with invasive or advanced disease’®3!. We therefore sought to
identify the role of FAK in metabolic disease and found that it is
similarly altered in tissue growth induced by fuel excess, adipose
tissue being the most dynamic organ in this context and the focus
of this work.

FAK is best recognized for its central role in integrin signalling,
which responds to stimuli from the ECM. Therefore, this work
builds on previous studies showing the importance of the ECM in
obesity and diabetes. Deficiency of key ECM components such as
collagen Vo3, matrix metalloproteinase 14 or tissue inhibitor of
matrix metalloproteinase 2 can reduce adiposity and impair
glucose homeostasis in vivo’2~3>. In vitro, ECM stiffness has
been shown to regulate adipogenesis and reduction in ECM
fibronectin and o5 integrin, which binds fibronectin, facilitates
differentiation®®—38, FAK has been noted to undergo cleavage®
and be required for early adipogenesis in cell culture?’; in
contrast, treatment of human mesenchymal stem cells with a
FAK inhibitor promoted adipogenesis*!. The physiological and
metabolic consequences of these findings, particularly in vivo in
mature adipocytes were unclear. Our data did not show major
differences in adiposity under basal conditions or changes in
adipogenic gene expression with disruption of FAK in mature
adipocytes. This suggests that FAK may not be essential for
adipose tissue development or adipogenesis in vivo, although our
models result in deletion of FAK primarily in mature adipocytes,
rather than preadipocytes or stem cells and the role of FAK is
likely to be context dependent!3. Thus, our work sought to define
the further essential roles of FAK in mature adipocytes and
particularly in vivo.

FAK does appear to have a key role in adiposity with increased
caloric intake, with disruption of FAK resulting in impaired
adipose tissue expansion. Although decreased adipocyte survival
and numbers were also seen under basal chow diet-fed
conditions, differences were probably too small to result in
changes in total body weight or composition. Adipocyte size was
increased in mice fed a chow diet but not HFD, suggesting a
context-specific role for FAK in adipocytes. Under conditions
with less metabolic stress, adipocytes may be able to compensate
for reduced numbers with hypertrophy. HFD may also result in
increased cell size to an extent similar to adipocytes with FAK
disruption. Overall, these findings complement findings in mice
lacking collagen VI*2, which also have a context-specific
phenotype that is diametrically opposite to aP2FAK~/~ mice
in terms of body composition. col6KOob/ob mice eventually
gain massive weight, while demonstrating improved glucose
homeostasis and dampened inflammatory profile. Weakening
of the adipose tissue extracellular scaffold is hypothesized to
allow for stress-free adipocyte expansion and attenuation in
inflammation with improved metabolic function. With metabolic
stress, aP2FAK~/~ mice exhibit increased fibrosis, impaired
adipose tissue expansion and increased adipose tissue
inflammation contributing to insulin resistance. Together, our
study illustrates that FAK is critical for the optimal signalling
intracellularly from ECM for normal adipose tissue growth and
maintenance of insulin sensitivity.

FAK plays an important role in promoting pro-survival
signalling*>~*°. Disruption of FAK was initially noted to
activate pro-apoptotic p53 in endothelial cells during
embryogenesis’ and interaction between FAK and p53 is a
fundamental link between FAK and cell survival signalling! 12, In
fibroblasts, FAK binds to the negative regulator of p53, MDM2,
thereby directly promoting its ubiquitination and degradation'®.
FAK also functions as a scaffolding protein to promote cell
survival signalling and activates the ERK/MAPK cascade, which
promotes tumour growth!>161846 n this study, we find that

disruption or inhibition of FAK in adipocytes in vivo or in vitro
increases phosphorylated p53 to ]promote apoptosis. The major
downstream target of p53, Puma®"?? is also increased in vivo and
in vitro following FAK disruption. Furthermore, disruption of
FAK decreases ERK1/2 phosphorylation, decreasing cell viability,
similar to findings we reported in pancreatic B-cells?’. Overall,
our data suggest that FAK in adipocytes plays a major role in
promoting cell survival.

Of particular significance to obesity-associated insulin
resistance, adipocyte death has been hypothesized to be the
initiating factor in adipose tissue inflammation, leading to
massive infiltration of macrophages and systemic insulin
resistance*~®23, This remains an area of controversy, however,
with the precise links between adipocyte death, inflammation and
insulin resistance unclear. For example, Feng et al* show that
adipocyte cell death and adipose tissue inflammation with
metabolic stress can be disassociated. Our work suggests that
HFD-induced FAK promotes cell survival and its disruption
contributes to both cell death and inflammation, suggesting that a
number of pathways are involved in HFD-mediated insulin
resistance. We find that disruption of FAK results in increased
adipocyte cell death both in vivo and in vitro, and results in
increased adipose tissue inflammation. Although disruption of
FAK increases macrophage infiltration with HFD feeding, the
precise interaction between adipocyte FAK and immune cell
mediation of adipose tissue inflammation requires further study.
We find that this increase in cell death in FAK-deficient mice
occurs before the development of significant changes in body
composition or insulin sensitivity, identifying it as an early factor
in the pathogenesis of insulin resistance. Inhibiting apoptosis,
with genetic caspase 3 or caspase 8 deficiency, or short-term
treatment with an apoptosis inhibitor, restores adiposity and
insulin sensitivity in these mice.

In summary, we show that FAK is increased in adipose tissue
on metabolic stress and plays an important role in maintaining
adipocyte survival and response to insulin. Disruption of FAK
increases cell death, contributing to adipocyte depletion and
metabolic dysfunction. This work demonstrates a novel role for
FAK as an important connection in adipocyte signalling and
provides insight in its role in whole body physiology. This
identifies FAK as a new molecular link between obesity and
insulin resistance.

Methods

Animals. Mice with adipocyte-specific deletion of FAK were generated by breeding
aP2Cre™t mice!® (Jackson Laboratory) with FAK" mice (ref. 47) to generate
aP2FAK ™/~ mice, which were then intercrossed to generate aP2FAK —/~ mice®’.
Genotypes were identified by PCR of ear clip DNA (Supplementary Fig. 11a)*$4,
No differences in body morphology or fasting blood glucose were seen between
aP2Cre ™, aP2FAK '/~ and aP2FAK ™/ mice, and littermate aP2FAK /" mice
were primarily used as controls (Supplementary Fig. 11b-e). adipogCre* mice!®
(Jackson Laboratory) and Casp8ﬂ/ﬂ mice’®5! were also used as indicated.
aP2FAK T/~ mice were also interbred with + /db, + /ob (Jackson Laboratory) and
Casp3 ™/~ (ref, 29) mice, to generate aP2FAK T/~ + /db, aP2FAK*/~ + /ob
and aP2FAK /= Casp3™/~ mice, which were then intercrossed to generate:
aP2FAK =/~ db/db and control aP2FAK ™/ db/db mice, aP2FAK ~/~ ob/ob and
control aP2FAK*/* ob/ob mice and aP2FAK ~/~ Casp3 ™/~ or aP2FAK~/~
Casp3~/~ with control genotypes as specified. All strains were developed on a
C57BL/6 background. Mice were housed in a pathogen-free animal facility with a
12 h light-dark cycle and fed standard irradiated rodent chow ad libitum (5% fat;
Harlan Tekad). Where not otherwise specified, both male and female mice were
used in equal numbers and no significant differences by sex found. Sample size was
estimated based on previous studies using mouse models®?~>4. Animals were
excluded if injured or sick, or if glucose or insulin did not inject correctly, which
did not occur at a higher frequency in different experimental groups. Animals were
randomly assigned to groups by the experimenter; no formal blinding was used.
A cohort of mice was fed a HFD (60% fat, 24% carbohydrates and 16% protein
based on caloric content; F3282; Bio-Serv) for 12-16 weeks starting at 8 weeks of
age. Another cohort of mice was fed a HFD with rosiglitazone 3 mgkg ~! per day
for 12-16 weeks, a dose previously used in mice®®. Rosiglitazone dose was
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confirmed by measuring average food intake and improved glucose tolerance
following treatment compared with animals on HFD alone. Z-VAD-FMK
(Calbiochem) was administered intraperitoneally 6 mgkg 1, a dose previously
used in mice. All animal experimental protocols were approved by the Toronto
General Research Institute Animal Care Committee.

In vivo metabolic studies. Glucose tolerance tests were performed on animals fasted
overnight, 14-16 h, using glucose 1gkg ™! body weight injected intraperitoneally.
Insulin tolerance tests were performed on animals fasted for 4 h, using insulin lispro
(Lilly) 1.0U per kg body weight for chow or HFD-fed mice and 1.5 Ukg ~ ! for mice
on a db/db or ob/ob background. Measurements of blood glucose were taken at 0, 15,
30, 45, 60 and 120 min after the injection. For energy expenditure measurements,
mice were individually housed in metabolic cages with free access to food and water.
After 24 h acclimation to the apparatus, data for 24h were collected and analysed
using a comprehensive lab animal monitoring system (Columbus Instruments)®”.
Food and water consumption were determined by weighing food or measuring water
volume before and after 24 h. Insulin levels were measured by a mouse insulin ELISA
kit (CrystalChem, Inc.). Serum adipokines were measured by luminex technology
using a mouse serum adipokine kit (Millipore).

Body composition. Lean body mass of HFD-fed mice was determined by
magnetic resonance imaging (Biospec 70/30; Bruker, Ettlingen, Germany) and
semi-automated and manual segmentation tools using MIPAV software>>78,
Total body and fat mass were measured and used to calculate lean body mass.

Adipocytes. Where indicated, adipocytes were isolated from mouse fat pads®”>?,

For primary adipocyte experiments, inguinal fat was used. Specificity of adipocyte
isolation was confirmed by quantitative PCR for adipocyte-specific adiponectin
(Adipoq), macrophage-specific F4/80 (Emrl) and genes preferentially expressed in
adipocytes (Srebpf, Lep) (Supplementary Fig. 11f,g and Supplementary Table 1).
For primary adipocyte experiments, the inguinal fat pad was removed and minced
with a razor blade. Five hundred microlitres of minced cells were added to 1,000 pl
of 1 mgml ~! type 1 collagenase (Worthington) solution prepared in KRBH buffer
then incubated at 37 °C with shaking for 30 min. Cell suspension was then
centrifuged at 500 g for 10 min and the adipocyte fraction transferred to 500 pl
warm KRBH buffer. For primary adipocyte experiments, adipocytes were incubated
with 10 pM PF573288 (Sigma-Aldrich) and/or 50 uM ZVAD (Millipore), or an
equivalent concentration of the dimethyl sulfoxide vehicle used to dissolve
PF573228 and/or ZVAD stock solutions, and incubated for at least 1 h at 37 °C
before collection of protein or RNA. Total protein extract from cultured human
adipocytes were obtained from Zen-Bio. Samples were from healthy women with
or without diabetes (1 = 3; average body mass index: 39.5 kg m ~2, range:
26.1-52.1, average age: 38 years, range: 37-40 for people without diabetes and

n =4, average body mass index: 45.7 kgm ~ 2, range: 39.5-57.4, average age:

47 years, range 40-57 for people with type 2 diabetes).

Cell culture and imaging. 3T3-L1 preadipocyte cells and cell culture reagents were
obtained from Zen-Bio. The cell line was authenticated by quality control staining
and tested for mycoplasma by vendor. Cells were cultured and differentiated as per
the manufacturer’s instructions. Cells were transfected with either FAK, p53 or
control scramble Silencer Select siRNA (Ambion) with Lipofectamine RNAIMAX
transfection reagent (Invitrogen) according to the manufacturer’s forward trans-
fection protocol on day 0 of induction of differentiation®. Cells were washed with
PBS and stained with membrane impermeant dye propidium iodide for 10 min at
room temperature®. Fluorescent images were obtained by Olympus IX71
microscope configured for phase contrast microscopy and fluorescence imaging
with a QImaging Retiga EXi camera and Micromanager 1.3 software (MMstudio
Version 1.3.37). For ORO staining, cells were fixed in 4% paraformaldehyde in
0.1M PBS pH 7.4 for 1h, then rinsed with isopropanol. Cells were incubated in
ORO working solution for 1h, then rinsed with PBS. Stained cells were incubated
with isopropanol for 5 min and absorbance measured at 510 nm. In vitro
experiments were repeated three to four times.

Western blotting. Insulin stimulation in vivo was performed with 5 units per kg
insulin injected intraperitoneally. Tissues were harvested 10 min after injection.
Protein lysates were separated by SDS-PAGE and immunoblotted with antibodies
for FAK (sc-557), Fas (sc-1023), Fas ligand (sc-834-G), cyclin-dependent kinase 55
(sc-173), cleaved caspase 3 (a-277) (Santa Cruz Biotechnology, Inc.), Akt (4691),
phospho-Akt (Ser473) (9271), phospho-ERK1/2 (9101), perilipin (3470),
phospho-p53 (12571), p53 (2524S), glyceraldehydes-3-phosphate dehydrogenase
(2118) and phospho-FAK (Tyr397) (3283) (Cell Signaling). Primary antibodies
were diluted 1:1,000 and secondary antibodies diluted 1:3,000. Band intensities
were quantified using ImageJ software®!. Uncropped images of Western blots are
available in Supplementary Fig. 12.

RNA isolation and quantitative real-time PCR. Adipocyte RNA was isolated
using TRIzol reagent (Invitrogen). RNA was reverse transcribed by random
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primers using M-MLV (Invitrogen) and quantitative reverse transcriptase-PCR
was performed with 7900HT Fast-Real Time PCR System (Applied Biosystem)
with SYBR Green master mix reagent (Applied Biosystem). Primers used are listed
in Supplementary Table 1. The expression level of each test gene was normalized to
the internal control 18s (Rn18S). Each sample was run in triplicate®2.

Histology. Adipose, pancreas, liver and muscle tissues were harvested after an
overnight fast and fixed in 4% paraformaldehyde in 0.1 M PBS (pH 7.4). Sections
were stained with haematoxylin and eosin. Perigonadal adipose tissue sections were
used for TUNEL (Roche Biochemicals) and immunofluorescence for perilipin
(Cell Signaling) and F4/80 (Santa Cruz Biotechnology, Inc.). For cell size and
TUNEL analysis, at least 100 cells were counted per mouse. Adipocyte size was
measured using Image] software. Number of adipocytes in the perigonadal fat pad
was calculated from adipocyte diameter and fat pad mass®>2. Macrophages were
excluded from adipocyte size and number calculations by appearance in crown-like
structures or positive staining for F4/80 (refs 54,59). Pancreatic sections were
immunostained for insulin and scanned by a ScanScope ImageScope system

at x 20 magnification. B-Cell area was quantified using Image Scope software
(Aperio Technologies)?’.

Statistics. Data are presented as mean * s.e.m. and was analysed by two-tailed
independent-sample Student’s t-test for comparisons between two groups.
Two-way analysis of variance was used for multiple measurements as appropriate.
P-values <0.05 were considered as statistically significant.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files, or are
available from the corresponding author upon reasonable request.
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