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Abstract
Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from
targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but
struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel
NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools
(DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets
(two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation
was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive
and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and
panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN
outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-
house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal
confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinforma
ticsIGTP/CNVbenchmarkeR.

Introduction

Next-generation sequencing (NGS) is an outstanding tech-
nology to detect single-nucleotide variants and small deletion
and insertion variants in genetic testing for Mendelian con-
ditions. However, detection of large rearrangements such as
copy-number variants (CNV) from NGS data is still chal-
lenging due to issues intrinsic to the technology including
short read lengths and GC-content bias [1]. Nevertheless, it is
well recognized that germline CNVs are the genetic cause of
several hereditary diseases [2], so their analysis is a neces-
sary step in a comprehensive genetic diagnostics strategy.

The gold standards for CNV detection in genetic diag-
nostics are multiplex ligation-dependent probe amplification
(MLPA) and array comparative genomic hybridization
(aCGH) [3, 4]. Both methods are time consuming and
costly, so frequently only a subset of genes is tested,
excluding others from the analysis, especially when using
single-gene approaches. Therefore, the possibility of using
NGS data as a first CNV screening step would decrease the
number of MLPA/aCGH tests required and would free up
resources.
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Many tools for CNVs detection from NGS data have
been developed [5–7]. Most of them can reliably call large
CNVs (in the order of megabases) but show poor perfor-
mance when dealing with small CNVs affecting only one or
a few small exons, which are CNVs frequently involved in
several genetic diseases [8]. In addition, most of these tools
were designed to work with whole-genome or whole-exome
data and struggle with the sparser data from NGS gene
panels used in routine genetic testing. Therefore, the chal-
lenge is to identify a tool able to detect CNVs from NGS
panel data at a single-exon resolution with sufficient sen-
sitivity to be used as a screening step in a diagnostic setting.

Other benchmarks of CNV calling tools on targeted NGS
panel data have been published. However, they were per-
formed by the authors of the tools and executed against a
single dataset [9–13], or used mainly simulated data with a
small number of validated CNVs [14]. The aim of this work
is to perform an independent benchmark of multiple CNV
calling tools, optimizing, and evaluating them against
multiple datasets generated in diagnostics settings, to

identify the most suitable tools to be used for genetic
diagnostics (Fig. 1).

Materials and methods

Datasets and tools

Four datasets were included in this benchmark (ICR96 exon
CNV validation series [15], panelcnDataset [11], In-house
MiSeq and In-House HiSeq) (Table 1) with data from two
hybridization-based target capture NGS panels designed for
hereditary cancer diagnostics: TruSight Cancer Panel (Illu-
mina, San Diego, CA, USA) and I2HCP [16]. All datasets
were generated in real diagnostics settings and contained
single and multi-exon CNVs, all of them validated by
MLPA. Negative MLPA data, meaning no detection of any
CNV, were also available for a subset of genes. Detailed
information on MLPA-detected CNVs for each dataset can
be found in Supplementary files 2–5.

Fig. 1 Benchmark design and augmented datasets. a The panel
shows the benchmark design and the objective of applying the results
in the diagnostics routine. b To evaluate the diagnostics scenario, a
new dataset was built for each run belonging to the original dataset.
The augmented datasets contained all the samples originally sequenced

in the run and, in the case of the MiSeq datasets (upper), a set of
51 samples with no known CNV from different runs (MLPA multiplex
ligation-dependent probe amplification; aCGH array comparative
genomic hybridization; NGS next-generation sequencing; CNV copy-
number variant).

1646 J. M. Moreno-Cabrera et al.



Samples from the In-house MiSeq and in-house HiSeq
datasets were generated at the ICO-IGTP Joint Program for
Hereditary Cancer and are available at the EGA under the
accession number EGAS00001004316. In addition to these
samples, a total of 1103 additional samples (505 MiSeq and
598 HiSeq), with no CNVs detected in the subset of genes
tested by MLPA, were used to build the augmented datasets
used in the diagnostics scenario analysis. Informed consent
was obtained for all samples in the in-house datasets.

Five tools were tested in the benchmark (Table 2):
CoNVaDING v1.2.0 [9], DECoN v1.0.1 [10], panelcn.
MOPS v1.0.0 [11], ExomeDepth v1.1.10 [17], and
CODEX2 v1.2.0 [18].

Data preprocessing

All samples were aligned to the GRCh37 human genome
assembly using BWA mem v0.7.12 [19, 20]. SAMtools
v0.1.19 [21] was used to sort and index BAM files. No
additional processing or filtering was applied to the
BAM files.

Regions of interest

The regions of interest (ROIs) were dependent on the
dataset. For TruSight based datasets, ICR96 and panelcn-
Dataset, we used the targets bed file published elsewhere
[10] with some modifications: the fourth column was
removed, the gene was added and it was sorted by chro-
mosome and start position (Supplementary file 6). For in-
house datasets, we generated a target bed file containing all
coding exons from all protein-coding transcripts of genes in
the I2HCP panel v2.1 (Supplementary file 7). These data
were retrieved from Ensembl BioMart version 67 [22]
(http://may2012.archive.ensembl.org). All genes tested by
MLPA and used in the benchmark were common to all
I2HCP versions (v2.0-2.2).

Benchmark evaluation metrics

The performance of each tool for CNVs detection was
evaluated at two levels: per ROI and per gene.

Per ROI metrics treated all ROI as independent entities,
assigning each of them a correctness value: true positive
(TP) or true negative (TN) if the tool matched the results of
MLPA, false negative (FN) if the tool missed a CNV
detected by MLPA and false positive (FP) if the tool called
a CNV not detected by MLPA. This is the most fine-grained
metric.

Per gene metrics consider the fact that most MLPA kits
cover a whole gene and so the true CNVs would be detected
by MLPA when confirming any CNV call in any ROI of the
affected gene. Therefore, per gene metrics assigned aTa
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correctness value to each gene taking into account all its
exons: TP if one of its ROIs was a TP; FN if MLPA
detected a CNV in at least one of its ROIs and none of them
were detected by the tool; FP if the tool called a CNV in at
least one ROI and none of them were detected by MLPA;
TN if neither MLPA nor the tool detected a CNV in any of
its ROIs.

For each tool against each dataset and evaluation level
various performance metrics were computed: sensitivity
defined as TP/(TP+ FN), specificity defined as TN/(TN+
FP), positive predictive value (PPV) defined as TP/(TP+ FP),
negative predictive value (NPV) defined as TN/(TN+ FN),
false negative rate (FNR) defined as FN/(FN+ TP), false
positive rate (FPR) defined as FP/(FP+ TN), and F1 score
(F1) defined as 2TP/(2TP+ FP+ FN).

Parameter optimization

Parameters of each tool were optimized against each dataset
to maximize sensitivity while limiting specificity loss: each
dataset was split into two halves, a training set used to opti-
mize tool parameters and a validation set to evaluate them
(Supplementary file 8). The optimization algorithm followed a
greedy approach: a local optimization was performed at each
step with the aim of obtaining a solution close enough to the
global optimum. Further details of the optimization algorithm
can be found in Supplementary file 9.

Benchmarking framework execution

An R framework, CNVbenchmarkeR, was built to perform
the benchmark in an automatically and configurable way.
Code and documentation are available at https://github.com/
TranslationalBioinformaticsIGTP/CNVbenchmarkeR. Each
selected tool was first executed against each dataset using
default parameters as defined in tool documentation and
then using the optimized parameters. Default and optimized
parameter values can be found in Supplementary file 10.
Tool outputs were processed with R v3.4.2, Bioconductor
v3.5 [23], plyr [24], GenomicRanges [25], and biomaRt
[26]. Plots were created with ggplot2 [27]. Confidence
intervals (CIs) were calculated with epiR v1.0-14 at a CI of
95%. In addition, for each dataset, all executions were
repeated to compare performance on two subsets: one
excluding single-exon CNVs samples and one excluding
multi-exon CNVs samples.

Diagnostics scenario evaluation

The In-house MiSeq and In-house HiSeq datasets were
composed of a selection of samples from different
sequencing runs. In a real diagnostics scenario, the objective
is to analyze a new run with all its sequenced samples. ToTa
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simulate and evaluate the diagnostics scenario, we built the
augmented datasets (Fig. 1), which contained all the sam-
ples from the sequencing runs instead of a selection of them.
For the augmented datasets, the tools were executed against
each run and metrics were computed by combining the
results of all runs. Since some tools recommend more than
16 samples for optimal performance, we added 51 samples
from other runs with no known CNVs when executing the
tools on the runs of the augmented MiSeq dataset.

We also defined a new metric, whole diagnostics strat-
egy, to take into account that in a diagnostics setting all
regions where the screening tool was not able to produce a
result (no call) should be identified and tested by other
methods. Thus, any gene containing at least one positive
call or no call in a ROI was considered as a positive call of
the whole gene: TP if the gene contained at least one ROI
affected by a CNV; FP if the gene did not contain any
ROI affected by a CNV. In addition, if a tool identified a
ROI both as a deletion and a duplication, it was considered
a no call when computing metrics.

Results

To identify the CNV calling tools that could be used as a
screening step in a genetic diagnostics setting, we needed
first to select the candidate tools, and then to evaluate their
performance with a special emphasis on the sensitivity, both
with their default parameters and with dataset-dependent
optimized parameters.

CNV calling tool selection

The first in the benchmark was to identify candidate tools that
have shown promising results. After a literature search pro-
cess, we selected five CNV calling tools to be evaluated
(Table 2), all of them based on depth-of-coverage analysis.
Three tools have been reported to perform well on NGS panel
data at single-exon resolution: CoNVaDING v1.2.0 [9],
DECoN v1.0.1 [10], and panelcn.MOPS v1.0.0 [11]. Exo-
meDepth v1.1.10 [17] was included due to its high perfor-
mance in benchmarks on WES data [28, 29] and because the
developers reported good performance with panel data
(https://github.com/vplagnol/ExomeDepth). CODEX2 v1.2.0
was included due to the high sensitivity shown on WES data
[18] and the availability of specific scripts for panel data
(https://github.com/yuchaojiang/CODEX2).

Benchmark with default parameters

We executed each tool on each dataset with the default
parameters and computed evaluation statistics at two levels:
per ROI and per gene (see “Methods”).

Regarding the per ROI metric, most tools showed sen-
sitivity and specificity values over 0.75, with sensitivity in
general over 0.9 (Fig. 2 and Table 3). However, tool per-
formance varied across datasets. For the ICR96 and
panelcnDataset datasets, specificity was always higher than
0.98, while sensitivity remained higher than 0.94 (with the
exception of CODEX2). This performance was not
achieved when using the in-house datasets, where lower
sensitivity and specificity can be observed, and only CoN-
VaDING obtained sensitivity close to 1 at the expense of a
lower specificity.

As expected in unbalanced datasets with a much larger
number of negative elements than positive ones, NPV was
higher than the PPV in all tool-dataset combinations. All
NPVs were above 0.96 while PPV varied across datasets,
ranging from 0.36 (CoNVaDING in ICR96) to 0.96 (Exo-
meDepth in In-house MiSeq). ExomeDepth had the highest
PPV in all datasets.

Regarding the per gene metric, sensitivity was slightly
improved compared to per ROI, and for each dataset, at
least one tool showed a sensitivity of 1 and was able to
identify all CNVs (Supplementary files 11 and 12).

When excluding single-exon CNVs or multi-exon CNVs,
the exclusion of single-exon CNVs generally provided a
better PPV, while sensitivity varied depending on the
dataset (Supplementary file 13).

Benchmark with optimized parameters

In addition to evaluating the performance of the different
tools tested with default parameters, we performed an
optimization process to identify, for each tool and dataset,
the combination of parameters that maximized the sensi-
tivity as required for a screening tool in a diagnostics
context (see “Methods” and Supplementary files 8 and 9).

Parameter optimization was performed on a subset
(training) of each dataset and the optimized parameters
(Supplementary file 10) were compared to the default ones
on the samples not used for training (validation subset).
Figure 3 shows the optimization results at the ROI level. In
general, the optimization process improved sensitivity by
slightly decreasing specificity. For panelcnDataset, sensi-
tivity was increased by a higher margin driven by
CODEX2, which increased its sensitivity by 58.6%. On the
other hand, tools were not able to improve or showed small
differences in the In-house MiSeq dataset (Supplementary
files 14 and 15).

Benchmark in a diagnostics scenario

In a real diagnostic setting, all CNVs detected in genes of
interest and all regions where the screening tool was not
able to produce a result (no call) should be confirmed by an
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orthogonal technique. To account for this, we evaluated the
performance of all tools using the whole diagnostics strat-
egy metric which takes the no calls into account. This
evaluation was performed in a modified version of the in-
house datasets, the augmented in-house datasets (Fig. 1),
which contained all the samples from the original sequen-
cing runs instead of a selection of them (see “Methods”).

Figure 4 shows sensitivity and specificity on the aug-
mented in-house datasets when executing tools with the
optimized parameters compared to the default parameters.
For the In-house MiSeq dataset, two tools detected all
CNVs: panelcn.MOPS achieved it with both optimized and
default parameters (CI: 94.4–100%), with a specificity of
67.8% (CI: 60.3–74.8%) and 80.7% (CI: 74.0–86.3%),

respectively. DECoN detected all CNVs only with the
optimized parameters (CI: 94.4–100%) reaching 91.3% (CI:
86.0–95.0%) specificity. CoNVaDING also detected all
CNVs, but its high no-call rate led to very low specificity,
4.1% (CI: 1.6–8.2%). For the In-house HiSeq dataset, only
panelcn.MOPS detected all CNVs (CI: 93.8–100%) with an
acceptable specificity (81.5% (CI: 75.0–86.9%) and 83.2%
(CI: 76.8–88.3%) with the default and optimized parameters
respectively). DECoN missed one CNV, being a mosaic
sample, and its specificity remained high, 96.6% (CI:
92.8–98.8%) with the optimized parameters. On the other
hand, CODEX2 and ExomeDepth obtained high sensitivity
and specificity values for both datasets, but they did not
report no calls (Table 4 and Supplementary files 16 and 17).

Fig. 2 Benchmark results with default parameters: per ROI
metrics. Shows results when executing tools with the default para-
meters and computing the per ROI metrics. ExomeDepth and DECoN

tools obtained same sensitivity and specificity in panelcnDataset (ROI
region of interest; PPV positive predictive value; F1 F1 score).
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Discussion

CNVs are the genetic cause of multiple hereditary diseases
[2]. To detect them, specific tools and techniques are
required. In genetic diagnostics, this is mainly done using
either MLPA and aCGH or using software tools to infer
copy-number alterations from NGS data generated in the
diagnostics process. MLPA and aCGH are the gold standard
methods [3], but both are time-consuming and expensive
approaches that frequently lead laboratories to only use
them in a subset of genes of interest. On the other hand,
multiple tools for CNV calling from NGS data have been
published [5–7], but their performance on NGS gene panel
data has not been properly evaluated in a genetic diag-
nostics context. This evaluation is especially critical when
these tools are used as a screening step in a diagnostics
strategy, since a nonoptimal sensitivity would lead to a
higher number of misdiagnosis.

Most CNV calling tools have not been developed to be
used as a screening step in genetic diagnostics but as part of a
research-oriented data analysis pipeline. Therefore, they were
originally tuned and optimized for a certain sensitivity-
specificity equilibrium. To be used as screening tools, we
need to alter their default parameters to shift that equilibrium
toward maximizing the sensitivity even at the expense of
lowering their specificity. This parameter optimization must

be performed in a dataset-specific way, since tools show
performance differences between dataset due to dataset
specificities coming from target regions composition, tech-
nical differences, or sequencing characteristics.

In this work, we selected 5 tools that have shown pro-
mising results on panel data, and we measured their per-
formance, with the default and sensitivity-optimized
parameters, over 4 validated datasets from different sources:
a total of 495 samples with 231 single and multi-exon
CNVs. CNVbenchmarkeR, a framework for evaluating
CNV calling tools performance, was developed to under-
take this task. We also evaluated their performance in a
genetic diagnostics-like scenario and showed that some of
the tools are suitable to be used as screening methods before
MLPA or aCGH confirmation.

Benchmark with default parameters

The benchmark with default parameters showed that most
tools are highly sensitive and specific, but the top perfor-
mers depend on the specific dataset. Most tools performed
best when using data from panelcnDataset. DECoN, Exo-
meDepth and CoNVaDING reached almost 100% sensi-
tivity and specificity. A possible reason for this is that
this dataset contains the lowest number of single-exon
CNVs (n= 13), which are the most difficult type of CNVs

Table 3 Bechmark results with default parameters and per ROI metrics.

Dataset Tool TP TN FP FN Total Sensitivity Specificity PPV NPV F1 FNR FPR

ICR96 DECoN 286 28473 106 10 28875 0.9662 0.9963 0.7296 0.9996 0.8314 0.0338 0.0037

panelcn.MOPS 284 28236 343 12 28875 0.9595 0.988 0.453 0.9996 0.6154 0.0405 0.0120

CoNVaDING 283 28068 511 13 28875 0.9561 0.9821 0.3564 0.9995 0.5193 0.0439 0.0179

exomedepth 283 28507 72 13 28875 0.9561 0.9975 0.7972 0.9995 0.8694 0.0439 0.0025

CODEX2 275 28503 76 21 28875 0.9291 0.9973 0.7835 0.9993 0.8501 0.0709 0.0027

panelcnDataset DECoN 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283 0.0155 0.0046

panelcn.MOPS 304 9438 48 18 9808 0.9441 0.9949 0.8636 0.9981 0.9021 0.0559 0.0051

CoNVaDING 316 9367 119 6 9808 0.9814 0.9875 0.7264 0.9994 0.8349 0.0186 0.0125

exomedepth 317 9442 44 5 9808 0.9845 0.9954 0.8781 0.9995 0.9283 0.0155 0.0046

CODEX2 142 9423 63 180 9808 0.441 0.9934 0.6927 0.9813 0.5389 0.5590 0.0066

In-house MiSeq DECoN 486 4189 59 36 4770 0.931 0.9861 0.8917 0.9915 0.911 0.0690 0.0139

panelcn.MOPS 349 4162 86 173 4770 0.6686 0.9798 0.8023 0.9601 0.7294 0.3314 0.0202

CoNVaDING 513 4076 173 8 4770 0.9846 0.9593 0.7478 0.998 0.85 0.0154 0.0407

exomedepth 440 4232 16 82 4770 0.8429 0.9962 0.9649 0.981 0.8998 0.1571 0.0038

CODEX2 483 4128 120 39 4770 0.9253 0.9718 0.801 0.9906 0.8587 0.0747 0.0282

In-house HiSeq DECoN 351 4197 61 44 4653 0.8886 0.9857 0.8519 0.9896 0.8699 0.1114 0.0143

panelcn.MOPS 223 4188 70 172 4653 0.5646 0.9836 0.7611 0.9606 0.6483 0.4354 0.0164

CoNVaDING 382 3994 265 12 4653 0.9695 0.9378 0.5904 0.997 0.7339 0.0305 0.0622

exomedepth 314 4237 21 81 4653 0.7949 0.9951 0.9373 0.9812 0.8603 0.2051 0.0049

CODEX2 324 4195 80 54 4653 0.8571 0.9813 0.802 0.9873 0.8286 0.1429 0.0187

TP true positive, TN true negative, FP false positive, FN false negative, PPV positive predictive value, NPV negative predictive value, F1 F1 score,
FNR false negative rate, FPR false positive rate.
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to be detected. DECoN was the best performer for ICR96, a
dataset published by the same authors, but other tools
obtained similar results in that dataset. CoNVaDING was
the most sensitive tool when analyzing our in-house data-
sets but showed the lowest PPV in all datasets with the
exception of panelcnDataset. ExomeDepth showed the
highest PPV in all datasets, making it one of the most
balanced tools regarding sensitivity and specificity. Differ-
ences in tool performance depending on the dataset were
also observed in previous works [29, 30].

Optimization

The different CNV calling tools included in this work were
originally designed with different aims with respect to their
preferred sensitivity and specificity equilibrium or the type
of CNVs they expected to detect, and this is reflected in

their default parameters and their performance in the initial
benchmark. Our aim with this work was to evaluate these
CNV callers as potential screening tools in a genetic diag-
nostics setting and for this reason, we required their max-
imum sensitivity.

The parameter optimization process allowed us to
determine the dataset-specific parameter combination max-
imizing their sensitivity without an excessive specificity
loss. The optimization had a different impact on different
tools: while CODEX2 showed a higher sensitivity in all
four datasets the rest of the tools showed modest
improvements. This is mainly due to the fact that sensitivity
was already over 0.9 for most combinations and the number
of false negatives to correctly call was small (between 4 and
8) in the per gene metric.

The final optimized parameters were dataset specific, so
we do not recommend using them directly on other datasets

Fig. 3 Optimization results at ROI level. Shows sensitivity and specificity on validation sets when executing tools with the optimized parameters
in comparison to the default parameters (ROI region of interest).
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where the data have been obtained differently (different
capture protocol or sequencing technologies, for example).

Based on our results, we would recommend optimizing the
parameters for each specific dataset before adding any CNV
calling tool to a genetic diagnostics pipeline to maximize its

sensitivity and reduce the risk of misdiagnosis. To that end,
we have developed an R framework, CNVbenchmarkeR
(freely available at https://github.com/TranslationalBioinforma
ticsIGTP/CNVbenchmarkeR), that will help to perform the
testing and optimization process in any new dataset.

Fig. 4 Benchmark results for
the diagnostics scenario: whole
diagnostics strategy metrics.
Shows sensitivity and specificity
on the augmented in-house
datasets when executing tools
with the optimized parameters in
comparison to the default
parameters.

Table 4 Benchmark results with
default and optimized
parameters in the diagnostics
scenario.

Dataset Parameters Tool TP TN FP FN Sensitivity Specificity F1

In-house MiSeq Default
parameters

DECoN 63 135 37 1 0.9844 0.7849 0.7683

panelcn.MOPS 64 138 33 0 1 0.807 0.795

CoNVaDING 64 7 165 0 1 0.0407 0.4369

exomedepth 56 171 1 8 0.875 0.9942 0.9256

CODEX2 61 163 6 3 0.9531 0.9645 0.9313

Optimized
parameters

DECoN 64 157 15 0 1 0.9128 0.8951

panelcn.MOPS 64 116 55 0 1 0.6784 0.6995

CoNVaDING 64 7 165 0 1 0.0407 0.4369

exomedepth 59 167 5 5 0.9219 0.9709 0.9219

CODEX2 61 168 1 3 0.9531 0.9941 0.9683

In-house HiSeq Default
parameters

DECoN 57 168 10 1 0.9828 0.9438 0.912

panelcn.MOPS 58 145 33 0 1 0.8146 0.7785

CoNVaDING 58 39 139 0 1 0.2191 0.4549

exomedepth 51 176 2 7 0.8793 0.9888 0.9189

CODEX2 53 173 5 5 0.9138 0.9719 0.9138

Optimized
parameters

DECoN 57 172 6 1 0.9828 0.9663 0.9421

panelcn.MOPS 58 148 30 0 1 0.8315 0.7945

CoNVaDING 58 17 161 0 1 0.0955 0.4188

exomedepth 54 173 5 4 0.931 0.9719 0.9231

CODEX2 54 150 28 4 0.931 0.8427 0.7714
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Diagnostics scenario

Two tools showed performance good enough to be imple-
mented as screening methods in the diagnostics scenario
evaluated in our two in-house datasets (Fig. 4): DECoN and
panelcn.MOPS. While panelcn.MOPS was able to detect all
CNVs both with the default and the optimized parameters,
DECoN reached almost perfect sensitivity and out-
performed panelcn.MOPS specificity when using the opti-
mized parameters, although the difference is not statistically
significant. DECoN only missed a mosaic CNV affecting
two exons of the NF2 gene. CoNVaDING also detected all
CNVs, but the high number of no-call regions reduced its
specificity to values between 4.1 and 21.9%, which ren-
dered it non-valid as a screening tool.

The parameter optimization process improved the sen-
sitivity of most tools. For example, for the In-house MiSeq
dataset, DECoN sensitivity increased from 98.4% (CI:
91.6–100%) to 100% (CI: 94.4–100%), and the specificity
increased from 78.5% (CI: 71.6–84.4%) to 91.3% (CI:
86.0–95.0%). This improvement highlights the importance
of fine-tuning the tool parameters for each specific task, and
shows that the optimization process performed in this work
has been key for the evaluation of the different tools.

The high sensitivity reached by DECoN and panelcn.
MOPS in different datasets, where they identified all known
CNVs, shows that NGS data can be used as a CNV
screening step in a genetic diagnostics setting. This
screening step has the potential to improve the diagnostics
routines. As an example, the high specificity reached by
DECoN in the in-house MiSeq dataset with the optimized
parameters means that around 91% of genes with no CNV
would not need to be specifically tested for CNVs when
using DECoN as a screening step. The resources saved by
the reduction in the number of required tests could be used
to expand the number of genes analyzed, potentially
increasing the final diagnostics yield.

In conclusion, according to our analysis, DECoN and
panelcn.MOPS provide the highest performance for CNV
screening before orthogonal confirmation. Although
panelcn.MOPS showed a slightly higher sensitivity in one
of the datasets, DECoN showed a much higher specificity in
the diagnostics scenario. Our results also showed that tools
performance depends on the dataset. Therefore, it may be
important to evaluate potential tools on an in-house dataset
before implementing one as a screening method in the
diagnostics routine.
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