#### ARTICLE



**ESHG** 

# Evaluation of CNV detection tools for NGS panel data in genetic diagnostics

José Marcos Moreno-Cabrera<sup>1,2,3</sup> · Jesús del Valle<sup>2,3</sup> · Elisabeth Castellanos<sup>1</sup> · Lidia Feliubadaló<sup>2,3</sup> · Marta Pineda<sup>2,3</sup> · Joan Brunet<sup>2,3,4</sup> · Eduard Serra<sup>1,3</sup> · Gabriel Capellà<sup>2,3</sup> · Conxi Lázaro<sup>2,3</sup> · Bernat Gel<sup>1</sup>

Received: 23 December 2019 / Revised: 21 April 2020 / Accepted: 28 April 2020 / Published online: 19 June 2020 © The Author(s) 2020. This article is published with open access

#### Abstract

Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our inhouse datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinforma ticsIGTP/CNVbenchmarkeR.

**Supplementary information** The online version of this article (https://doi.org/10.1038/s41431-020-0675-z) contains supplementary material, which is available to authorized users.

Conxi Lázaro clazaro@iconcologia.net

Bernat Gel bgel@igtp.cat

- <sup>1</sup> Hereditary Cancer Group, Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, Badalona, Spain
- <sup>2</sup> Hereditary Cancer Program, Joint Program on Hereditary Cancer, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge—IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- <sup>3</sup> Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- <sup>4</sup> Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain

# Introduction

Next-generation sequencing (NGS) is an outstanding technology to detect single-nucleotide variants and small deletion and insertion variants in genetic testing for Mendelian conditions. However, detection of large rearrangements such as copy-number variants (CNV) from NGS data is still challenging due to issues intrinsic to the technology including short read lengths and GC-content bias [1]. Nevertheless, it is well recognized that germline CNVs are the genetic cause of several hereditary diseases [2], so their analysis is a necessary step in a comprehensive genetic diagnostics strategy.

The gold standards for CNV detection in genetic diagnostics are multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH) [3, 4]. Both methods are time consuming and costly, so frequently only a subset of genes is tested, excluding others from the analysis, especially when using single-gene approaches. Therefore, the possibility of using NGS data as a first CNV screening step would decrease the number of MLPA/aCGH tests required and would free up resources.



Fig. 1 Benchmark design and augmented datasets. a The panel shows the benchmark design and the objective of applying the results in the diagnostics routine. **b** To evaluate the diagnostics scenario, a new dataset was built for each run belonging to the original dataset. The augmented datasets contained all the samples originally sequenced

Many tools for CNVs detection from NGS data have been developed [5–7]. Most of them can reliably call large CNVs (in the order of megabases) but show poor performance when dealing with small CNVs affecting only one or a few small exons, which are CNVs frequently involved in several genetic diseases [8]. In addition, most of these tools were designed to work with whole-genome or whole-exome data and struggle with the sparser data from NGS gene panels used in routine genetic testing. Therefore, the challenge is to identify a tool able to detect CNVs from NGS panel data at a single-exon resolution with sufficient sensitivity to be used as a screening step in a diagnostic setting.

Other benchmarks of CNV calling tools on targeted NGS panel data have been published. However, they were performed by the authors of the tools and executed against a single dataset [9-13], or used mainly simulated data with a small number of validated CNVs [14]. The aim of this work is to perform an independent benchmark of multiple CNV calling tools, optimizing, and evaluating them against multiple datasets generated in diagnostics settings, to



В



in the run and, in the case of the MiSeq datasets (upper), a set of 51 samples with no known CNV from different runs (MLPA multiplex ligation-dependent probe amplification; aCGH array comparative genomic hybridization; NGS next-generation sequencing; CNV copynumber variant).

identify the most suitable tools to be used for genetic diagnostics (Fig. 1).

# Materials and methods

## **Datasets and tools**

Four datasets were included in this benchmark (ICR96 exon CNV validation series [15], panelcnDataset [11], In-house MiSeq and In-House HiSeq) (Table 1) with data from two hybridization-based target capture NGS panels designed for hereditary cancer diagnostics: TruSight Cancer Panel (Illumina, San Diego, CA, USA) and I2HCP [16]. All datasets were generated in real diagnostics settings and contained single and multi-exon CNVs, all of them validated by MLPA. Negative MLPA data, meaning no detection of any CNV, were also available for a subset of genes. Detailed information on MLPA-detected CNVs for each dataset can be found in Supplementary files 2-5.

| Table 1 Datase | ts used in t | he benchmarl                   | k.                   |                     |               |                  |                                |                                                                           |                                                        |                                                                              |
|----------------|--------------|--------------------------------|----------------------|---------------------|---------------|------------------|--------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
|                | Samples      | Validated<br>genes<br>with CNV | Single-<br>exon CNVs | Multi-<br>exon CNVs | Deletion CNVs | Duplication CNVs | Validated genes<br>with no CNV | Sequencing                                                                | Availability                                           | Additional information                                                       |
| ICR96          | 96           | 68                             | 25                   | 43                  | 51            | 17               | 1752 (96.3%<br>of total)       | TruSight Cancer<br>Panel v2 (100<br>genes), HiSeq, 2×<br>101 bp reads     | European genome-<br>phenome Archive<br>EGAD00001003335 | Samples obtained from<br>one run                                             |
| panelcnDataset | 161          | 41                             | 13                   | 28                  | 36            | Ś                | 416 (91%<br>of total)          | TruSight Cancer<br>Panel (94 genes),<br>MiSeq, 2 ×<br>151 bp reads        | European Genome-<br>phenome Archive<br>EGAS00001002481 | Only 161 of<br>170 samples were used.<br>See Supplementary file 1            |
| In-house MiSeq | 130          | 64                             | 19                   | 45                  | 56            | ×                | 167 (72.3%<br>of total)        | 12HCP Panel<br>v2.0-v2.2<br>(122-135 genes),<br>MiSeq, 2×<br>300 bp reads | European Genome-<br>phenome Archive<br>EGAS00001004316 | Samples obtained from<br>48 runs. Three samples<br>had a CNV in<br>mosaicism |
| In-house HiSeq | 108          | 58                             | 18                   | 40                  | 49            | 6                | 176 (75.2%<br>of total)        | 12HCP panel<br>v2.0-v2.2<br>(122-135 genes),<br>HiSeq, 2×<br>251 bp reads | European Genome-<br>phenome Archive<br>EGAS00001004316 | Samples obtained from<br>5 runs. Two samples<br>had CNV in mosaicism         |
|                |              |                                |                      |                     |               |                  |                                |                                                                           |                                                        |                                                                              |

Samples from the In-house MiSeq and in-house HiSeq datasets were generated at the ICO-IGTP Joint Program for Hereditary Cancer and are available at the EGA under the accession number EGAS00001004316. In addition to these samples, a total of 1103 additional samples (505 MiSeq and 598 HiSeq), with no CNVs detected in the subset of genes tested by MLPA, were used to build the augmented datasets used in the diagnostics scenario analysis. Informed consent was obtained for all samples in the in-house datasets.

Five tools were tested in the benchmark (Table 2): CoNVaDING v1.2.0 [9], DECoN v1.0.1 [10], panelcn. MOPS v1.0.0 [11], ExomeDepth v1.1.10 [17], and CODEX2 v1.2.0 [18].

#### Data preprocessing

All samples were aligned to the GRCh37 human genome assembly using BWA mem v0.7.12 [19, 20]. SAMtools v0.1.19 [21] was used to sort and index BAM files. No additional processing or filtering was applied to the BAM files.

## **Regions of interest**

The regions of interest (ROIs) were dependent on the dataset. For TruSight based datasets, ICR96 and panelcn-Dataset, we used the targets bed file published elsewhere [10] with some modifications: the fourth column was removed, the gene was added and it was sorted by chromosome and start position (Supplementary file 6). For inhouse datasets, we generated a target bed file containing all coding exons from all protein-coding transcripts of genes in the I2HCP panel v2.1 (Supplementary file 7). These data were retrieved from Ensembl BioMart version 67 [22] (http://may2012.archive.ensembl.org). All genes tested by MLPA and used in the benchmark were common to all I2HCP versions (v2.0-2.2).

## **Benchmark evaluation metrics**

The performance of each tool for CNVs detection was evaluated at two levels: per ROI and per gene.

Per ROI metrics treated all ROI as independent entities, assigning each of them a correctness value: true positive (TP) or true negative (TN) if the tool matched the results of MLPA, false negative (FN) if the tool missed a CNV detected by MLPA and false positive (FP) if the tool called a CNV not detected by MLPA. This is the most fine-grained metric.

Per gene metrics consider the fact that most MLPA kits cover a whole gene and so the true CNVs would be detected by MLPA when confirming any CNV call in any ROI of the affected gene. Therefore, per gene metrics assigned a

| Table 2 Tools            | tested in the be- | nchmark.    |                                               |                     |                                                |                                                                                                                                                                                         |
|--------------------------|-------------------|-------------|-----------------------------------------------|---------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Language          | Version     | Number of parameters used<br>in the benchmark | Reports<br>no calls | Availability                                   | Methods                                                                                                                                                                                 |
| CODEX2                   | R package         | $1.2.0^{a}$ | 10                                            | No                  | https://github.com/yuchaojia<br>ng/CODEX2      | Based on CODEX package, it models the GC content bias and normalizes the read depth data for CNV detection via a Poisson latent factor model.                                           |
| CoNVaDING                | Perl program      | 1.2.0       | 7                                             | Yes                 | https://github.com/molgenis/<br>CoNVaDING      | Combination of ratio scores and Z-scores of the sample of interest<br>compared to the selected normalized control samples.                                                              |
| DECoN                    | R program         | 1.0.1       | 3                                             | Yes                 | https://github.com/Rahma<br>nTeam/DECoN        | Modifies ExomeDepth package by altering the hidden Markov model probabilities to depend upon the distance between exons.                                                                |
| ExomeDepth               | R package         | 1.1.10      | 4                                             | No                  | https://github.com/vplagnol/<br>ExomeDepth     | Beta-binomial model with GC correction and hidden Markov model to combine likelihood across exons.                                                                                      |
| panelcn.MOPS             | R package         | 1.0.0       | 13                                            | Yes                 | https://github.com/bioinf-<br>jku/panelcn.mops | Adaptation of cn.MOPS package, which decomposes variations in coverage across samples into integer copy numbers and noise by means of its mixture components and Poisson distributions. |
| <sup>a</sup> CODEX2 scri | pt for panel sett | ing (Cod    | ex2_targeted.R) was obtained f                | rom version da      | ted at on Sep 12, 2017.                        |                                                                                                                                                                                         |

correctness value to each gene taking into account all its exons: TP if one of its ROIs was a TP; FN if MLPA detected a CNV in at least one of its ROIs and none of them were detected by the tool; FP if the tool called a CNV in at least one ROI and none of them were detected by MLPA; TN if neither MLPA nor the tool detected a CNV in any of its ROIs.

For each tool against each dataset and evaluation level various performance metrics were computed: sensitivity defined as TP/(TP + FN), specificity defined as TN/(TN + FP), positive predictive value (PPV) defined as TP/(TP + FP), negative predictive value (NPV) defined as TN/(TN + FN), false negative rate (FNR) defined as FN/(FN + TP), false positive rate (FPR) defined as FP/(FP + TN), and F1 score (F1) defined as 2TP/(2TP + FP + FN).

## Parameter optimization

Parameters of each tool were optimized against each dataset to maximize sensitivity while limiting specificity loss: each dataset was split into two halves, a training set used to optimize tool parameters and a validation set to evaluate them (Supplementary file 8). The optimization algorithm followed a greedy approach: a local optimization was performed at each step with the aim of obtaining a solution close enough to the global optimum. Further details of the optimization algorithm can be found in Supplementary file 9.

## Benchmarking framework execution

An R framework, CNVbenchmarkeR, was built to perform the benchmark in an automatically and configurable way. Code and documentation are available at https://github.com/ TranslationalBioinformaticsIGTP/CNVbenchmarkeR. Each selected tool was first executed against each dataset using default parameters as defined in tool documentation and then using the optimized parameters. Default and optimized parameter values can be found in Supplementary file 10. Tool outputs were processed with R v3.4.2, Bioconductor v3.5 [23], plyr [24], GenomicRanges [25], and biomaRt [26]. Plots were created with ggplot2 [27]. Confidence intervals (CIs) were calculated with epiR v1.0-14 at a CI of 95%. In addition, for each dataset, all executions were repeated to compare performance on two subsets: one excluding single-exon CNVs samples and one excluding multi-exon CNVs samples.

## **Diagnostics scenario evaluation**

The In-house MiSeq and In-house HiSeq datasets were composed of a selection of samples from different sequencing runs. In a real diagnostics scenario, the objective is to analyze a new run with all its sequenced samples. To simulate and evaluate the diagnostics scenario, we built the augmented datasets (Fig. 1), which contained all the samples from the sequencing runs instead of a selection of them. For the augmented datasets, the tools were executed against each run and metrics were computed by combining the results of all runs. Since some tools recommend more than 16 samples for optimal performance, we added 51 samples from other runs with no known CNVs when executing the tools on the runs of the augmented MiSeq dataset.

We also defined a new metric, whole diagnostics strategy, to take into account that in a diagnostics setting all regions where the screening tool was not able to produce a result (no call) should be identified and tested by other methods. Thus, any gene containing at least one positive call or no call in a ROI was considered as a positive call of the whole gene: TP if the gene contained at least one ROI affected by a CNV; FP if the gene did not contain any ROI affected by a CNV. In addition, if a tool identified a ROI both as a deletion and a duplication, it was considered a no call when computing metrics.

# Results

To identify the CNV calling tools that could be used as a screening step in a genetic diagnostics setting, we needed first to select the candidate tools, and then to evaluate their performance with a special emphasis on the sensitivity, both with their default parameters and with dataset-dependent optimized parameters.

## **CNV** calling tool selection

The first in the benchmark was to identify candidate tools that have shown promising results. After a literature search process, we selected five CNV calling tools to be evaluated (Table 2), all of them based on depth-of-coverage analysis. Three tools have been reported to perform well on NGS panel data at single-exon resolution: CoNVaDING v1.2.0 [9], DECoN v1.0.1 [10], and panelcn.MOPS v1.0.0 [11]. ExomeDepth v1.1.10 [17] was included due to its high performance in benchmarks on WES data [28, 29] and because the developers reported good performance with panel data (https://github.com/vplagnol/ExomeDepth). CODEX2 v1.2.0 was included due to the high sensitivity shown on WES data [18] and the availability of specific scripts for panel data (https://github.com/yuchaojiang/CODEX2).

# Benchmark with default parameters

We executed each tool on each dataset with the default parameters and computed evaluation statistics at two levels: per ROI and per gene (see "Methods"). Regarding the per ROI metric, most tools showed sensitivity and specificity values over 0.75, with sensitivity in general over 0.9 (Fig. 2 and Table 3). However, tool performance varied across datasets. For the ICR96 and panelcnDataset datasets, specificity was always higher than 0.98, while sensitivity remained higher than 0.94 (with the exception of CODEX2). This performance was not achieved when using the in-house datasets, where lower sensitivity and specificity can be observed, and only CoN-VaDING obtained sensitivity close to 1 at the expense of a lower specificity.

As expected in unbalanced datasets with a much larger number of negative elements than positive ones, NPV was higher than the PPV in all tool-dataset combinations. All NPVs were above 0.96 while PPV varied across datasets, ranging from 0.36 (CoNVaDING in ICR96) to 0.96 (ExomeDepth in In-house MiSeq). ExomeDepth had the highest PPV in all datasets.

Regarding the per gene metric, sensitivity was slightly improved compared to per ROI, and for each dataset, at least one tool showed a sensitivity of 1 and was able to identify all CNVs (Supplementary files 11 and 12).

When excluding single-exon CNVs or multi-exon CNVs, the exclusion of single-exon CNVs generally provided a better PPV, while sensitivity varied depending on the dataset (Supplementary file 13).

# Benchmark with optimized parameters

In addition to evaluating the performance of the different tools tested with default parameters, we performed an optimization process to identify, for each tool and dataset, the combination of parameters that maximized the sensitivity as required for a screening tool in a diagnostics context (see "Methods" and Supplementary files 8 and 9).

Parameter optimization was performed on a subset (training) of each dataset and the optimized parameters (Supplementary file 10) were compared to the default ones on the samples not used for training (validation subset). Figure 3 shows the optimization results at the ROI level. In general, the optimization process improved sensitivity by slightly decreasing specificity. For panelcnDataset, sensitivity was increased by a higher margin driven by CODEX2, which increased its sensitivity by 58.6%. On the other hand, tools were not able to improve or showed small differences in the In-house MiSeq dataset (Supplementary files 14 and 15).

# Benchmark in a diagnostics scenario

In a real diagnostic setting, all CNVs detected in genes of interest and all regions where the screening tool was not able to produce a result (no call) should be confirmed by an



CODEX2 • CoNVaDING • DECoN • ExomeDepth • panelcn.MOPS

Fig. 2 Benchmark results with default parameters: per ROI metrics. Shows results when executing tools with the default parameters and computing the per ROI metrics. ExomeDepth and DECON

tools obtained same sensitivity and specificity in panelcnDataset (ROI region of interest; PPV positive predictive value; F1 F1 score).

orthogonal technique. To account for this, we evaluated the performance of all tools using the whole diagnostics strategy metric which takes the no calls into account. This evaluation was performed in a modified version of the inhouse datasets, the augmented in-house datasets (Fig. 1), which contained all the samples from the original sequencing runs instead of a selection of them (see "Methods").

Figure 4 shows sensitivity and specificity on the augmented in-house datasets when executing tools with the optimized parameters compared to the default parameters. For the In-house MiSeq dataset, two tools detected all CNVs: panelcn.MOPS achieved it with both optimized and default parameters (CI: 94.4–100%), with a specificity of 67.8% (CI: 60.3–74.8%) and 80.7% (CI: 74.0–86.3%), respectively. DECoN detected all CNVs only with the optimized parameters (CI: 94.4–100%) reaching 91.3% (CI: 86.0–95.0%) specificity. CoNVaDING also detected all CNVs, but its high no-call rate led to very low specificity, 4.1% (CI: 1.6–8.2%). For the In-house HiSeq dataset, only panelcn.MOPS detected all CNVs (CI: 93.8–100%) with an acceptable specificity (81.5% (CI: 75.0–86.9%) and 83.2% (CI: 76.8–88.3%) with the default and optimized parameters respectively). DECoN missed one CNV, being a mosaic sample, and its specificity remained high, 96.6% (CI: 92.8–98.8%) with the optimized parameters. On the other hand, CODEX2 and ExomeDepth obtained high sensitivity and specificity values for both datasets, but they did not report no calls (Table 4 and Supplementary files 16 and 17).

| Tool         | TP                                                                                                                                                                                                                                                           | TN                                                                                                                                                                                                                                                                         | FP                                                                                                                                                                                                                                                                                                                                  | FN                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Specificity                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DECoN        | 286                                                                                                                                                                                                                                                          | 28473                                                                                                                                                                                                                                                                      | 106                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9963                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| panelcn.MOPS | 284                                                                                                                                                                                                                                                          | 28236                                                                                                                                                                                                                                                                      | 343                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CoNVaDING    | 283                                                                                                                                                                                                                                                          | 28068                                                                                                                                                                                                                                                                      | 511                                                                                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9821                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exomedepth   | 283                                                                                                                                                                                                                                                          | 28507                                                                                                                                                                                                                                                                      | 72                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9975                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CODEX2       | 275                                                                                                                                                                                                                                                          | 28503                                                                                                                                                                                                                                                                      | 76                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9973                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DECoN        | 317                                                                                                                                                                                                                                                          | 9442                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9954                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| panelcn.MOPS | 304                                                                                                                                                                                                                                                          | 9438                                                                                                                                                                                                                                                                       | 48                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9949                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CoNVaDING    | 316                                                                                                                                                                                                                                                          | 9367                                                                                                                                                                                                                                                                       | 119                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9875                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exomedepth   | 317                                                                                                                                                                                                                                                          | 9442                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9954                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CODEX2       | 142                                                                                                                                                                                                                                                          | 9423                                                                                                                                                                                                                                                                       | 63                                                                                                                                                                                                                                                                                                                                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9934                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DECoN        | 486                                                                                                                                                                                                                                                          | 4189                                                                                                                                                                                                                                                                       | 59                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9861                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| panelcn.MOPS | 349                                                                                                                                                                                                                                                          | 4162                                                                                                                                                                                                                                                                       | 86                                                                                                                                                                                                                                                                                                                                  | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9798                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CoNVaDING    | 513                                                                                                                                                                                                                                                          | 4076                                                                                                                                                                                                                                                                       | 173                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9593                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exomedepth   | 440                                                                                                                                                                                                                                                          | 4232                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9962                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CODEX2       | 483                                                                                                                                                                                                                                                          | 4128                                                                                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                 | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9718                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DECoN        | 351                                                                                                                                                                                                                                                          | 4197                                                                                                                                                                                                                                                                       | 61                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9857                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| panelcn.MOPS | 223                                                                                                                                                                                                                                                          | 4188                                                                                                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                                                                                                  | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CoNVaDING    | 382                                                                                                                                                                                                                                                          | 3994                                                                                                                                                                                                                                                                       | 265                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9378                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exomedepth   | 314                                                                                                                                                                                                                                                          | 4237                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9951                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CODEX2       | 324                                                                                                                                                                                                                                                          | 4195                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9813                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Tool<br>DECoN<br>panelcn.MOPS<br>CoNVaDING<br>exomedepth<br>CODEX2<br>DECoN<br>panelcn.MOPS<br>CONVaDING<br>exomedepth<br>CODEX2<br>DECoN<br>panelcn.MOPS<br>CoNVaDING<br>exomedepth<br>CODEX2<br>DECON<br>panelcn.MOPS<br>CONVADING<br>exomedepth<br>CODEX2 | ToolTPDECoN286panelcn.MOPS283CoNVaDING283exomedepth283CODEX2275DECoN317panelcn.MOPS304CoNVaDING316exomedepth317CODEX2142DECoN486panelcn.MOPS349CONVaDING513exomedepth440CODEX2483DECoN351exomedepth323DECON382exomedepth382exomedepth314CONVaDING382exomedepth314CODEX2324 | ToolTPTNDECoN28628473panelcn.MOPS28428236CoNVaDING28328068exomedepth28328503DECoN27528503DECoN3179442panelcn.MOPS3049438CoNVaDING3169367exomedepth3179442DECoN3169423DECoN3179442CODEX21429423DECoN5134076exomedepth5134076exomedepth4404232CODEX24834128DECoN3514197panelcn.MOPS2234188CODEX23823994exomedepth3144237CODEX23244195 | Tool TP TN FP   DECoN 286 28473 106   panelcn.MOPS 284 28236 343   CoNVaDING 283 28068 511   exomedepth 283 28507 72   CODEX2 275 28503 76   DECoN 317 9442 44   panelcn.MOPS 304 9438 48   CoNVaDING 316 9367 119   exomedepth 317 9442 44   CODEX2 142 9423 63   DECoN 316 9367 119   exomedepth 317 9442 44   CODEX2 142 9423 63   DECoN 316 4162 86   CoNVaDING 313 4076 173   exomedepth 440 4232 16   CODEX2 483 4128 120   DECoN 351 4197 61 | Tool TP TN FP FN   DECoN 286 28473 106 10   panelcn.MOPS 284 28236 343 12   CoNVaDING 283 28068 511 13   exomedepth 283 28507 72 13   CODEX2 275 28503 76 21   DECoN 317 9442 44 5   panelcn.MOPS 304 9438 48 18   CoNVaDING 316 9367 119 6   exomedepth 317 9442 44 5   panelcn.MOPS 316 9367 119 6   exomedepth 317 9442 44 5   DECoN 316 9367 119 6   panelcn.MOPS 349 4162 86 173   CoNVaDING 513 4076 173 8   exomedepth 440 4232 16 <td< td=""><td>ToolTPTNFPFNTotalDECoN286284731061028875panelcn.MOPS284282363431228875CoNVaDING283280685111328875exomedepth28328507721328875DECoN27528503762128875DECoN31794424459808panelcn.MOPS304943848189808CoNVaDING316936711969808conVaDING31694224459808CODEX21429423631809808DECoN486418959364770panelcn.MOPS3494162861734770CONVaDING513407617384770panelcn.MOPS243418120394770CODEX24834128120394770DECoN351419761444653panelcn.MOPS2234188701724653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOP</td><td>Tool TP TN FP FN Total Sensitivity   DECoN 286 28473 106 10 28875 0.9662   panelcn.MOPS 284 28236 343 12 28875 0.9595   CoNVaDING 283 28068 511 13 28875 0.9561   exomedepth 283 28507 72 13 28875 0.9291   DECoN 317 9442 44 5 9808 0.9845   panelcn.MOPS 304 9438 48 18 9808 0.9411   CoNVaDING 316 9367 119 6 9808 0.9845   panelcn.MOPS 304 9422 44 5 9808 0.9814   coNVaDING 316 9367 119 6 9808 0.9814   panelcn.MOPS 349 4162 44 5 9808 0.441   DECoN 486 4189 59 36</td><td>ToolTPTNFPFNTotalSensitivitySpecificityDECoN2862847310610288750.96620.9963panelcn.MOPS2842823634312288750.95950.988CoNVaDING2832806851113288750.95610.9821exomedepth283285077213288750.95610.9973CODEX2275285037621288750.92910.9973DECoN317944244598080.98450.9954panelcn.MOPS3049438481898080.94110.9973CONVaDING3169367119698080.98450.9954convedepth317944244598080.98450.9954CODEX214294236318098080.94110.9934DECoN317944244598080.98450.9954CODEX214294236318098080.4410.9934DECoN3134076173847700.66860.9798convaDING5134076173847700.98460.9593exomedepth4404232168247700.84290.9962CODEX248341281203947700.92530.9718DECoN351419761</td><td>ToolTPTNFPFNTotalSensitivitySpecificityPPVDECoN2862847310610288750.96620.99630.7296panelcn.MOPS2842823634312288750.95950.9880.453CoNVaDING2832806851113288750.95610.98210.3564exomedepth283285077213288750.95610.99730.7835DECoN317944244598080.98450.99540.8781panelcn.MOPS3049438481898080.94410.99490.8636CoNVaDING3169367119698080.98450.99540.8781panelcn.MOPS34944244598080.98450.99540.8781panelcn.MOPS3169367119698080.98450.99540.8781cODEX214294236318098080.4410.99340.6927DECoN4864189593647700.9310.98610.8917panelcn.MOPS34941628617347700.66860.97980.8023CoNVaDING5134076173847700.98460.95930.7478exomedepth4404232168247700.82290.99620.9649CODEX2483412812</td><td>ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVDECoN2862847310610288750.96620.99630.72960.9996panelcn.MOPS2842823634312288750.95950.9880.4530.9996coNVaDING2832806851113288750.95610.98210.35640.9995exomedepth283285077213288750.92910.99730.78350.9993DECoN317944244598080.94410.99490.86360.9981coNVaDING3169367119698080.98450.99540.87810.9995coNVaDING3169367119698080.98450.99540.87810.9995cODEX214294236318098080.4410.99340.69270.9813DECoN4864189593647700.9310.98610.89170.9915panelcn.MOPS34941628617347700.66860.97980.80230.9061CoNVaDING5134076173847700.98460.95930.74780.9986panelcn.MOPS24341887017246530.88860.98570.85190.9986panelcn.MOPS5134076173847700.92530.97180.801<!--</td--><td>ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1DECoN2862847310610288750.96620.99630.72960.99960.8314panelcn.MOPS2842823634312288750.95950.9880.4530.99960.6154CoNVaDING2832806851113288750.95610.98210.35640.99950.5193exomedepth283285077213288750.92910.99750.79720.99950.8694CODEX2275285037621288750.92910.99730.78350.99930.8501DECoN317944244598080.94410.99490.86360.99810.9021CoNVaDING3169367119698080.98140.98750.72640.99940.8349exomedepth317944244598080.94410.99490.86360.99130.5383CODEX214294236318098080.4410.99340.69270.98130.5389DECoN4864189593647700.9310.98610.89170.99150.911panelcn.MOPS34941628617347700.66860.97980.80230.96110.7294CoNVaDING5134076173847700.98460</td><td>ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1FNRDECON2862847310610288750.96620.99630.72960.99960.83140.0338panelcn.MOPS2842823634312288750.95550.9880.4530.99960.61540.0405CoNVaDING2832806851113288750.95610.98210.35640.99950.51930.0439exomedepth283285077213288750.92610.99750.7720.99950.86940.0439CODEX2275285037621288750.92910.99730.78350.99930.85010.0709DECON317944244598080.94410.99490.86360.99810.90210.559CoNVaDING3169367119698080.98450.99540.87810.99950.92830.0155CODEX214294236318098080.4410.99340.69270.98130.53890.5590DECON4864189593647700.9110.99340.69270.98130.53890.5590DECON4864189593647700.9460.95930.74780.99150.9110.6960panelcn.MOPS34941628617347700.66860.9798</td></td></td<> | ToolTPTNFPFNTotalDECoN286284731061028875panelcn.MOPS284282363431228875CoNVaDING283280685111328875exomedepth28328507721328875DECoN27528503762128875DECoN31794424459808panelcn.MOPS304943848189808CoNVaDING316936711969808conVaDING31694224459808CODEX21429423631809808DECoN486418959364770panelcn.MOPS3494162861734770CONVaDING513407617384770panelcn.MOPS243418120394770CODEX24834128120394770DECoN351419761444653panelcn.MOPS2234188701724653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOPS3823994265124653panelcn.MOP | Tool TP TN FP FN Total Sensitivity   DECoN 286 28473 106 10 28875 0.9662   panelcn.MOPS 284 28236 343 12 28875 0.9595   CoNVaDING 283 28068 511 13 28875 0.9561   exomedepth 283 28507 72 13 28875 0.9291   DECoN 317 9442 44 5 9808 0.9845   panelcn.MOPS 304 9438 48 18 9808 0.9411   CoNVaDING 316 9367 119 6 9808 0.9845   panelcn.MOPS 304 9422 44 5 9808 0.9814   coNVaDING 316 9367 119 6 9808 0.9814   panelcn.MOPS 349 4162 44 5 9808 0.441   DECoN 486 4189 59 36 | ToolTPTNFPFNTotalSensitivitySpecificityDECoN2862847310610288750.96620.9963panelcn.MOPS2842823634312288750.95950.988CoNVaDING2832806851113288750.95610.9821exomedepth283285077213288750.95610.9973CODEX2275285037621288750.92910.9973DECoN317944244598080.98450.9954panelcn.MOPS3049438481898080.94110.9973CONVaDING3169367119698080.98450.9954convedepth317944244598080.98450.9954CODEX214294236318098080.94110.9934DECoN317944244598080.98450.9954CODEX214294236318098080.4410.9934DECoN3134076173847700.66860.9798convaDING5134076173847700.98460.9593exomedepth4404232168247700.84290.9962CODEX248341281203947700.92530.9718DECoN351419761 | ToolTPTNFPFNTotalSensitivitySpecificityPPVDECoN2862847310610288750.96620.99630.7296panelcn.MOPS2842823634312288750.95950.9880.453CoNVaDING2832806851113288750.95610.98210.3564exomedepth283285077213288750.95610.99730.7835DECoN317944244598080.98450.99540.8781panelcn.MOPS3049438481898080.94410.99490.8636CoNVaDING3169367119698080.98450.99540.8781panelcn.MOPS34944244598080.98450.99540.8781panelcn.MOPS3169367119698080.98450.99540.8781cODEX214294236318098080.4410.99340.6927DECoN4864189593647700.9310.98610.8917panelcn.MOPS34941628617347700.66860.97980.8023CoNVaDING5134076173847700.98460.95930.7478exomedepth4404232168247700.82290.99620.9649CODEX2483412812 | ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVDECoN2862847310610288750.96620.99630.72960.9996panelcn.MOPS2842823634312288750.95950.9880.4530.9996coNVaDING2832806851113288750.95610.98210.35640.9995exomedepth283285077213288750.92910.99730.78350.9993DECoN317944244598080.94410.99490.86360.9981coNVaDING3169367119698080.98450.99540.87810.9995coNVaDING3169367119698080.98450.99540.87810.9995cODEX214294236318098080.4410.99340.69270.9813DECoN4864189593647700.9310.98610.89170.9915panelcn.MOPS34941628617347700.66860.97980.80230.9061CoNVaDING5134076173847700.98460.95930.74780.9986panelcn.MOPS24341887017246530.88860.98570.85190.9986panelcn.MOPS5134076173847700.92530.97180.801 </td <td>ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1DECoN2862847310610288750.96620.99630.72960.99960.8314panelcn.MOPS2842823634312288750.95950.9880.4530.99960.6154CoNVaDING2832806851113288750.95610.98210.35640.99950.5193exomedepth283285077213288750.92910.99750.79720.99950.8694CODEX2275285037621288750.92910.99730.78350.99930.8501DECoN317944244598080.94410.99490.86360.99810.9021CoNVaDING3169367119698080.98140.98750.72640.99940.8349exomedepth317944244598080.94410.99490.86360.99130.5383CODEX214294236318098080.4410.99340.69270.98130.5389DECoN4864189593647700.9310.98610.89170.99150.911panelcn.MOPS34941628617347700.66860.97980.80230.96110.7294CoNVaDING5134076173847700.98460</td> <td>ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1FNRDECON2862847310610288750.96620.99630.72960.99960.83140.0338panelcn.MOPS2842823634312288750.95550.9880.4530.99960.61540.0405CoNVaDING2832806851113288750.95610.98210.35640.99950.51930.0439exomedepth283285077213288750.92610.99750.7720.99950.86940.0439CODEX2275285037621288750.92910.99730.78350.99930.85010.0709DECON317944244598080.94410.99490.86360.99810.90210.559CoNVaDING3169367119698080.98450.99540.87810.99950.92830.0155CODEX214294236318098080.4410.99340.69270.98130.53890.5590DECON4864189593647700.9110.99340.69270.98130.53890.5590DECON4864189593647700.9460.95930.74780.99150.9110.6960panelcn.MOPS34941628617347700.66860.9798</td> | ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1DECoN2862847310610288750.96620.99630.72960.99960.8314panelcn.MOPS2842823634312288750.95950.9880.4530.99960.6154CoNVaDING2832806851113288750.95610.98210.35640.99950.5193exomedepth283285077213288750.92910.99750.79720.99950.8694CODEX2275285037621288750.92910.99730.78350.99930.8501DECoN317944244598080.94410.99490.86360.99810.9021CoNVaDING3169367119698080.98140.98750.72640.99940.8349exomedepth317944244598080.94410.99490.86360.99130.5383CODEX214294236318098080.4410.99340.69270.98130.5389DECoN4864189593647700.9310.98610.89170.99150.911panelcn.MOPS34941628617347700.66860.97980.80230.96110.7294CoNVaDING5134076173847700.98460 | ToolTPTNFPFNTotalSensitivitySpecificityPPVNPVF1FNRDECON2862847310610288750.96620.99630.72960.99960.83140.0338panelcn.MOPS2842823634312288750.95550.9880.4530.99960.61540.0405CoNVaDING2832806851113288750.95610.98210.35640.99950.51930.0439exomedepth283285077213288750.92610.99750.7720.99950.86940.0439CODEX2275285037621288750.92910.99730.78350.99930.85010.0709DECON317944244598080.94410.99490.86360.99810.90210.559CoNVaDING3169367119698080.98450.99540.87810.99950.92830.0155CODEX214294236318098080.4410.99340.69270.98130.53890.5590DECON4864189593647700.9110.99340.69270.98130.53890.5590DECON4864189593647700.9460.95930.74780.99150.9110.6960panelcn.MOPS34941628617347700.66860.9798 |

Table 3 Bechmark results with default parameters and per ROI metrics.

*TP* true positive, *TN* true negative, *FP* false positive, *FN* false negative, *PPV* positive predictive value, *NPV* negative predictive value, *F1* F1 score, *FNR* false negative rate, *FPR* false positive rate.

# Discussion

CNVs are the genetic cause of multiple hereditary diseases [2]. To detect them, specific tools and techniques are required. In genetic diagnostics, this is mainly done using either MLPA and aCGH or using software tools to infer copy-number alterations from NGS data generated in the diagnostics process. MLPA and aCGH are the gold standard methods [3], but both are time-consuming and expensive approaches that frequently lead laboratories to only use them in a subset of genes of interest. On the other hand, multiple tools for CNV calling from NGS data have been published [5–7], but their performance on NGS gene panel data has not been properly evaluated in a genetic diagnostics context. This evaluation is especially critical when these tools are used as a screening step in a diagnostics strategy, since a nonoptimal sensitivity would lead to a higher number of misdiagnosis.

Most CNV calling tools have not been developed to be used as a screening step in genetic diagnostics but as part of a research-oriented data analysis pipeline. Therefore, they were originally tuned and optimized for a certain sensitivityspecificity equilibrium. To be used as screening tools, we need to alter their default parameters to shift that equilibrium toward maximizing the sensitivity even at the expense of lowering their specificity. This parameter optimization must be performed in a dataset-specific way, since tools show performance differences between dataset due to dataset specificities coming from target regions composition, technical differences, or sequencing characteristics.

In this work, we selected 5 tools that have shown promising results on panel data, and we measured their performance, with the default and sensitivity-optimized parameters, over 4 validated datasets from different sources: a total of 495 samples with 231 single and multi-exon CNVs. CNVbenchmarkeR, a framework for evaluating CNV calling tools performance, was developed to undertake this task. We also evaluated their performance in a genetic diagnostics-like scenario and showed that some of the tools are suitable to be used as screening methods before MLPA or aCGH confirmation.

### Benchmark with default parameters

The benchmark with default parameters showed that most tools are highly sensitive and specific, but the top performers depend on the specific dataset. Most tools performed best when using data from panelcnDataset. DECoN, ExomeDepth and CoNVaDING reached almost 100% sensitivity and specificity. A possible reason for this is that this dataset contains the lowest number of single-exon CNVs (n = 13), which are the most difficult type of CNVs



Fig. 3 Optimization results at ROI level. Shows sensitivity and specificity on validation sets when executing tools with the optimized parameters in comparison to the default parameters (ROI region of interest).

to be detected. DECoN was the best performer for ICR96, a dataset published by the same authors, but other tools obtained similar results in that dataset. CoNVaDING was the most sensitive tool when analyzing our in-house datasets but showed the lowest PPV in all datasets with the exception of panelcnDataset. ExomeDepth showed the highest PPV in all datasets, making it one of the most balanced tools regarding sensitivity and specificity. Differences in tool performance depending on the dataset were also observed in previous works [29, 30].

# Optimization

The different CNV calling tools included in this work were originally designed with different aims with respect to their preferred sensitivity and specificity equilibrium or the type of CNVs they expected to detect, and this is reflected in their default parameters and their performance in the initial benchmark. Our aim with this work was to evaluate these CNV callers as potential screening tools in a genetic diagnostics setting and for this reason, we required their maximum sensitivity.

The parameter optimization process allowed us to determine the dataset-specific parameter combination maximizing their sensitivity without an excessive specificity loss. The optimization had a different impact on different tools: while CODEX2 showed a higher sensitivity in all four datasets the rest of the tools showed modest improvements. This is mainly due to the fact that sensitivity was already over 0.9 for most combinations and the number of false negatives to correctly call was small (between 4 and 8) in the per gene metric.

The final optimized parameters were dataset specific, so we do not recommend using them directly on other datasets





| Table 4 Benchmark results with          |
|-----------------------------------------|
| default and optimized                   |
| parameters in the diagnostics scenario. |

| Dataset        | Parameters | Tool         | TP | TN  | FP  | FN | Sensitivity | Specificity | F1     |
|----------------|------------|--------------|----|-----|-----|----|-------------|-------------|--------|
| In-house MiSeq | Default    | DECoN        | 63 | 135 | 37  | 1  | 0.9844      | 0.7849      | 0.7683 |
|                | parameters | panelcn.MOPS | 64 | 138 | 33  | 0  | 1           | 0.807       | 0.795  |
|                |            | CoNVaDING    | 64 | 7   | 165 | 0  | 1           | 0.0407      | 0.4369 |
|                |            | exomedepth   | 56 | 171 | 1   | 8  | 0.875       | 0.9942      | 0.9256 |
|                |            | CODEX2       | 61 | 163 | 6   | 3  | 0.9531      | 0.9645      | 0.9313 |
|                | Optimized  | DECoN        | 64 | 157 | 15  | 0  | 1           | 0.9128      | 0.8951 |
|                | parameters | panelcn.MOPS | 64 | 116 | 55  | 0  | 1           | 0.6784      | 0.6995 |
|                |            | CoNVaDING    | 64 | 7   | 165 | 0  | 1           | 0.0407      | 0.4369 |
|                |            | exomedepth   | 59 | 167 | 5   | 5  | 0.9219      | 0.9709      | 0.9219 |
|                |            | CODEX2       | 61 | 168 | 1   | 3  | 0.9531      | 0.9941      | 0.9683 |
| In-house HiSeq | Default    | DECoN        | 57 | 168 | 10  | 1  | 0.9828      | 0.9438      | 0.912  |
|                | parameters | panelcn.MOPS | 58 | 145 | 33  | 0  | 1           | 0.8146      | 0.7785 |
|                |            | CoNVaDING    | 58 | 39  | 139 | 0  | 1           | 0.2191      | 0.4549 |
|                |            | exomedepth   | 51 | 176 | 2   | 7  | 0.8793      | 0.9888      | 0.9189 |
|                |            | CODEX2       | 53 | 173 | 5   | 5  | 0.9138      | 0.9719      | 0.9138 |
|                | Optimized  | DECoN        | 57 | 172 | 6   | 1  | 0.9828      | 0.9663      | 0.9421 |
| pa             | parameters | panelcn.MOPS | 58 | 148 | 30  | 0  | 1           | 0.8315      | 0.7945 |
|                |            | CoNVaDING    | 58 | 17  | 161 | 0  | 1           | 0.0955      | 0.4188 |
|                |            | exomedepth   | 54 | 173 | 5   | 4  | 0.931       | 0.9719      | 0.9231 |
|                |            | CODEX2       | 54 | 150 | 28  | 4  | 0.931       | 0.8427      | 0.7714 |

where the data have been obtained differently (different capture protocol or sequencing technologies, for example).

Based on our results, we would recommend optimizing the parameters for each specific dataset before adding any CNV calling tool to a genetic diagnostics pipeline to maximize its sensitivity and reduce the risk of misdiagnosis. To that end, we have developed an R framework, CNVbenchmarkeR (freely available at https://github.com/TranslationalBioinforma ticsIGTP/CNVbenchmarkeR), that will help to perform the testing and optimization process in any new dataset.

## **Diagnostics scenario**

Two tools showed performance good enough to be implemented as screening methods in the diagnostics scenario evaluated in our two in-house datasets (Fig. 4): DECoN and panelcn.MOPS. While panelcn.MOPS was able to detect all CNVs both with the default and the optimized parameters, DECoN reached almost perfect sensitivity and outperformed panelcn.MOPS specificity when using the optimized parameters, although the difference is not statistically significant. DECoN only missed a mosaic CNV affecting two exons of the NF2 gene. CoNVaDING also detected all CNVs, but the high number of no-call regions reduced its specificity to values between 4.1 and 21.9%, which rendered it non-valid as a screening tool.

The parameter optimization process improved the sensitivity of most tools. For example, for the In-house MiSeq dataset, DECoN sensitivity increased from 98.4% (CI: 91.6-100%) to 100% (CI: 94.4-100%), and the specificity increased from 78.5% (CI: 71.6-84.4%) to 91.3% (CI: 86.0-95.0%). This improvement highlights the importance of fine-tuning the tool parameters for each specific task, and shows that the optimization process performed in this work has been key for the evaluation of the different tools.

The high sensitivity reached by DECoN and panelcn. MOPS in different datasets, where they identified all known CNVs, shows that NGS data can be used as a CNV screening step in a genetic diagnostics setting. This screening step has the potential to improve the diagnostics routines. As an example, the high specificity reached by DECoN in the in-house MiSeq dataset with the optimized parameters means that around 91% of genes with no CNV would not need to be specifically tested for CNVs when using DECoN as a screening step. The resources saved by the reduction in the number of required tests could be used to expand the number of genes analyzed, potentially increasing the final diagnostics yield.

In conclusion, according to our analysis, DECoN and panelcn.MOPS provide the highest performance for CNV screening before orthogonal confirmation. Although panelcn.MOPS showed a slightly higher sensitivity in one of the datasets, DECoN showed a much higher specificity in the diagnostics scenario. Our results also showed that tools performance depends on the dataset. Therefore, it may be important to evaluate potential tools on an in-house dataset before implementing one as a screening method in the diagnostics routine.

Acknowledgements This study makes use of the ICR96 exon CNV validation series data generated by Professor Nazneen Rahman's team at The Institute of Cancer Research, London as part of the TGMI. We are grateful to the Katharina Wimmer team at Division Human Genetics, Medical University Innsbruck for providing access to the dataset deposited at EGA and hosted by the EBI, under the accession

number EGAS00001002481. We thank the participating patients and all the members of the Unit of Genetic Diagnostics of the Hereditary Cancer Program of the Catalan Institute of Oncology (ICO-IDIBELL) and the Genetics Diagnostics Unit of the Hereditary Cancer Group of the Germans Trias i Pujol Research Institute (IGTP). We also thank the IGTP HPC Core Facility, Iñaki Martínez de Ilarduya and Adriana López-Doriga for their help. We thank CERCA Programme/Generalitat de Catalunya for institutional support.

**Funding** This work has been supported by: the Spanish Ministry of Science and Innovation, Carlos III Health Institute (ISCIII), Plan Estatal de I + D + I 2013–2016, and co-financed by the FEDER program; the Government of Catalonia, the Spanish Association Against Cancer (AECC) and Fundació La Marató de TV3. Contract grant numbers: ISCIIIRETIC RD06/0020/1051, RD12/0036/008, PI11/1609, PI13/00285, PIE13/00022, PI14/00577, PI15/00854, PI16/00563, PI19/00553, 2017SGR1282, and 2017SGR496.

## **Compliance with ethical standards**

Conflict of interest The authors declare that they have no conflict of interest.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

# References

- Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics. 2012;28:2711–8.
- Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.
- Kerkhof J, Schenkel LC, Reilly J, McRobbie S, Aref-Eshghi E, Stuart A, et al. Clinical validation of copy number variant detection from targeted next-generation sequencing panels. J Mol Diagn. 2017;19:905–20.
- Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genomewide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12:1–18.
- Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinforma. 2013;14:S1.
- Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206:432–40.

- Mason-Suares H, Landry L, S. Lebo M. Detecting copy number variation via next generation technology. Curr Genet Med Rep. 2016;4:74–85.
- Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E, Nussbaum RL, et al. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med. 2019;21:114–23.
- Johansson LF, van Dijk F, de Boer EN, van Dijk-Bos KK, Jongbloed JDH, van der Hout AH, et al. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data. Hum Mutat. 2016;37:457–64.
- Fowler A, Mahamdallie S, Ruark E, Seal S, Ramsay E, Clarke M, et al. Accurate clinical detection of exon copy number variants in a targeted NGS panel using DECoN. Wellcome Open Res. 2016;1:1–20.
- Povysil G, Tzika A, Vogt J, Haunschmid V, Messiaen L, Zschocke J, et al. panelcn.MOPS: Copy number detection in targeted NGS panel data for clinical diagnostics. Hum Mutat. 2017;38:889–97.
- Kim H-Y, Choi J-W, Lee J-Y, Kong G, Kim H-Y, Choi J-W, et al. Gene-based comparative analysis of tools for estimating copy number alterations using whole-exome sequencing data. Oncotarget. 2017;8:27277–85.
- Chiang T, Liu X, Wu TJ, Hu H, Sedlazeck FJ, White S, et al. Atlas-CNV: a validated approach to call single-exon CNVs in the eMERGESeq gene panel. Genet Med. 2019;0:1–10.
- Roca I, González-Castro L, Fernández H, Couce ML, Fernández-Marmiesse A. Free-access copy-number variant detection tools for targeted next-generation sequencing data. Mutat Res/Rev Mutat Res. 2019;779:114–25.
- Mahamdallie S, Ruark E, Yost S, Ramsay E, Uddin I, Wylie H, et al. The ICR96 exon CNV validation series: a resource for orthogonal assessment of exon CNV calling in NGS data. Wellcome Open Res. 2017;2:35.
- Castellanos E, Gel B, Rosas I, Tornero E, Santín S, Pluvinet R, et al. A comprehensive custom panel design for routine hereditary cancer testing: Preserving control, improving diagnostics and revealing a complex variation landscape. Sci Rep. 2017;7:39348.
- 17. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust model for read count data in exome

sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012;28:2747–54.

- Jiang Y, Wang R, Urrutia E, Anastopoulos IN, Nathanson KL, Zhang NR. CODEX2: Full-spectrum copy number variation detection by high-throughput DNA sequencing. Genome Biol. 2018;19:1–13.
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
- Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997v. http://arxiv. org/abs/1303.3997.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
- Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic Acids Res. 2012;40:D84–90.
- 23. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.
- Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw. 2011;40:1–29.
- Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9:e1003118.
- Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4:1184.
- Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://doi.org/10.18637/jss.v077. b02.
- de Ligt J, Boone PM, Pfundt R, Vissers LELM, Richmond T, Geoghegan J. et al. Detection of clinically relevant copy number variants with whole exome sequencing. Hum Mutat. 2013;34:1439–48.
- 29. Sadedin SP, Ellis JA, Masters SL, Oshlack A. Ximmer: a system for improving accuracy and consistency of CNV calling from exome data. Gigascience. 2018;7:1–11.
- Hong CS, Singh LN, Mullikin JC, Biesecker LG. Assessing the reproducibility of exome copy number variations predictions. Genome Med. 2016;8:82.