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Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide

non-invasive high-resolution images from which multi-layered networks of whole-brain

structural and functional connectivity can be derived. Unfortunately, the lack of observed

correspondence between the connectivity profiles of the two modalities challenges the

understanding of the relationship between the functional and structural connectome.

Rather than focusing on correspondence at the level of connections we presently

investigate correspondence in terms of modular organization according to shared

canonical processing units. We use a stochastic block-model (SBM) as a data-driven

approach for clustering high-resolution multi-layer whole-brain connectivity networks

and use prediction to quantify the extent to which a given clustering accounts for

the connectome within a modality. The employed SBM assumes a single underlying

parcellation exists across modalities whilst permitting each modality to possess an

independent connectivity structure between parcels thereby imposing concurrent

functional and structural units but different structural and functional connectivity profiles.

We contrast the joint processing units to their modality specific counterparts and find

that even though data-driven structural and functional parcellations exhibit substantial

differences, attributed to modality specific biases, the joint model is able to achieve

a consensus representation that well accounts for both the functional and structural

connectome providing improved representations of functional connectivity compared to

using functional data alone. This implies that a representation persists in the consensus

model that is shared by the individual modalities. We find additional support for

this viewpoint when the anatomical correspondence between modalities is removed

from the joint modeling. The resultant drop in predictive performance is in general

substantial, confirming that the anatomical correspondence of processing units is indeed

present between the two modalities. Our findings illustrate how multi-modal integration

admits consensus representations well-characterizing each individual modality despite

their biases and points to the importance of multi-layered connectomes as providing

supplementary information regarding the brain’s canonical processing units.
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1. INTRODUCTION

The prominent approach of viewing the organization of the
brain at the macro scale needs to reconcile two fundamental
aspects: while the cortex is segregated into specialized neuronal
regions, the cognitive functions emerge from integration of these
regions by coordinated activation (Tononi et al., 1994). Network
science provides a convenient way to model complex relational

systems, such as the behavior of the human brain, which does
not emerge solely from the properties of the individual units,
but from the complex interactions between these. Here, both
aspects of brain organization can be summarized as networks,

reflecting the structural and functional connectivity respectively,
thereby permitting network science to provide the statistical
foundation and methodology for investigating and quantifying
the organization of brain connectivity (Bullmore and Sporns,
2009; Van Den Heuvel and Pol, 2010). Recent proposals aim
at jointly modeling multiple modalities of brain connectivity
using multi-layer networks (Battiston et al., 2017; Buldú and
Porter, 2017; De Domenico, 2017), where the connections
from different modalities are encoded within different layers,
sharing the same network nodes (Betzel and Bassett, 2016),
see also Vaiana and Muldoon (2020) for a recent review.
Such multi-layer investigations allow neuroscience to integrate

the complementary aspects of structural and functional data.
However, the implications of multimodal integration, the extent
to which it is interpretable, and the correspondence between the
modalities remain unclear (Battiston et al., 2017; De Domenico,
2017).

Direct comparisons of structural and functional connectivity
derived from diffusion and functional magnetic resonance
imaging (dMRI/fMRI) have shown that structure to some degree
reflects function (Koch et al., 2002; Greicius et al., 2009; Sporns,
2014). This suggests that a relationship does exist between the
two modalities, indicated by measures of network properties,
e.g., functional connectivity networks exhibiting various small-
world attributes (Achard et al., 2006), which could be
reflected by an evolutionarily-sound and economically-efficient
structure (Bullmore and Sporns, 2009). However, the time scales
of structural and functional connectivity derived from MRI are
orders of magnitude apart. As such, the blood-oxygen-level-
dependent (BOLD) hemodynamics quantified by fMRI are in the
order of seconds with observed responses to stimuli delayed by
at least a second and peaking after 4–8 s (Kim and Bandettini,
2012). Structural connections on the other hand operate in the
order of milliseconds (Innocenti et al., 2014) which can thus not
be directly probed by fMRI. Notably, the low temporal resolution
of fMRI can be overcome by other functional neuroimaging
methods such as electroencephalography (Deslauriers-Gauthier
et al., 2019) but at the cost of low spatial resolution. At
the whole-brain scale, previous studies suggest that functional
connectivity quantified by fMRI to some extent emerges from
the structural organization (Greicius et al., 2009; Sporns, 2014;
Becker et al., 2015), but BOLD derived functional connectivity
has also been observed between cortical regions that are not
directly anatomically connected (Koch et al., 2002; Vincent
et al., 2007; Skudlarski et al., 2008; Honey et al., 2009). In

particular, stronger prevalence of functional connections linking
right and left hemispheres have been observed (Koch et al., 2002;
Vincent et al., 2007; Skudlarski et al., 2008). Additionally, various
neurological disorders have been shown to cause alterations
in both functional and structural connectivity (Fornito and
Bullmore, 2012; Tost et al., 2012; Kaiser, 2013; van Dellen
et al., 2013), though the extent to which any relation between
functional and structural connectivity affects brain disease still
needs further investigation (Vega Pons et al., 2016). Thus,
although BOLD functional connectivity to some extent has been
found to correlate with the strength of the direct anatomical
connections as quantified by the number of streamlines between
regions (Honey et al., 2009; Hermundstad et al., 2013), structural
and BOLD functional connectivity operate on vastly different
time-scales. As a consequence, the direct structural connections
are not found to be very predictive of functional connections
but moreso when integrating multiple steps in the structural
connectome (Røge et al., 2017).

Existing attempts at jointly modeling functional and structural
connectomes have primarily focused on how structure can
inform function (Hinne et al., 2014) or function enhance
recovery of structural connections (Chu et al., 2018). In Zhang
et al. (2021), canonical correlation analysis (CCA) was used
to identify optimal projections maximizing the correlation
between structural and functional connections, and in Becker
et al. (2018) spectral methods were used to relate structural
connections and paths along the structural graph to functional
connectivity. Structural and functional connectomes have further
been jointly modeled using independent component analysis
(ICA) combining structural and functional connections as
features for the ICA (Amico and Goñi, 2018). Recently, deep
learning autoencoders (Banka et al., 2020) and graph neural
networks (see also Bessadok et al., 2021 for an overview) have
been proposed for multimodal integration providing non-linear
mappings between structural and functional connectivity (Li
et al., 2021) as well as joint learning of connectivity fingerprints
predictive of phenotypic traits (Filip et al., 2020; Dsouza et al.,
2021). In the context of connectivity based parcellations the most
prominent approaches have been to use k-means, hierarchical,
or spectral clustering (Eickhoff et al., 2015; Reuter et al., 2020)
to parcellate functional and structural connectivity. Whereas
these frameworks can provide joint parcellations as a post
processing step, joint parcellations using generic heterogeneous
data clustering tools (Liu et al., 2020) based on Gabasova et al.
(2017) have also been considered.

In this article, we approach the assessment of concurrence
between functional connectivity (FC) and structural
connectivity (SC) of high-resolution multi-layered connectomes,
hypothesizing that correspondence occurs not at the level of
connectivity but organization of latent processing units. We
therefore assume that both the structural and functional
connectome express different connectional fingerprints of the
brain’s canonical processing units. This assumption is formalized
in the multi-layered network by assuming that measurements
from differing modalities (i.e., network-layers) originate from
the same processing units (i.e., group of network nodes) but
with substantial differences in how the connectivity profiles
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between these processing units are expressed across modalities.
As a result, even though the elicited networks of SC and FC
are different, we hypothesize that they both reflect the same
underlying organization, that would emerge if neurobiological
atoms of the cortex were to form aggregated regions which
are shared across both modalities (Eickhoff et al., 2017). In
particular, focusing on the consensus representation obtained
by combining modalities may better reveal these regions, by
providing a representation that is less polluted by modality
specific biases.

Figure 1 illustrates the conceptual steps of the data-driven
approach for exploring the organization of the brain, based on
network modeling of structural and functional neuroimaging
data. We presently consider data obtained from the publicly
released Human Connectome Project (HCP) (Feinberg et al.,
2010; Moeller et al., 2010; Setsompop et al., 2012; Xu et al.,
2012; Van Essen et al., 2013) database, from which we generated
in vivo whole-brain resting state FC and SC networks for a
large population of 250 healthy subjects. The networks were
inferred from functional and diffusion recordings in the full
image resolution supported by modern MRI. The graphs for
each subject were binarized and thresholded at one percent
density, ignoring the sub-cortical voxels, and hence each contain
59,412 vertices. These graphs were then randomly split into
five populations of 50 subjects, aggregated into single functional
and structural networks for each group, and finally binarized to
one percent link-density. Figure 2 illustrates how the profiles of
structural and functional connectivity substantially differ both
in terms of strength within anatomical regions and in their
whole brain connectional fingerprint, whilst relatively exhibiting
limited variation within each modality across populations of
50 subjects. In particular, functional connectivity shows a high
degree of inter-hemispheric connections when compared to
the structural connectivity that is mainly ipsi-lateral. Apart
from time-scale differences, the lack of inter-hemispheric
structural connections can be attributed to limitations of current
tractography methods (Maier-Hein et al., 2017). As such, the
average area under curve (AUC) of the receiver operator
characteristic directly predicting the connectivity of one group
of subjects from another group of subjects (i.e., considering the
total number of 0–0 matches, 0–1 matches, 1–0 matches, and 1–1
matches; Ambrosen et al., 2014; Røge et al., 2017) across the FC
graphs is 0.901 whereas it is 0.935 for the SC graphs and 0.618
predicting FC from SC for the same group of subjects.

This lack of concurrence at the modality-specific connectivity
level both within and between parcels does not rule out
concurrence at the level of the underlying processing units. If
the processing units resolved by both modalities are in perfect
agreement, the inter-population variability of these units within
each modality would be comparable to their inter-modality
variability within populations. However, observed differences
in network properties can be due to differing sources, such
as noise in the data and measurement procedure including
scanning parameters (Ambrosen et al., 2020), as well as inherent
differences in the signals measured by the modalities including
time scales as discussed above. For example, fMRI is known
to suffer from motion artifacts (Diedrichsen and Shadmehr,

2005), whereas diffusion MRI is known to exhibit biases such
as preference of tractography methods to terminate at gyral
crowns (Schilling et al., 2018). We thus expect that modality
specific biases are present and that they will drive parcellations
in disagreeing directions. To investigate this we provide both a
qualitative characterization as well as a quantitative predictive
assessment of the differences of data driven structural and
functional parcellations and contrast this to the consensus
representation obtained by joint modeling of the structural and
functional connectome.

We use a stochastic block model (SBM) (Nowicki and
Snijders, 2001) which allows us to infer a single parcellation
based upon multiple networks (see Figure 3). An SBM type
of framework has previously been used for functional (Mørup
et al., 2010; Andersen et al., 2014; Baldassano et al., 2015) and
structural parcellation (Ambrosen et al., 2014; Baldassano et al.,
2015) as well as joint modeling of functional and structural
connectivity in low resolution (116 network nodes; Andersen
et al., 2012a). We provide statistical evaluation of the predictive
performance of the inferred parcellations following a similar
framework to the one proposed in Albers et al. (2021) (see
Figure 4). We compare the results of joint modeling with the
comprehensive HCP_MMP1.0 atlas which is constructed using
multiple modalities, including neuroanatomy (Glasser et al.,
2016). We further contrast the results to a non-trivial (block
permuted) null hypothesis of non-correspondence between the
structural and functional regions. We exploit that the HCP vertex
order is spatially contiguous and that a simple permutation in
which the non-predicted modality is permuted according to a
parcellation learned on the modality thereby preserves spatial
contiguous network blocks with similar size distribution in both
modalities while breaking any anatomical correspondence. In
summary, we test the hypothesis that structural and functional
connectomes derived from dMRI and fMRI support shared
canonical processing units by:

(A) Characterizing differences of modality specific and multi-
modal data-driven parcellations.

(B) Contrasting the predictive performance of parcellations
trained on the same modality, different modality, or trained
jointly using both modalities.

(C) Contrasting the predictive performance to the performance
obtained when permuting the connectome of one modality
thereby enforcing non-correspondence.

The novelty of this work lies both in the characterization of
the multimodal concurrence identified in the high-resolution
HCP data, despite the substantial differences in the observed
connectivity profiles, and in the application of a quantitative
predictive framework to assessing the validity of canonical
processing units.

2. MATERIALS AND METHODS

2.1. Data
Magnetic Resonance Imaging (MRI) techniques provide
non-invasive means from which functional and structural
connectivity networks can be constructed. Structural
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FIGURE 1 | Concept of data-driven multi-layer network modeling. (A) Based on functional and structural MRI, graphs of structural and functional connectivity are

generated, (B) such that vertices are defined on the same standard surface mesh. (C) From these graphs data-driven parcellations can be inferred and compared,

when modeling structure or function either individually or jointly.

connectivity can be derived from diffusion MRI (Gong
et al., 2009) by tracking white matter streamlines across
the cortex such that structural networks are obtained
based on the anatomy of the brain. Functional MRI
captures images of functional whole brain connectivity
by indirectly measuring the time-dependent neural
activity within small regions of the brain (i.e., voxels) by
monitoring the blood oxygenation level dependent (BOLD)
response (Ogawa et al., 1990). Networks of functional
connectivity can be obtained, for instance as mapped by
the correlated activation of brain regions (Bullmore and Sporns,
2009).

Networks of functional and structural brain connectivity
were obtained using independent high-resolution data from
the Human Connectome Project (HCP) (Feinberg et al., 2010;
Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2012;
Van Essen et al., 2013) database available from the MGH-USC
Human Connectome Project (HCP) database (https://ida.loni.
usc.edu/login.jsp). Ignoring the sub-cortical information, the
networks contained 59,412 vertices covering the neocortex. We
split the 250 subjects into populations, such that we obtained
five non-overlapping groups of 50 subjects. For each group
we created a single functional and structural training network
based on the group average. The MRI data for all the subjects
in each population were aggregated before the networks were
constructed and thresholded in order to obtain a single functional
and structural network representative for the group.

The fMRI networks were estimated from the preprocessed and
structurally denoised ICA-FIX cleaned version of the resting state
fMRI data, for further reference see Smith et al. (2013), Griffanti
et al. (2014), and Salimi-Khorshidi et al. (2014). We formed the
networks by averaging the Pearson correlation matrix estimated
from the two sessions using both the left-right and right-left
phase encoding directions for each subject (i.e., averaging four
correlograms per subject each estimated from 1,200 time frames).

The structural connectivity networks were derived from
the dMRI data preprocessed using the HCP pipeline (Glasser
et al., 2013). The fiber orientation estimation was done using
FSL’s BedpostX for multi-shell data (Jbabdi et al., 2012) and
the networks were constructed by performing probabilistic
tractography using FSL’s Probtrackx2 (Behrens et al., 2003, 2007)
run in “matrix3” mode. One thousand streamlines were initiated
in each white matter voxel, and a resulting streamline was kept
if it reached two vertices of the white matter surface, resulting
in weighted graphs of streamline counts between vertices. The
adjacency matrices for all subjects in the group were added and
binarized by thresholding the graph at 1% density keeping only
the strongest links.

2.2. The HCP_MMP1.0 Atlas
To ground results, we contrasted the performance obtained
using stochastic block modeling to the performance using a
prominent existing parcellation, i.e., the HCP_MMP1.0 (Glasser
et al., 2016) atlas. The HCP_MMP1.0 atlas (Glasser et al., 2016)
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FIGURE 2 | Examination of functional connectivity (left) and structural connectivity (right) using the HCP_MMP1.0 atlas parcellation (Glasser et al., 2016). The

cortical surface and flatmaps show the link-density within each of the 360 atlas parcels whereas the adjacency matrices outline the whole brain functional and

structural connectivity graphs, based on the average of different populations of 50 subjects.

is based on multi-modal MRI data from the HCP and describes
a total of 360 parcels split equally across both hemispheres. It
was created in a combined data-driven and manual approach

to obtain a single parcellation of cortical regions, based on
multiple neurobiological properties including both functional
information and brain anatomy obtained from 210 healthy
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FIGURE 3 | The Stochastic Block Model (SBM) is a generative model capable of discovering a single group-structure from multiple complex networks, i.e., functional

connectome A(f ) and structural connectome A(s). Based on such a shared parcellation z, the model assumes links are independently generated from a Bernoulli

distribution such that the probability of observing a link between any two vertices only depends on the modality specific probability of observing a link between the two

parcels that the vertices belong to given by the inter parcel (off diagonal elements) and intra parcel (diagonal elements) of the link density matrices η
(f ) and η

(s) for the

functional and structural connectomes, respectively. Under this assumption, the model hence allows a single parcellation to be inferred from multiple networks while

accounting for differences in connectivity profiles. Let Z denote a matrix of the clustering z using a one-hot encoding. Notably, the SBM can be considered a lossy

compressed representation of the connectomes such that A(f ) ≈ Z⊤
η
(f )Z and A(s) ≈ Z⊤

η
(s)Z.

subjects.We have previously found this atlas to perform relatively
well when predicting single subject structural and functional
connectivity networks and therefore include it presently as a
baseline (Albers et al., 2021).

2.3. Joint Integration Using the Stochastic
Block Model
Both in terms of its structural organization and functional
activity the brain can be studied as a network. One approach
of quantifying the latent structure in connectivity networks
is to partition the nodes into groups that share a similar
connectivity pattern within the network. The stochastic block
model (SBM) (Nowicki and Snijders, 2001) is a data-driven
Bayesian clustering approach, which, coupled with Markov
Chain Monte Carlo (MCMC) sampling, has proven a valid
tool for clustering and investigating structure in complex
networks (Zhu et al., 2008; Schmidt and Mørup, 2013). Notably,
a non-parametric SBM modeling framework [denoted the
infinite relational model (IRM)] (Kemp et al., 2006; Xu et al.,
2006) has previously been used for the separate modeling of
functional (Mørup et al., 2010; Andersen et al., 2012b, 2014) and
structural connectivity (Ambrosen et al., 2013, 2014) whereas
joint modeling of structural and functional connectivity has been
considered in Andersen et al. (2012a). Notably, the approach
of Andersen et al. (2012a) was based on low resolution networks
of 116 nodes defined by the AAL atlas (Tzourio-Mazoyer et al.,
2002) with the ability to impose shared and individual segregated
units of the two modalities.

The stochastic block model (SBM) (Nowicki and Snijders,
2001) partitions network nodes into clusters with similar
connectivity patterns. For modeling symmetric binary networks,
the model can be defined by the following generative process,

wherem is used to index modality:

Links in network: A
(m)
ij ∼ Bernoulli(η(m)

zizj
), (1)

Cluster-link densities: η
(m)
ℓh

∼ Beta(β+,β−), (2)

Clustering: zi ∼ Categorical(π), (3)

Cluster proportions: π ∼ Dirichlet(α). (4)

The probability of observing a link between two nodes i and j
in the network follows a Bernoulli distribution only depending
on the probability of observing links between the clusters zi
and zj that the nodes belong to. The probability of observing
links between two clusters is considered independent given the
assignment to clusters and follows a Beta distribution. Finally, the
nodes are partitioned into K clusters, and the cluster proportions
follow a Dirichlet distribution.

The stochastic block model when used for multimodal
integration is outlined in Figure 3. The observed functional and
structural connectomesA(f ) andA(s) are assumed to be generated
according to a shared functional and structural parcellation z

such that zi = ℓ indicates that vertex i belongs to parcel ℓ.
Whereas, the parcellation is shared, the manner in which the
different regions integrate is assumed to be modality specific
and parameterized respectively for the functional and structural

connectomes by η
(f )

ℓh
and η

(s)
ℓh

providing the extent (i.e., the
probability) that nodes in parcel ℓ connect to nodes in parcel
h. As a result, the observed connectomes can have substantially
different within and between parcel connectivity structures η

(f )

and η
(s) while being defined in terms of the same underlying units

of processing z. As parcels may differ in size, π is used to account
for size-heterogeneity.

Due to the conjugacy between the Dirichlet and Categorical
distribution, π can be analytically marginalized (see Schmidt and
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FIGURE 4 | The steps that defines the flow of the investigations. Based on high-resolution functional and structural MRI obtained from publicly released data of the

Human Connectome Project, independent networks of structural and functional connectivity are generated. The networks are based on population averages, resulting

in a total of five networks for each modality, based on five populations of 50 subjects. The networks are binarized by thresholding at 1% link density. Stochastic

Blockmodeling is utilized to infer data-driven parcellations, based on modeling structure or function individually or jointly modeling both modalities for the five

populations. The benefits of multimodal integration are hence evaluated by comparing the performance of predicting hold-out population networks using inferred

single and multimodal parcellations, contrasted with that of using networks that have been spatially permuted whilst preserving the size of the parcels.

Mørup, 2013 for details). By imposing an equal concentration
parameter for all K clusters α = α

K 1K×1 the following effective
prior for the clustering can be obtained:

P(z|α) =
Ŵ(α)

Ŵ(α + N)

K
∏

l=1

Ŵ( αK + nk)

Ŵ( αK )
, (5)

where N is the number of nodes, nk is the number of nodes
in cluster k, and Ŵ(x) is the gamma function. Notably, we use
the SBM to obtain a single parcellation based on either a single
network from one modality (either functional or structural) or
two networks, one for each modality when jointly modeling
structure and function. Let A represent the set of M networks,
containing either M = 1 or M = 2 modalities. The beta
prior is conjugate to the Bernoulli likelihood, which allows

us to obtain the following joint distribution as η can be
analytically marginalized:

P(A, z|β+,β−,α) = P(z|α)
M
∏

m

∏

ℓ≤h

B(N
(m)+
ℓh

+ β+,N(m)−
ℓh

+ β−)
B(β+,β−)

,

(6)

where N
(m)+
ℓh

=
∑

1≤i<j≤N δzi ,ℓδzj ,hA
(m)
ij and N

(m)−
ℓh

=
∑

1≤i<j≤N δzi ,ℓδzj ,h(1−A
(m)
ij ) respectively represent the number of

links and non-links between cluster ℓ and h according to network

A(m), while B(a, b) = Ŵ(a)Ŵ(b)
Ŵ(a+b)

is the beta function.

2.4. Model Inference
We infer the model parameters using a Markov Chain Monte
Carlo (MCMC) procedure. The parcellation is inferred by Gibbs
sampling, where the assignment zi for each node i in turn is
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processed, based on the posterior distribution for the assignment
of i to each of the K clusters ℓ. Using Bayes’ theorem this can
be obtained from Equation 6, where z\i = (zj)j 6=i are the cluster
assignments for all nodes ignoring node i:

P(zi = ℓ|A, z\i,β+,β−,α) =
P(A, z\i, zi = ℓ|β+,β−,α)
K
∑

h=1

P(A, z\i, zi = h|β+,β−,α)
.

(7)
For inferring the hyper-parameters, β+, β−, and α, we use
a simple Metropolis-Hastings procedure, where new proposals
are drawn from a Gaussian distribution centered at the current
parameter value with variance 1.

For all experiments the model parameters are inferred by
sampling 100 iterations of the following sampling procedure:
z is updated by one complete Gibbs sweep over all nodes
followed by 1,000 MH-proposals for updating each hyper-
parameter β+,β−,α. Due to the size of the networks, it is not
computationally feasible to reach convergence. However, the
Gibbs sampler quickly reach a stable cluster assignment with
high posterior likelihood which is treated as a point estimate
of the parameters (Albers et al., 2013). We hence treat the last
sampled state as the inferred parameters. All experiments are
performed with K = 360 clusters which limits SBM to the same
complexity as the HCP_MMP1.0 atlas. For the HCP MMP1.0
the hyperparameters, β+ and β−, are inferred for each of the
training networks, using theMetropolis-Hastings procedure with
the parcellation fixed to the HCP atlas. Code for the SBM
modeling framework is provided at brainconnectivity.compute.
dtu.dk.

2.5. Predictive Performance
To assess and compare the quality of parcellations we use the
predictive framework established in Ambrosen et al. (2013) and
Albers et al. (2021). The quality of a parcellation is evaluated by
how well it can be used to predict unseen held-out networks.

2.5.1. Predictive Likelihood

LetA(m)train denote the training network andA(m)test the network
used for evaluating the learned parcellation z and how these
segregated units integrate in terms of their intra and inter
connectivity densities defined by the matrix η

(m). The expected
predictive log-likelihood is then given by:

〈log p(A(m),test|A(m),train, z,β+,β−,α)〉p(η(m)|A(m),train ,z) =
∑

i>j

A
(m),test
ij 〈+ log (η(m)

zizj
)〉p(η(m)|A(m),train ,z)

(1− A
(m),test
ij )〈log (1− ηzizj )〉p(η(m)|A(m),train ,z), (8)

where the expectations are given with respect to the distribution
p(η(m)|A(m),train, z) as:

〈log (η(m)
ℓh

)〉p(η(m)|A(m),train ,z) = ψ(N
(m)+
ℓh

+ β+)

−ψ(N(m)+
ℓh

+ N
(m)−
ℓh

+ β+ + β−) (9)

〈log (1− η(m)
ℓh

)〉p(η(m)|A(m),train ,z) = ψ(N
(m)−
ℓh

+ β−)

−ψ(N(m)+
ℓh

+ N
(m)−
ℓh

+ β+ + β−), (10)

with ψ being the digamma function ψ(x) = d
dx

log[Ŵ(x)]. In
Albers et al. (2021), the log of the expected predictive likelihood
was also considered but found to provide similar performance
to the expected predictive log-likelihood and therefore not
included herein.

2.5.2. Area Under Curve

An alternative measure is to describe how the probabilities of
generating links inferred by SBM from the training network
can be used to separate between links and non-links in the
test network. We quantify this performance by the area under
curve (AUC) of the Receiver Operator Characteristics curve
(ROC) (Clauset et al., 2008), scored by the expected link
probability between clusters as observed from the training graph

〈η(m)
zizj

〉 =
N

(m)+
zizj + β+

N
(m)+
zizj + N

(m)−
zizj + β+ + β−

. (11)

These scores are then evaluated in terms of how well they,

for the corresponding entries A
(m),test
ij in the test graph, are

able to separate links (considered the positive class) from non-

links (considered the negative class). Let R
(m),test
ij = 〈η(m)

zizj 〉 be
the reconstructed test connectome for modality m and vecU(B)
return the upper triangular part of the matrix BI×I as the vector
bI·(I−1)/2×1. The score vector ŷ = vecU[R

(m),test] and true labels
y = vecU[A

(m),test] can then be considered as inputs to the
standard receiver operator characteristic function for calculating
the area under curve (AUC).

2.6. Parcellation Comparison by Mutual
Information
The similarity of different parcellations can be quantified
using Mutual Information (MI). This constitutes a permutation
invariant measure for the shared clustering information between
two parcellations z and z′ given by:

MI(z, z′) =
∑

cc′

P(c, c′) log

(

P(c, c′)

P(c)P(c′)

)

, (12)

where P(c) =
∑K

c′ P(c, c
′) is the probability of observing a node

in cluster c while P(c, c′) = 1
N

∑N
i=1 δzi ,cδz′i ,c

′ is the probability of

jointly observing a node in cluster c in z and a node in cluster c′

in z′. We use the normalized mutual information (NMI) to get a
value between zero and one:

NMI(z, z′) =
2 MI(z, z′)

MI(z, z)+MI(z′, z′)
, (13)
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such that a value of one indicates that the parcellations
are identical.

2.7. Blocked Permutation Procedure
To probe the correspondence of the extracted structural and
functional units and their joint integration we contrast the
performance to a null hypothesis assuming no correspondence.
To achieve this, we use a permutation procedure that accounts for
size distribution and to some extent for spatial contiguity, while
upholding the assumption that the parcels do not correspond
in the two modalities. The permutation procedure re-organizes
all vertices of the non-predicted modality according to a
clustering structure learned on the non-predicted modality
in which clusters are ordered in random order. (That is,
when predicting the functional connectome the vertices of the
structural connectome are re-organized and vice versa). Thereby,
the non-predicted modality is ordered in terms of modality
specific units such that the vertices of these units correspond
to different spatial contiguous regions defined through the HCP
vertex traversal order in the predictedmodality. The permutation
procedure is illustrated in Figure 5. This procedure preserves
size distribution and spatial contiguity as defined by the HCP
vertex traversal order but does not account for anatomy nor
spatial shape.

3. RESULTS

3.1. Data-Driven Parcellations
Figure 6 shows flatmap representations of the inferred
parcellations (based on the extraction of 360 parcels as
used in the HCP MMP1.0 atlas), for each of the five 50-subject
populations. There is a clear similarity between the parcellations
of various training populations within each modality, while
there are clear characteristic differences across modalities. The
functional parcellations (left column) show a high density of
small, elongated parcels seemingly located in the posterior cortex,
while the majority of vertices are located in few very large parcels
covering the remainder of the cortex. In contrast, the structural
parcellations (middle column) show spatial compactness with
the majority of clusters being of a similar size. The multimodal
parcellations (right column) appear to inherit features from
both modalities, showing a variance of cluster sizes and shapes.
Compared to the functional parcellations, the posterior cortex
is segregated into fewer parcels, though still many more than in
the structural parcellations. The parcels in the rest of the cortex
have also inherited the spatial compactness of the structural
parcellations. Although they are slightly larger, they represent
a finer segregation of the cortex. The multimodal parcellations
are therefore more detailed in the posterior cortex than the
structural parcellations and more detailed in the rest of the
cortex than the functional parcellations.

Figure 6 (lower panel) shows histograms for the distribution
of cluster sizes averaged across the parcellations for all five
50-subject populations. For the functional parcellations most
parcels are very small (<100 vertices) while the majority of
nodes are located in extremely large parcels (larger than 1,000
nodes). In contrast, the structural populations are homogeneous,

such that the majority of nodes are located in medium sized
clusters (between 100 and 1,000 parcels) which is also the most
common parcel size. Once again, the multimodal parcellations
seem to inherit features from both modalities. Compared to the
functional populations, the cluster size distribution is shifted
toward larger parcels, with the concurrent removal of the few
extremely large parcels, such that the majority of vertices are
now located in the medium sized parcels. Furthermore, the
panel shows the extent to which parcels are common to both
hemispheres. This is shown both as the number of bilateral
parcels and as an index, representing how evenly the nodes of
the individual parcels are split across hemispheres. This laterality

index for a parcel is computed as
max(Nleft ,Nright)

Nleft+Nright
, where Nleft and

Nright is the number of nodes within the parcel, that, respectively
belongs to the left and right hemisphere. An average laterality
index of 0.5 would indicate that all parcels are equally split across
the two hemispheres, while an average index of 1 would indicate
that all parcels are unilateral. The functional parcellations are
significantly more bilateral (273 parcels out of 360) than both the
structural (6 parcels) and multimodal (63 parcels). The average
laterality index further indicates that the individual functional
parcels tend to be bilateral, whilst this is uncommon for both
structural and multimodal parcels.

Figure 7 indicates the similarity of the inferred parcellations,
as measured by Normalized Mutual Information (NMI),
between and within modalities (see also section 2). Functional
parcellations are inherently noisy, as evidenced by their mutual
information being far lower than those of the structural
parcellations. Furthermore, the multimodal parcellations are not
penalized by the noise of the functional data, as they retain an
NMI almost on par with the NMI within structural parcellations.
The figure further indicates that the multimodal parcellations
are more in agreement with the structural parcellations than
with the functional, though the functional parcellations are
more in agreement with the multimodal parcellation than with
the structural. This implies that the multimodal model has
determined a consensus to which both the functional and
structural parcellations are more in agreement than they are with
each other.

3.2. Predictive Performance
Figure 8 shows the results of predicting functional and structural
hold-out networks using the following inferred parcellations:

• Data-driven parcellations for a single modality, inferred from
either the same modality as the hold-out networks, the other
modality, or the permuted version of the other modality
(enforcing non-correspondence).

• Data-driven parcellations for the multimodal model, inferred
from both modalities where the non-predicted modality is
considered both with and without permutation (enforcing
non-correspondence).

• The fixed multi-modal HCP MMP1.0 atlas.

Both the area under curve of the receiver operator characteristic
(AUC) and expected predictive likelihood scores (for details
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FIGURE 5 | (Top) Flatmap of each vertex in the HCP data color-coded according to the vertex traversal order of the network adjacency matrices. (Middle) Example

of parcellation structure learned from the non-predicted modality. (Bottom) The random permutation of the non-predicted modality obtained by re-ordering the vertex

traversal according to the learned parcellation structure in which the clusters are ordered in random order. Color-code indicates the original vertex position.

see section 2) are individually computed and averaged for the
parcellations inferred for the five 50-subject populations.

Predicting both modalities, the figure shows that predicting
the same modality as that from which the parcellation was
inferred provides good predictions according to both predictive
metrics. While structural parcellations predict function on par
with the HCP atlas, functional parcellations are comparably poor
predictors of structure. However, the consensus parcellations
of joint modeling provide good predictions of both modalities,
though slightly better for predicting function than structure.

As expected, breaking the consensus in the joint model,
by using a permuted modality, decreases the predictive
performance, but not to the same extent as training on
the permuted data alone. In predicting functional networks,
structural parcellations perform well, and far better than
parcellations inferred from permuted structure. Functional
parcellations on the other hand are very poor predictors of
structural networks, to such a degree that parcellations inferred
from the permuted functional networks actually predict better.

4. DISCUSSION

Herein we have introduced a method for quantifying multimodal
integration, which assumes that structure and function are
independent realizations of the same underlying processing
units. While a lot of effort has recently focused on developing

multilayered networks of brain connectivity, data-driven
quantifications of these remains challenging and mostly limited
to comparisons between modalities (Koch et al., 2002; Vincent
et al., 2007; Skudlarski et al., 2008; Greicius et al., 2009; Honey
et al., 2009; Sporns, 2014; Becker et al., 2015; Røge et al.,
2017). By representing SC and FC graphs over the same set of
network nodes, the framework proposed utilizes a stochastic
blockmodel (SBM) to obtain a unified parcellation while
admitting modality-specific connectivity profiles. A benefit of
the considered approach, integrating connectomes using the
stochastic block model is that it naturally accounts for modality
specific connectivity structure between the extracted units
of processing while enforcing consistency across modalities
in terms of the extracted parcels thereby providing a simple
computationally tractable data-driven approach. As such, the
SBM can be considered a data driven approach to network
compression in terms of shared learned parcels z and how the
connectivity structure between these parcels form modality
specific networks at the level of parcels with link densities (i.e.,
connectivity strengths) η

(m). This facilitates direct interpretation
of large connectomes at the level of connectivity structure
between the extracted parcels. As opposed to other connectivity
based clustering approaches such as k-means, hierarchical,
and spectral clustering that are generic clustering procedures
designed for feature data (Eickhoff et al., 2015; Gabasova
et al., 2017; Liu et al., 2020; Reuter et al., 2020) a benefit of
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FIGURE 6 | Flatmaps of the inferred parcellations for the five populations of 50 subjects, using the different modalities. Parcels are separated into three groups based

on their size: small (<100 vertices), medium (between 100 and 1,000 vertices) and big (more than 1,000 vertices). Also shown, for the per-modality averages of the

five parcellations, is the number of parcels that contain nodes from both hemispheres and how evenly these nodes are split across the two hemispheres. Errorbars

and ± indicate the standard deviation over the five parcellations.
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FIGURE 7 | Averaged Normalized Mutual Information (NMI) for the inferred parcellations between and within modalities, showing the average NMI from 10

comparisons of parcellations between populations and five comparisons within populations. The standard deviations are shown in parenthesis. The flatmaps illustrate

one of the five parcellations for a single 50-subject population, showing only the left hemisphere.

the SBM is that it provides a statistically grounded generative
model of networks. Thereby, the quantification of these unified
parcellations by the SBM naturally follows the predictive
framework outlined in Figure 4 that assesses the performance of
predicting independent held-out test graphs as a substitute in the
absence of ground truth (Albers et al., 2021).

4.1. Qualitative Differences in Functional,
Structural, and Joint Parcellations
We observe that the characteristics of the inferred parcellations
heavily depend on the modality. In particular, we observe that
functional parcels are much more bilateral and have a wider
distribution of unit sizes. This can be attributed to the bilateral
co-activation of similar functional units across both hemispheres
as also observed from seed based and independent component
analysis (ICA) of the HCP resting state data (Smith et al.,
2013). In contrast, structural connectivity generates much more
unilateral units with no parcels having more than 1,000 voxels.
We attribute the unilaterality to limitations in tractography in
terms of delineating inter-hemispheric structural connections
and long-distance pathways (Van Essen et al., 2014; Knösche
et al., 2015; Maier-Hein et al., 2017). The joint modeling also
exhibits substantial differences to both the modality-specific
parcellations. As such, the identified consensus representation is
reduced of modality specific biases as observed from both the size
distribution and laterality index being in between the structural

and functional parcellations. This joint representation possesses
substantial agreement with both modalities, in so much that we
find that the normalized mutual information (NMI) between the
joint parcellation and the functional and structural parcellations
are in higher agreement than the NMI between the functional
and structural parcellations. These results demonstrate that both
modalities each contribute unique information about the brain’s
underlying organization influencing the joint representation
of parcels.

4.2. Statistical Evidence for Canonical
Processing Units
Predicting the organization of each modality based on a data-
driven parcellation of the other we found that structural
parcellations predicted almost on par with functional
parcellations and much better than prediction when enforcing
non-correspondence. However, for structural data we found that
the functional parcellation was a poor predictor to the extent
that the permutation procedure, which broke correspondence
yet both preserved size distribution and enforced spatial
homogeneity, was a better predictor of function. We attribute
this to the parcels of the permuted functional data preserving
spatial homogeneity which more favorably accounts for structure
than the highly bilateral parcels extracted by function as observed
in Figure 2. Notably, this supports the benefit of imposing spatial
constraints when modeling structural connectomes, as proposed
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FIGURE 8 | AUC and expected predictive log-likelihood when predicting structural and functional hold-out network. The bars show the average score as obtained

using the following different parcellations: (1) SBM on the same modality as the test networks, (2) SBM on the other modality, (3) SBM on the permuted networks for

the other modality, (4) jointly modeling both modalities, (5) jointly modeling both modalities with the network for the other modality permuted, and (6) using the

parcellation defined by the HCP atlas. For each of the five training populations, four evaluations are computed for each modality configuration, when respectively

predicting from the training graph to each of the other four graphs of the same modality (providing a total of 20 predictions). The mean value is shown for each bar

while the whiskers indicate the standard deviation of the mean correcting by the five independently acquired networks (± std /
√
5).

in Baldassano et al. (2015) in which parcels are constrained to be
spatially connected, and emphasizes that the modality-specific
parcellations are heavily influenced by modality-specific biases.
The consensus representation here provides a representation
reduced of the modality-specific biases. Interestingly, we find
that the predictions of the more noisy functional connectome
are improved using the consensus representation, whereas the
structural connectivity predictions are only mildly reduced
when compared to using the modality-specific parcellations. In
particular, integrating both modalities results in a consensus
representation that has better predictive performance than
permuting one modality thereby enforcing non-correspondence.

Our results points to modality-specific biases and differences
in the representation of functional and structural units. We
thus do not find a direct correspondence at the level of
modality-specific processing units in the brain. However, we do
find that imposing canonical processing units forms a useful,
practical representation of structural and functional data in high
resolution that well characterize both modalities. In particular,
we observe that the noisier functional modality benefits from
the integration of structural information. Whereas the structural
network is expected to be constant, i.e., it is a static structure,
the functional connectivity estimates derived from fMRI vary
and are related to activations that only use some parts of the
structural network. As such, functional connectomes derived

from fMRI exhibit a high degree of inter- and intra-subject
variability (Poldrack et al., 2015; Zuo et al., 2019; Albers et al.,
2021) and the joint modeling with structural connectivity can
help here by regularizing the extracted representation despite the
variability of the fMRI source.

4.3. Limitations
The inter-subject alignment is based on surface morphometry,
according to the standard HCP processing pipeline (Glasser
et al., 2013) which could conceivably bias toward one modality
more than the other. Furthermore, we arbitrarily threshold the
networks at 1% density. Further studies should investigate if these
findings are reproducible to change in registration methods and
methods for functional and structural network construction.

We considered K = 360 parcels as employed by the HCP-
MMP1.0 atlas (Glasser et al., 2016) enabling a direct comparison
in terms of the same number of extracted units of processing.
However, as we saw, the structural and functional data provide
fine grained resolutions in different parts of the cortex and thus
have differing preferences in terms of regions using coarse and
fine grained parcels. As the joint modeling provides more data
upon which parcellations can be learned it may be that better
joint representations can be achieved utilizing more than the
considered parcels admitting fine-grained resolutions both where
it is most supported by structure and function. Future work
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should explore the impact of resolution employed in terms of
numbers of parcels invoked and whether the joint modeling can
provide support for the use of more parcels.

In this study, we attempted to generate a random control by
permuting the network for one modality. This, however, is not
straightforward, as it requires a permutation that preserves the
spatial homogeneity, shape, and size of the parcel along with
the modality specific distribution of parcels. We approximated
this using the inherent vertex adjacency ordering of the HCP
data format, which results in a tendency to define contiguous yet
elongated parcels. Future work should develop more advanced
permutation procedures that accounts for parcel shape.

The model employed herein is based on the assumption that
the connectivity profiles of the two modalities are independent,
yet originating from the same underlying processing units. This
assumption is a simplification of the expected true underlying
organization of the brain (where at least at the neuronal level we
would expect a strong structure-function relationship; Innocenti
et al., 2014; Andersson et al., 2020), and is generally not expected
to be the case (Eickhoff et al., 2017). It is thus widely believed
that the connectivity structures are related although representing
substantially different time scales. As such, structural paths
have been observed predictive of functional connections (Røge
et al., 2017; Becker et al., 2018) which is not accounted for by
the SBM. Future work should consider more advanced non-
linear modeling approaches inspired by recent deep learning
approaches (Banka et al., 2020; Bessadok et al., 2021) that
potentially can leverage the presently considered SBM to learn
such dependencies of η(m).

The model assumes that the modalities contribute equally
and share similar properties in regards to resolution, spatial
homogeneity, level of noise, and that both modalities are equally
informative. Despite these constraints, our findings illustrate that
the joint model allows for the identification of shared units
that are useful in practice. However, even when multimodal
integration allows for good predictions, care must be taken
regarding the inference of the purported underlying organization
that would account for such findings. This is because a perceived
agreement between the modalities does not necessarily mean that
the spatial extent of the brain regions, and the borders between
them, are in fact located in themanner implied by the data-driven
parcellation (Eickhoff et al., 2017).

The joint modeling of functional and structural connectivity
extracts a consensus representation that can be reduced of
modality specific biases. However, as we have no ground truth
information in regards to the true optimal units of processing, the
presented evaluation can be considered a qualitative assessment
demonstrating concurrence beyond a rather simple block-
permuted null model. Arguably, an average representation
should be a better predictor than a representation based only
on the complementary modality. In general, we expect the
joint modeling to provide consensus representations superior
to the representations provided by each modality when both
modalities exhibit similar degrees of noise. However, if one
modality is substantially less biased from the true (unknown)
underlying representation the joint modeling may be driven
undesirably by themore biasedmodality. In circumstances where

a priori knowledge are available of the validity of the connectivity
structures of the considered modalities the joint modeling can
potentially be advanced to provide more emphasis to more
accurate modalities.

In the present study, we considered the perhaps most simple
approach to extract functional connectivity based on zero lag
Pearson correlation (Bullmore and Sporns, 2009; Smith et al.,
2011; Richiardi et al., 2013). Notably, it is unclear how functional
connectivity is best quantified and several approaches exist,
including mutual information (Bullmore and Sporns, 2009;
Mørup et al., 2010; Smith et al., 2011), wavelet correlation
(Achard et al., 2006), lagged correlation and partial correlation,
as well as approaches quantifying directionality (see also Smith
et al., 2011; Richiardi et al., 2013 for reviews). Herein we
considered only positive correlation, while negative functional
correlations arguably also relate to structure. Note also that
the examined HCP fMRI data has a high temporal and spatial
resolution, which might give a poorer signal-to-noise ratio than
other protocols.

The quantified water diffusion by dMRI is a noisy and indirect
measure of fiber-orientation, making structural connectivity
inference based on dMRI inherently uncertain. In particular, the
relative low image resolution of diffusion MRI often results in
partial volume regions resulting in crossing fibers needing to
be disentangled (Schilling et al., 2017; Ambrosen et al., 2020).
Furthermore, as different tract systems contain different numbers
of axons, and hence tract volumes, structural connectivity
is expected to be volume-weighted toward the major tracts,
also typically explored with tracers (Innocenti et al., 2014,
2017; Van Essen et al., 2014; Jbabdi et al., 2015). Herein we
extracted the structural connectivity networks using probabilistic
tractography (Behrens et al., 2003, 2007). However, tractography
methods are known to suffer from systematic biases, such as
a preference to terminate at gyral crowns (Van Essen et al.,
2014; Schilling et al., 2018), issues characterizing multiple fiber
directions in the face of limited data resolution (Jbabdi et al.,
2015), and difficulties tracking long distance pathways (Van Essen
et al., 2014).

5. CONCLUSION

The work presented herein is a novel approach for quantifying
the relation between the function and structure of the brain
and the integration of these in terms of processing units.
Herein we considered joint network modeling of structural and
functional connectivity data, however the proposed framework
naturally extends to general multimodal modeling, including
additional modalities.

Using high quality data from the Human Connectome
Project, we find that shared canonical processing units cannot
be discredited, despite the lack of observed correspondence
between the modality-specific connectivity profiles. As such,
we find that integrating both modalities allows for reasonable
predictions of the individual modalities, as quantified by two
separate predictive metrics remaining on par or better than
using either the individual modalities or the HCP_MMP1.0
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atlas. This finding supports that both modalities reflect different
aspects of the same underlying processing units, which allows
the joint model to infer a consensus that is a mild compromise
between both modalities. At this point it is unclear whether
the differences and similarities of the parcellations supported by
structural and functional connectome are caused by systematic
biases in the derived connectomes of the two modalities due
to the current limitations extracting functional and structural
connectivity networks. It will thus be interesting to re-apply
the presented analysis framework as the quality of extracted
functional and structural connectomes in the future improve.

The presented approach is likely to benefit studies of
individuals, or populations where the data quality cannot match
that of the HCP, as the integration of multiple modalities
would overcome noise issues if these are more disruptive than
modality specific biases. Furthermore, the similarity of inferred
parcellations suggests that the consensus reduces modality-
specific biases, and as such the consensus representation, if
evaluated on a third modality, would likely better characterize
that modality than each of the training modalities separately. If
there exists an underlying truth of shared processing units, that
truth may come closer to be recovered the more modalities are
combined, and the presented framework provides a data-driven
approach to achieve this.
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