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Abstract

Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci

to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ

between individuals depending on lifestyle or environmental factors due to gene-environ-

ment interactions. In this study, we examine gene-environment interactions in 362,496 unre-

lated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMI-

associated SNPs, selected from a previous GWAS on BMI, were used to construct weighted

genetic scores for BMI (GSBMI). Linear regression modeling was used to estimate the effect

of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits,

smoking and alcohol consumption, physical activity, socioeconomic status, mental health,

sleeping patterns, as well as female-specific factors such as menopause and childbirth. In

total, 15 lifestyle factors were observed to interact with GSBMI, of which alcohol intake fre-

quency, usual walking pace, and Townsend deprivation index, a measure of socioeconomic

status, were all highly significant (p = 1.45*10−29, p = 3.83*10−26, p = 4.66*10−11, respec-

tively). Interestingly, the frequency of alcohol consumption, rather than the total weekly

amount resulted in a significant interaction. The FTO locus was the strongest single locus

interacting with any of the lifestyle factors. However, 13 significant interactions were also

observed after omitting the FTO locus from the genetic score. Our analyses indicate that

many lifestyle factors modify the genetic effects on BMI with some groups of individuals hav-

ing more than double the effect of the genetic score. However, the underlying causal mecha-

nisms of gene-environmental interactions are difficult to deduce from cross-sectional data

alone and controlled experiments are required to fully characterise the causal factors.

Author summary

Genome-wide association studies (GWAS) have identified hundreds of genes as being

associated with body mass index (BMI). How these genetic effects are modulated by life-

style factors has not been extensively investigated previously. Here we utilise data from
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approximately 360,000 participants from the UK Biobank, aged 40–69 years old, to iden-

tify interactions between genetic and lifestyle factors in relation to BMI. We investigated

131 lifestyle factors, of which 15 influence the genetic effects on BMI. The most significant

factors were those related to physical activity, alcohol consumption, and socioeconomic

status. For example, the effect of a genetic score for BMI was almost twice as high in par-

ticipants who reported never drinking alcohol compared to every-day drinkers. Similarly,

the effect of the genetic score for BMI was 2.5 times higher in participants who reported

having a slow walking pace compared to participants who reported having a brisk walking

pace. Our results show that many lifestyle factors influence the genetic effects, which sug-

gests that changing our lifestyle may be a way to influence our genetic risk for obesity and

other common human disorders.

Introduction

Gene-environment interactions result from individuals responding differently to environmen-

tal stimuli depending on their genotype, or from genetic effects that vary between groups of

individuals depending on their lifestyles. In humans, the most famous examples include skin

color and risk of melanoma in response to ultra-violet rays, and phenylketonuria (PKU) in

response to foods containing phenylalanine in individuals who carry mutations that lead to

phenylalanine hydroxylase deficiency [1]. Gene-environmental interactions are likely to exist

for complex human traits and identifying gene-environment interactions can potentially

improve risk-assessment for disease and help unravel underlying biological pathways [1].

Obesity and being overweight are serious public health issues due to their strong associa-

tions with diseases such as cardiovascular disease, type 2 diabetes and cancer. In addition,

their global prevalence has increased dramatically over the latter part of the 20th century and

up to the present day [2]. Body mass index (BMI) is a standardised measure of human body

size that is calculated from weight and height. Twin studies have demonstrated a heritable

component of BMI and genome-wide association studies (GWAS) have shown that BMI is

influenced by hundreds of common genetic variants [3–5]. Recently, a GWAS for BMI on

339,224 individuals, reported 97 genetic loci to be associated with variation in BMI [4]. How-

ever, only a few studies have investigated the effect of gene-environment interactions on BMI.

Previous studies have reported physical activity to attenuate the effect of genetic factors on

BMI, including the effects of genetic variants within the FTO locus [6–9]. Identification of

gene-environment interactions for complex human traits poses several challenges. For

instance, most GWAS of complex traits have been performed by large-scale meta-analyses of

multiple cohorts, which complicate a harmonised collection of lifestyle and environmental

data. Also, the effects of genetic variants identified through GWAS are generally small [4], and

differences in the effects of genetic variants between groups exposed to different lifestyle fac-

tors may be difficult to detect in smaller cohorts due to lack of statistical power.

Initiatives such as the UK Biobank provide a unique opportunity to study interactions

between genetic and lifestyle factors. Data collection in UK Biobank has been performed in a

standardised manner and data include a large number of lifestyle and environmental factors

collected from approximately half a million UK citizens, as well as comprehensive, genome-

wide genotyping [10]. Recent studies on the UK Biobank found that the effect of the FTO
locus variant, rs1421085, interacts with several lifestyle risk factors such as alcohol consump-

tion, sleep patterns, diet and physical activity [9]. Another recent study on the UK Biobank
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determined that the effect of a genetic risk score for BMI is modified by socioeconomic status

[11].

Here, we study the effects of gene-environment interactions on BMI, by analysing 131 life-

style factors assessed by touchscreen questionnaires. These factors include diet, smoking, alco-

hol consumption habits, physical activity, socioeconomic status, mental health, sleep, general

health as well as factors that are specific to females such as number of live births. For the pur-

pose of our analyses, we constructed a genetic score for BMI (GSBMI) which was composed of

94 single-nucleotide polymorphisms (SNPs) that have previously been associated with BMI in

a GWAS [4].

Materials and methods

UK Biobank cohort

We utilised data from the UK Biobank Resource (http://www.ukbiobank.ac.uk/about-

biobank-uk/) [10] for all analyses. UK Biobank has recruited more than 500,000 individuals

aged 40–69 from the United Kingdom during the years 2006–2010. Participants underwent

standardised measurements of anthropomorphic traits, and additionally provided biological

samples and detailed information about themselves via touchscreen questionnaires. Genotyp-

ing had been performed using two custom-designed UK Biobank Axiom Arrays with 820,967

and 807,411 SNPs respectively (BiLEVE and Axiom). Genotypes that were not directly assayed

had been imputed [12] using a combined set consisting of the UK10K [13] haplotype reference

panel and the 1000 Genomes phase 3 reference panel [14]. We utilized the initial release of

genotype data (data accessed January 2016) as a discovery cohort, and the remaining partici-

pants with genotype data available in the second release as a replication cohort (data accessed

July 2017). In the initial release, data were available for 73,355,667 SNPs in 152,249 UK Bio-

bank participants. To identify related individuals, we used information provided by UK Bio-

bank (Data-Field: 22011—Genetic relatedness pairing). Briefly, kinship coefficients had been

calculated for each pair of participants in the cohort using the genetic data and pairs of related

individuals had been identified (at least 3rd degree relatives = kinship coefficient > 0.044). In

addition, only people who self-identified as white British (Data-Field 21000) and that were

classified as Caucasians based on the genetic principal components (Data-Field 22006) were

included. After filtering, 116,138 individuals remained for the analysis in the discovery cohort.

The same filtering was applied to the replication cohort, leaving 246,358 participants for the

replication.

Ethics

All participants had provided signed consent to participate in UK Biobank [15]. UK Biobank

has been given ethical approval to collect participant data by the North West Multicentre

Research Ethics Committee, which covers the UK; the National Information Governance

Board for Health & Social Care, which covers England and Wales, and the Community Health

Index Advisory Group, which covers Scotland. UK Biobank possesses a generic Research Tis-

sue Bank approval granted by the National Research Ethics Service (http://www.hra.nhs.uk/),

which lets applicants conduct research on UK Biobank data without obtaining separate ethical

approvals. Access to UK Biobank genetic and phenotypic data was granted under application

no. 15152: “Interaction between diet, food preference and lifestyle with genetic factors influ-

encing body mass, body adiposity and obesity”. Written consent was obtained from all

participants.
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Phenotypic measurements

Participants’ weights were assessed by a variety of means during the initial UK Biobank assess-

ment centre visit. For weight, we utilised data-field 21002, which is an amalgate of all weight

values into a single item. Standing height was measured on a SECA 240 Height Measure. BMI

was constructed from height and weight measurements during participants’ initial visit to

assessment centers. For most analyses, BMI was transformed using rank-based inverse normal

transformation.

Lifestyle factors have primarily been collected via self-report touchscreen questionnaire. All

lifestyle variables that had been assessed in more than 20,000 of the participants were included

for analyses. This resulted in 131 quantitative, ordinal and categorical measurements of life-

style factors representing dietary habits, general health, sleep, smoking and alcohol consump-

tion, physical activity, mental health and socioeconomic status (S1 Table).

We aimed to use linear regression models to test for interaction between lifestyle factors

and genetic factors on BMI. To this end, “Prefer not to answer” and “I don’t know” were set to

“missing” in our analyses. We removed the 99th percentile of quantitative phenotypic variables,

such as, for example: “Average weekly red wine intake” in number of glasses, and “Duration of

moderate physical activity” in minutes, to reduce the effect of outliers. We analysed ordinal

phenotypic data as quantitative variables. For example, data-field 1558—frequency of alcohol

intake: which is coded as: 1 = “Daily or almost daily”, 2 = “Three or four times a week”, 3 =

“Once or twice a week”, 4 = “One to three times a month”, 5 = “special occasions only”, 6 =

“Never”.

Data field 20126 represents bipolar and major depression status among participants. This

variable was derived from self-report questionnaire data [16]. Very few patients were assessed

to have bipolar disorder type I and II (n = 808 & 807 respectively) and these were designated

missing. Severity of depression was assessed as 0 = “No depression”, 1 = “Single probable

major depression episode”, 2 = “Probable recurrent major depression (moderate)”, 3 = “Proba-

ble recurrent major depression (severe)”. Categories 1 to 3 were combined and this field was

recoded as “No depression” = 0, and “Probable depression” = 1. ‘Had menopause’ (Data-field

2724) was recoded to better represent linearity: participants who were uncertain due to having

undergone a hysterectomy were designated “missing”. Data field 680: “Own or rent accommo-

dation lived in”, was recoded to better represent linearity with regard to socioeconomic status:

1 = “Own outright”, 2 = “Own with mortgage”, 3 = “Rent, from local authority”, 4 = “Rent,

from private landlord or letting agency”. Categories 5: “Pay rent and part mortgage (shared

ownership)” and 6: “Live in accommodation rent free”, were set to missing due to the low

number of participants in these groups (N = 303 and N = 735, respectively). Self-reported

drinking habits were converted to amounts in ml alcohol per week using standard sizes for

serving and percentages: red wine—125 ml per glass, 13.5% alcohol; white wine– 125 ml per

glass, 12.0% alcohol; beer and cider– 570 ml per pint, 5.5% alcohol; spirits– 30 ml per measure,

41.5% alcohol; fortified wine– 58 ml per glass, 19% alcohol. Amounts of exercise per week for

specific exercise-types, e.g., “10+ minute walks”, “walking for pleasure”, “moderate physical

activity”, and “vigorous physical activity”; were calculated by multiplying the exercise fre-

quency per week with the duration of activity in minutes.

Replication of BMI SNPs and calculations of genetic scores for BMI

(GSBMI)

Genotype data for 97 SNPs that have previously been identified to be associated with BMI [4]

were considered for our analyses (S2 Table). One SNP, rs2033529 was not part of the UK bio-

bank dataset and was replaced by another linked SNP rs751414 (r2 = 0.99, D’ = 1). Three SNPs
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were removed due to deviation form Hardy Weinberg equilibrium, which left 94 SNPs for the

analyses. Since many of these variants have not been replicated in an independent cohort, we

first tested for association in the initial release of genotype data from the UK Biobank cohort.

This was done using linear regression models with BMI as a response variable. BMI was first

transformed using a rank-based inverse normal transformation similar to the discovery study

[4]. The UK Biobank participants were genotyped on two different genotyping arrays:

(BiLEVE and Axiom), and a variable to adjust for this was included as a covariate in addition

to sex, age, age2 and the first 15 genetic principal components (PCs). Some of the SNPs were

identified as being associated with BMI in females or males separately in the previous study

[4]. We therefore also tested for association in males and females separately and compared

whether there was a significant difference in the estimates between males and females.

Genotype data was used in dosage format, where SNP genotypes were represented by the

number of copies of the effective allele. To calculate GSBMI, regression coefficients (β-esti-

mates) were retrieved from the GIANT consortium meta-analysis for BMI for the European

populations with males and females combined [4]. Weighted GSBMI were then calculated for

each individual by multiplying the number of effective alleles for each of the 94 SNPs (all SNPs

in HWE in UK biobank) with the respective β-estimates (i.e., b̂SNP;i; i ¼ 1; . . . ; 94) and calcu-

lating the sum over all SNPs (S2 Table):

GSBMI ¼
P94

i¼1
bSNP;i � SNPi ð1Þ

Statistical analysis to identify gene × environment interactions

Linear regression modeling was used to estimate the effect of gene-environment interaction

(GSBMI × E) on BMI, for 131 lifestyle factors (E) separately. In addition to the GSBMI × E inter-

action term, each of the 131 models was adjusted for covariates: age, age2, sex, PCs, and geno-

typing array (batch). Interaction terms for GSBMI with age, age2, and sex as well as interaction

terms for the lifestyle factor with age, age2, and sex were also included in order to properly con-

trol for possible confounding effects of these interactions, in accordance with previously pub-

lished recommendations [17], such that:

BMI ¼ b0 þ b1GSBMI þ b2E þ b3GSBMI � E þ b4Ageþb5Age
2þb6Sexþb7GSBMI

�Ageþb8GSBMI � Age2þb9GSBMI � Sexþ b10E � Ageþb11E � Age2þb12E � Sex

þb13Batchþ
P15

i¼1
bPC;iPCi þ ε ð2Þ

We assume that the error term ε ~ NID(0, σ2). The models also included 15 principal com-

ponents (PCs) to account for effects of population stratification in UK Biobank. In the primary

analyses, models for each of the 131 lifestyle factors were analysed separately. The aim of this

study was to investigate the effect of the interaction term GSBMI×E on BMI. For this purpose,

we focused our attention on the estimate of the coefficient β3 in (2), and more specifically

whether this estimate significantly deviated from zero. The null hypothesis H0: β3 = 0 was

either accepted or rejected, depending on the outcome of a two-sided marginal student’s t-test,

which in this case (i.e., one degree-of-freedom difference between the nested models and nor-

mal regularity conditions) is equivalent to a likelihood-ratio test of the hypothesis H0: β3 = 0.

P-values lower than the significance level α = 0.05/131� 3.82�10−4 were considered significant

to account for the family-wise error rate using the Bonferroni method. Interaction effects that

were considered significant in the discovery cohort were then tested in the replication cohort

using the same covariates as well as 15 PCs. Calculations were performed in R version 3.3.0

[18] using the “lm” function included in the stats package.

Gene-environment interactions and BMI
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In order to visualise and make it easier to interpret the significant interactions, we also esti-

mated the effect of GSBMI and of individual SNPs on BMI in different subgroups with regards

to lifestyles, e.g., the genetic effect in participants with different frequencies of alcohol con-

sumption. In these analyses, linear regression was performed in the subgroups using the same

covariates as above, but with untransformed BMI values as a response variable, for easier

interpretability of the regression coefficients (presented in kg/m2). Here the differences in

effect between the subgroups reflect the interaction term from the previous analyses. Interac-

tions were visualised with bar graphs using the ggplot2 package in R. We also used the plot3D

R package to visualise interactions in 3D-plots.

Sensitivity analyses

Genetic variants within intron one of FTO have consistently been shown to be the strongest

genetic factors associated with BMI [3–5,19,20]. We therefore constructed a genetic score that

excluded the FTO-linked SNP rs1558902 (GSBMI’), and performed linear regression modeling

in exactly the same manner as previously. We also performed additional analyses to assess how

individual SNPs interacted with lifestyle factors. SNP-interactions that were considered signifi-

cant in the discovery cohort were further tested in the replication cohort. We also performed

sensitivity analyses by including TDI and its interactions with age, age2, sex, GSBMI, as well as

each of the lifestyle factors in the model, in addition to the variables described in Eq (2).

For calculating GSBMI, we used the regression coefficients from the GIANT consortium.

However, in a discovery GWAS, the regression coefficients are often overestimated, which will

introduce a bias in the GSBMI. For this reason, we also performed additional analyses using the

regression coefficients estimated in UK Biobank, for the sake of comparison.

Stepwise linear regression

To determine which of the interacting lifestyle factors had an independent contribution in the

regression model for BMI, we performed stepwise linear regression (SLR) using the ‘step’ func-

tion included in the ‘stats’ package in R [18]. This function uses the Akaike information crite-

rion (AIC) to select variables for the model. A base-model for BMI was constructed that

included GSBMI, age, age2, sex, a batch variable to control for the two genotyping platforms

used in UK Biobank, as well as 15 principal components. Variables that were significant after

replication were included in SLR. SLR was performed using ‘both’ directions so that variables

were either added or dropped depending on how they improved AIC. The process is repeated

until no improvement in AIC can be made. Individuals with any missing data were excluded

from the analyses, and in order to maintain a large sample size for the analyses, we performed

SLR on a combined set of the discovery and replication cohorts. Individuals with missing data

in any of the tested factors were excluded before running SLR, which resulted in 290,441 par-

ticipants remaining after filtering. All secondary interactions between variables were included

in the analysis to control for potential confounding, in accordance with recommendations by

Keller [17].

Results

Genotype and phenotype data were available for 487,409 participants, of which 362,496 passed

the QC and were included in the analyses (116,138 in the discovery and 246,358 in the replica-

tion). Basic characteristics are provided in Table 1. The distribution of BMI was slightly

skewed (S2 Fig), and we therefore applied a rank-based inverse normal transformation of BMI

prior to the analyses (Fig 1), in agreement with previous GWAS on BMI [4]. Out of the 94

SNPs that were in HWE in UK Biobank, the association with BMI replicated for 63 of them

Gene-environment interactions and BMI
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(S1 Table). However, the effect sizes for the 94 SNPs were consistent with previous data from

the GIANT consortium (S1 Fig) [4]. We therefore included all 94 SNPs in the construction of

GSBMI. No differences in effect size between males and females were observed for any of the 94

SNPs (S3 Table) and we therefore used the same regression coefficients for calculating the

GSBMI in males and females. GSBMI was calculated so that a one-unit increase in GSBMI was

associated with a one-standard deviation increase in BMI, which in our data equals 4.83 kg/m2

(Fig 1). GSBMI explained 1.85% of the variation in BMI in the studied subset of the UK Biobank

participants.

Linear regression modeling in the initial release of genotype data from the UK Biobank

cohort (discovery cohort) revealed GSBMI to interact with 19 lifestyle factors related to physical

activity, alcohol consumption, smoking, socioeconomic status, sleep, mental health and num-

ber of live births (Table 2, S4–S9 Tables), when we applied Bonferroni adjustment for multiple

testing (p< 3.8�10−4). Of these, interactions with 15 factors were replicated using the second

release of genotype data from the UK Biobank cohort (Table 3). If we instead apply the false

discovery rate to adjust for multiple testing in the discovery cohort, 38 interacting lifestyle fac-

tors were identified. The additional FDR-significant factors fall into the same categories as pre-

viously mentioned with the addition of variables related to variation in diet, and intake of

bread, processed meat, and salad or raw vegetables (S4–S9 Tables).

Strong evidence for interaction with GSBMI was seen for alcohol intake frequency

(p = 1.45�10−29) with larger effect of GSBMI in infrequent drinkers (Fig 2A, Tables 2 and 3, S5

Table). The effect of GSBMI decreased, in a dose-dependent manner, as alcohol consumption

frequency increased and the effect of GSBMI was less than half the effect in everyday drinkers

compared to infrequent drinkers (Fig 2A). The interaction between GSBMI and alcohol intake

frequency means that the increase in BMI per GSBMI unit is higher in infrequent drinkers com-

pared to more frequent drinkers (Fig 3A). In addition to the interaction between GSBMI and

alcohol intake frequency, we also observe a highly significant inverse association between alco-

hol intake frequency and BMI (S3 Fig, p< 2.2�10−308).

Table 1. Basic characteristics of UK Biobank participants included for this study, stratified by weight status.

(Discovery cohort / replication cohort) Underweight

BMI < 20

Normal weight

(BMI = 20–25)

Overweight

(BMI = 25–30)

Obese

BMI > 30

Number of participants 2,611 / 5,646 34,769 / 76,489 49,432 / 105,005 29,011 / 58,386

Males (%) 22.2 / 19.7 37.2 / 35.6 54.4 / 53.9 49.8 / 47.9

Age at assessment centre (years) 55.4 ± 8.3 /

55.1 ± 8.3

56.5 ± 8.2 /

56.8 ± 8.0

57.6 ± 8.0 /

57.4 ± 7.96

57.4 ± 7.8 /

57.2 ± 7.8

Height (cm) 167.0 ± 8.4 / 167.0 ± 8.3 168.1 ± 8.9 / 168.2 ± 8.9 170 ± 9.3 / 169.7 ± 9.4 168.4 ± 9.4 / 168.2 ± 9.5

Weight (kg) 53.1 ± 6 / 53.0 ± 5.9 65.5 ± 8.1 / 65.5 ± 8.2 78.8 ± 9.6 / 78.8 ± 9.6 96.5 ± 14.4 / 96.0 ± 14.3

BMI (kg/m2) 19 ± 0.9 / 19.0 ± 0.9 23.1 ± 1.3 / 23.1 ± 1.31 27.3 ± 1.4 / 27.3 ± 1.4 34 ± 3.9 / 33.9 ± 3.8

Smoking status (%) (never / previous / current)

Never 58.7 / 61.8 59.9 / 59.5 52.1 / 53.7 48.3 / 51.5

Previous 19.0 / 24.1 27.8 / 31.2 36.3 / 37.3 40.7 / 40.0

Current 22.3 / 14.1 13.0 / 9.3 11.6 / 8.9 11.0 / 8.5

Moderate physical activity (days per week) 4.0 ± 2.4 / 3.7 ± 2.5 3.9 ± 2.3 / 3.4 ± 2.5 3.6 ± 2.3 / 3.42 ± 2.46 3.3 ± 2.4 / 3.0 ± 2.5

Alcohol consumption frequency (%)

Daily or almost daily 26.1 / 23.1 24.8 / 23.6 24.0 / 22.4 18.1 / 16.1

Three or four times a week 23.1 / 23.2 26.6 /26.1 26.2 / 25.8 21.8 / 20.0

Once or twice a week 24.1 / 22.2 27.5 / 25.8 28.3 / 26.8 28.9 / 27.2

One to three times a month 11.9 / 10.3 11.0 / 10.1 11.3 / 10.3 14.4 / 13.8

Special occasions only 14.6 / 11.4 10.0 / 8.6 10.1 / 9.1 16.7 / 14.6

Never 12.5 / 9.8 6.6 / 5.8 6.3 / 5.6 9.5 / 8.3

Townsend deprivation index -1.0 ± 3.3 / -1.3 ± 3.1 -1.7 ± 2.9 / -1.8 ± 2.8 -1.6 ± 2.9 / -1.7 ± 2.8 -1.05 ± 3.14 / -1.14 ± 3.09

Values are presented as average ± standard deviations, total number or percentages (%).

https://doi.org/10.1371/journal.pgen.1006977.t001
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In contrast to alcohol frequency, we were unable to observe significant interactions with the

number of alcoholic beverages per week or total weekly alcohol intake (gram/week). An inter-

action was observed with total weekly intake of red wine in the discovery cohort, where higher

genetic effects were associated with low weekly consumption of red wine (Table 2, S5 Table).

However, this effect was not observed in the replication cohort (Table 3).

Interactions were also identified for several factors related to physical activity, such as: usual

walking pace, stair climbing, and TV watching, as well as frequencies of light- (Fig 3B), moder-

ate-, as well as vigorous exercise (Tables 2 and 3, S6 Table). Particularly strong evidence was

found for an interaction with walking pace, (p = 3.38�10−26, Table 2). While the frequencies of

physical activity were interacting with GSBMI, no significant interactions were identified for

durations of physical activity (S6 Table).

Several markers of socioeconomic status were observed to interact with GSBMI in the dis-

covery cohort including: Townsend deprivation index (TDI), as well as number of vehicles in

household and total household income (Tables 2 and 3, S7 Table). TDI is a composite score for

socioeconomic status that is generated for each national census output area and incorporates

area inhabitants’ unemployment rates, car- and house-ownership as well as the number of peo-

ple in a household. Higher TDI corresponds to a larger degree of social deprivation and was

associated with an increased effect of GSBMI (Tables 2 and 3, S7 Table).

We also observed significant interactions with factors related to depression including: fed-

up feelings and frequency of depressed mood (Tables 2 and 3, S8 Table). Higher effects of

GSBMI were observed in participants who reported often feeling fed-up, and in participants

who reported higher frequency of feeling down, depressed or hopeless (data field 2050).

Fig 1. Distribution of weighted genetic scores for BMI (GSBMI) in participants from the UK Biobank

(left y-axis). The average BMI in kg/m2 (right y-axis) for participants in each bin of the histogram is plotted as

black diamonds ± 95% confidence interval. The dotted line represents the regression of BMI across GSBMI.

https://doi.org/10.1371/journal.pgen.1006977.g001
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Interactions were also observed for factors related to sleeping patterns with higher genetic

effects in the group that often take a nap during the day and in the group that often felt tired or

reported having low energy. Significant interactions were also identified for smoking status

(Tables 2 and 3, S5 Table) and number of treatments/medications taken (Tables 2 and 3, S9

Table), where smokers had a higher effect of GSBMI compared to non-smokers and where the

genetic effects increased with number of treatments/medications taken (Table 3).

We followed up the findings from the main analyses by performing linear regression

modeling on individual SNPs that were included in GSBMI to study their interactions with life-

style factors (supplementary data). These analyses resulted in large number of statistical tests

(94 SNPs times 131 lifestyle factors = 12,314 tests), which reduces the statistical power. Adjust-

ing for all tests performed using Bonferroni or FDR resulted in only one significant interaction

between rs1558902 at the FTO locus and usual walking pace (Table 4). However, using the

same p-value cut-off as for GSBMI, (p = 3.82 �10−4) interactions were found for eleven lifestyle

factors in the discovery cohort, of which three interactions with the FTO SNP rs1558902 could

be replicated (Table 4). Rs1558902 was observed to interact with total household income, usual

walking pace and alcohol intake frequency (Table 4). Previous GWAS has estimated the effect

of the FTO variant, rs1558902, to 0.39 kg/m2 per A-allele [5]. Stratification by frequency of

alcohol intake revealed the effect of rs1558902 to be 0.64 kg/m2 per A-allele in non-drinkers,

and to be attenuated to 0.25 kg/m2 per A-allele in participants that drink daily or almost daily.

Table 2. Factors observed to interact with GSBMI after adjusting for multiple by using Bonferroni method.

ID Name N E GSBMI × E GSBMI’ × E

p1 β1 p2 β2 p3 β3

924 Usual walking pace 115,525 <2.2*10−308 -0.49 1.10*10−19 -0.25 1.04*10−14 -0.23

1558 Alcohol intake frequency. 116,063 <2.2*10−308 8.35*10−2 1.87*10−16 9.92*10−2 4.37*10−13 9.34*10−2

189 Townsend deprivation index at recruitment 115,988 1.32*10−121 2.31*10−2 2.38*10−10 3.80*10−2 3.57*10−8 3.52*10−2

884 Number of days/week of moderate physical activity 10

+ minutes

110,619 3.43*10−290 -4.61*10−2 1.46*10−7 -4.07*10−2 1.65*10−6 -3.96*10−2

1960 Fed-up feelings 113,941 2.99*10−203 0.18 4.43*10−7 0.19 2.39*10−6 0.19

738 Average total household income before tax 100,421 7.50*10−142 -7.21*10−2 4.60*10−7 -8.78*10−2 5.85*10−5 -7.47*10−2

2080 Frequency of tiredness / lethargy in last 2 weeks 112,854 <2.2*10−308 0.15 5.68*10−7 0.11 9.31*10−6 0.10

1070 Time spent watching television (TV) 110,003 <2.2*10−308 0.13 9.11*10−7 5.96*10−2 9.15*10−6 5.74*10−2

728 Number of vehicles in household 115,444 0.94 -2.62*10−4 1.02*10−6 -0.10 4.29*10−5 -9.23*10−2

943 Frequency of stair climbing in last 4 weeks 115,244 <2.2*10−308 -9.46*10−2 3.67*10−6 -6.40*10−2 2.34*10−4 -5.44*10−2

2050 Frequency of depressed mood in last 2 weeks 111,366 1.49*10−65 8.38*10−2 1.14*10−5 0.13 3.59*10−5 0.13

709 Number in household 115,505 4.55*10−5 -1.03*10−2 1.65*10−5 -6.71*10−2 7.17*10−5 -6.81*10−2

864 Number of days/week walked 10+ minutes 114,174 1.35*10−256 -5.16*10−2 2.68*10−5 -3.92*10−2 1.02*10−4 -3.88*10−2

1190 Nap during day 116,098 4.14*10−289 0.18 3.96*10−5 0.13 1.76*10−4 0.12

137 Number of treatments/ medications taken 116,127 <2.2*10−308 8.17*10−2 7.02*10−5 2.63*10−2 1.18*10−3 2.29*10−2

2734 Number of live births 61,087 1.30*10−22 3.85*10−2 9.78*10−5 -9.41*10−2 2.55*10−4 -9.41*10−2

20116 Smoking status 115,827 2.83*10−18 3.68*10−2 1.58*10−4 9.73*10−2 2.36*10−3 8.36*10−2

1568 Average weekly red wine intake 81,566 3.36*10−9 -4.12*10−3 2.37*10−4 -1.58*10−2 1.20*10−4 -1.77*10−2

904 Number of days/week of vigorous physical activity 10

+ minutes

110,534 1.80*10−255 -5.22*10−2 3.09*10−4 -3.38*10−2 3.06*10−4 -3.61*10−2

p-values < 3.8*10−4 (0.05/131) were considered statistically significant GSBMI−Genetic score for BMI composed of the effects of 94 BMI-associated SNPs;

β1—Estimates of the effect of environmental factors, E, on BMI (rank-transformed); p1—the corresponding p-values; β2—Estimates of the interaction term

for GSBMI x E with corresponding p-values (p2). GSBMI’—genetic score for BMI excluding the FTO SNP rs1558902 with corresponding estimates (β3) and p-

values (p3).

https://doi.org/10.1371/journal.pgen.1006977.t002
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The interaction between rs1558902 and alcohol intake frequency means that, the effect of

rs1558902, i.e. the increase in BMI per allele, is lower in high-frequency alcohol consumers,

and higher in low-frequency consumers (Fig 3B).

Sensitivity analyses

To test whether interactions were driven primarily by the FTO-SNP rs1558902, we constructed

a genetic score for BMI with rs1558902 excluded (GSBMI’). In the discovery analysis, all Bonfer-

roni significant interaction terms from the previous analyses remained significant when we

used GSBMI’, except for smoking status and number of treatments/medications taken (Table 2,

S4–S9 Tables). Effect estimates for all significant interactions were in the same direction and

within 15% of the interaction effects with the previous GSBMI. We also utilized GSBMI’ in the

replication cohort, and replication was successful for all 15 interactions observed with GSBMI,

except for frequency of depressed mood and smoking status (Table 3).

We also performed sensitivity analyses by including TDI and its interaction terms as covari-

ates in linear regression models. These results were highly correlated with previous results

(Pearson’s r = 0.98 for effect estimates of interaction terms). Including TDI as a covariate led

to a general slight decrease in effect sizes of interaction terms. The largest decreases were seen

for factors related to socioeconomic status (S11 Table) and smoking status, which is consistent

with the highly significant correlation between these variables and TDI (S12 Table).

In the present study, we utilised SNP effect estimates from a previous GWAS by the GIANT

consortium [4] to calculate the genetic score for BMI. These estimates may be somewhat over-

estimated due to the “winner’s curse” [21]. Using overestimated effect sizes results in a GSBMI

that is associated with a slightly lower BMI-increase in UK Biobank, compared to when using

Table 3. Replication of interactions observed in the discovery cohort.

ID Name N GSBMI × E replication GSBMI’ × E replication

p1 β1 p2 β2

924 Usual walking pace 244,780 3.83*10−26 -1.75*10−1 3.32*10−26 -1.88*10−1

1558 Alcohol intake frequency. 245,491 1.45*10−29 9.42*10−2 5.64*10−24 9.00*10−2

189 Townsend deprivation index (TDI) at recruitment 245,204 4.66*10−11 2.76*10−2 4.93*10−10 2.79*10−2

884 Number of days/week of moderate physical activity 10+ minutes 245,491 1.44*10−7 -2.58*10−2 1.08*10−4 -2.03*10−2

1960 Fed-up feelings 245,491 4.25*10−5 9.36*10−2 5.99*10−4 8.37*10−2

738 Average total household income before tax 244,709 2.79*10−3 -1.85*10−2 2.00*10−2 -1.54*10−2

2080 Frequency of tiredness / lethargy in last 2 weeks 245,491 1.51*10−10 8.38*10−2 1.97*10−8 7.83*10−2

1070 Time spent watching television (TV) 245,491 1.61*10−7 2.06*10−2 1.80*10−5 1.79*10−2

728 Number of vehicles in household 244,961 6.02*10−6 -6.14*10−2 1.75*10−5 -6.24*10−2

943 Frequency of stair climbing in last 4 weeks 244,530 3.56*10−13 -6.74*10−2 2.42*10−11 -6.61*10−2

2050 Frequency of depressed mood in last 2 weeks 245,491 1.95*10−3 4.88*10−2 2.73*10−3 5.05*10−2

709 Number in household 244,961 6.11*10−1 -5.25*10−3 9.12*10−1 1.21*10−3

864 Number of days/week walked 10+ minutes 245,491 8.92*10−14 -4.37*10−2 6.36*10−12 -4.29*10−2

1190 Nap during day 245,491 2.34*10−7 1.08*10−1 4.46*10−5 9.06*10−2

137 Number of treatments/ medications taken 245,483 4.39*10−15 3.68*10−2 8.79*10−12 3.41*10−2

2734 Number of live births 133,475 4.04*10−1 -1.32*10−2 8.61*10−1 -2.98*10−3

20116 Smoking status 245,491 2.56*10−3 5.42*10−2 4.69*10−2 3.80*10−2

1568 Average weekly red wine intake 177,221 1.81*10−1 -3.32*10−3 2.93*10−1 -2.79*10−3

904 Number of days/week of vigorous physical activity 10+ minutes 245,491 1.48*10−12 -4.33*10−2 4.43*10−8 -3.59*10−2

Replication was performed for both GSBMI (p1 and β1) and GSBMI’ (p2 and β2). Bonferroni correction was used to adjust for multiple testing and p-

values < 2.6*10−3 (0.05/19) were considered significant.

https://doi.org/10.1371/journal.pgen.1006977.t003
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the correct effect size estimates. This can clearly be seen in our data since a one-unit increase

in the GSBMI results in a 0.82 unit increase in the rank transformed BMI in UK Biobank. We

therefore also tested interaction effects using a genetic score composed of SNP effect estimates

calculated in the UK Biobank cohort (GSBMI_UKBB), so that a single-standard-unit increase in

the GSBMI_UKBB results in an exactly 1.00 unit increase in the rank-transformed BMI, which

is 22% higher compared to 0.82 for GSBMI. The interaction results were also strongly correlated

between using GSBMI_UKBB or GSBMI (Pearson’s r = 0.99 for effect estimates of interaction

terms; S11 Table). However, the effect estimates for FDR-significant interaction terms were,

not surprisingly, on average 16% larger when we utilised GSBMI_UKBB (S11 Table).

Stepwise linear regression

Several of the exposures that were found to interact with GSBMI in our primary analysis showed

highly significant evidence for correlation with one another (S12 Table). In order to identify

the most informative interacting variables and interaction terms for a predictive model for BMI,

Fig 2. Interaction between GSBMI genotype with frequency of alcohol consumption (A) and frequency of more than 10 minutes of walking

per week (B). (A) Effect on BMI per GSBMI by frequency of alcohol intake. The self-report questionnaire asked: “About how often do you drink alcohol?”

The effect per GSBMI is higher in low-frequency alcohol consumers compared to high-frequency consumers: (“Never”: N = 7,944; “Special occasions

only”: N = 12,767; “once or twice a week”: N = 12,966; “One to three times a month”: N = 30,412; “Three or four times a week”: 27,250; “Daily or almost

daily”: N = 24,424.) (B) Effect on BMI per GSBMI by frequency of 10+ minutes of walking. The self-report questionnaire asked: “In a typical week, on how

many days did you walk for at least 10 minutes at a time? (Include walking that you do at work, travelling to and from work, and for sport or leisure).”

(“None”: N = 2,528; “One”: N = 7,046; “Two”: 7,046; “Three”: 9,215; “Four”: N = 9,393; “Five”: 18,441; “Six”: N = 11,334; “Seven”: N = 53,125). Error

bars represent 95% CI.

https://doi.org/10.1371/journal.pgen.1006977.g002
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we performed SLR on a combined set of the discovery and replication cohort. SLR was performed

in both directions using the 15 lifestyle factors whose interactions with GSBMI were replicated

(Table 3). This resulted in inclusion of 290,441 participants with non-missing data when combin-

ing the discovery and replication cohorts. The final model generated by SRL included gene-

Fig 3. Interaction between (A) GSBMI and (B) rs1558902, with alcohol intake frequency. (A) BMI was plotted against GSBMI. and stratified by

alcohol consumption frequency. The effect of GSBMI, i.e., the increase in BMI with GSBMI, was lower in UK Biobank participants who consume alcohol

less frequently, compared to participants who consume alcohol more frequently. (B) Mean BMI per genotype of the FTO-linked SNP, rs1558902, is

plotted by frequency of alcohol intake. The effect of rs1558902, i.e. the increase in BMI with copies of the A-allele, was lower in high-frequency alcohol

consumers, and higher in low-frequency consumers.

https://doi.org/10.1371/journal.pgen.1006977.g003

Table 4. Interactions between individual SNPs and lifestyle factors.

Lifestyle factor SNP Closest protein coding

gene(s)

Discovery Replication

β1 p1 β2 p2

738: Average total household income rs1558902 FTO -1.45*10−2 3.43*10−4 -1.08*10−2 1.09*10−4

924: Walking pace rs1558902 FTO -3.41*10−2 1.96*10−7 -2.82*10−2 7.04*10−10

1070: Time spent watching television rs16851483 RASA2 2.22*10−2 9.01*10−5 -2.03*10−3 5.81*10−1

1190: Nap during day rs1016287 FLJ30838 -2.85*10−2 1.67*10−4 -4.12*10−3 4.34*10−1

1438: Bread intake rs12885454 FOXG1/PRKD1 2.08*10−3 3.81*10−4 4.16*10−4 2.60*10−1

1558: Alcohol intake Frequency rs3810291 ZC3H4 1.14*10−2 1.27*10−4 -4.85*10−3 1.89*10−2

1558: Alcohol intake Frequency rs1558902 FTO 1.15*10−2 4.89*10−5 9.99*10−3 3.32*10−7

2080: Frequency of tiredness/lethargy in last 2 weeks rs1516725 ETV5 2.81*10−2 1.06*10−4 -7.18*10−3 1.57*10−1

2090: Seen doctor (GP) for nerves, anxiety, tension or

depression

rs2650492 SBK1 4.07*10−2 2.69*10−5 -6.70*10−3 3.14*10−1

4581: Financial situation satisfaction rs1558902 FTO 2.86*10−2 9.66*10−5 5.44*10−3 3.14*10−1

20161: Pack years of smoking rs11847697 PRKD1 3.67*10−3 1.96*10−4 6.12*10−4 4.74*10−1

Estimated weekly consumption of alcohol (g) rs11057405 CLIP1 -1.28*10−4 2.58*10−4 4.01*10−5 1.45*10−1

p1-2: p-value for tests of the estimated effect size deviating from zero. β1–2: Estimated effect size of the interaction terms. p-values < 3.82*10-4 were

considered significant.

https://doi.org/10.1371/journal.pgen.1006977.t004
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environment interaction terms for ten lifestyle factors (S10 Table, supplementary Data), of which

eight were nominally significant: alcohol intake frequency (p = 2.82�10−15), usual walking pace

(p = 1.55�10−14), frequency of 10+ minute walks (p = 6.26�10−4), smoking status (p = 1.45�10−3),

frequency of vigorous exercise (p = 2.28�10−3), number of vehicles in household (p = 1.03�10−2),

TDI (p = 3.02�10−2) and frequency of tiredness/lethargy (p = 3.87�10−2) and. The adjusted R2

value for the final model was 0.1957.

Discussion

In this study, we performed a gene-environment interaction study using genetic variants and

self-reported lifestyle data. We identified several lifestyle factors that influence the effect of

genetic variants on BMI. Interactions were observed for factors related to alcohol intake, physi-

cal activity, socioeconomic status, mental health and sleeping patterns. Interactions were seen

for factors related to physical activity, where a more active lifestyle attenuated the genetic

effects, which is consistent with previous reports [6–9]. Interactions were observed for light,

moderate intensity, and vigorous physical activity. However, we observed that the interaction

between physical activity and the genetic score was strong for frequencies of physical activity,

in contrast to durations in minutes/day.

Strong evidence was also observed for an interaction with frequency of alcohol intake. The

genetic effect was attenuated with higher frequency of alcohol intake in an almost dose-depen-

dent manner with twice as large effects in non-drinkers compared to daily drinkers. Alcohol

consumption is common in western societies, where also most previous GWAS have been per-

formed. Our results indicate that the interaction associated with alcohol intake frequency may

have partially attenuated the full effect of BMI-associated genetic variants observed in previous

association studies.

Alcohol intake frequency was also associated with lower average BMI. This is consistent with

clinical reports of lower BMI and fat mass in severely alcoholic patients [22–24]. In vitro and in
vivo experiments have also shown ethanol exposure to increase lipolysis and reduce white adi-

pose tissue mass [25,26]. This can also be compared to data from the National Institute on Alco-

hol Abuse and Alcoholism (NIAAA)[27], which suggests that moderate daily consumption of

alcoholic beverages, 1–2 drinks per day, reduces the risk of myocardial infarction as well as all-

cause mortality [27]. In addition, a cohort study on 38,077 male health professionals reported

that alcohol consumption frequency, rather than total amounts, was the primary determinant of

the inverse association between alcohol consumption and risk of myocardial infarction [28].

Unfortunately, we do not have data on UK Biobank participants’ daily consumption amounts

and we are unable to determine how this factors into the association between alcohol consump-

tion frequency, BMI and the interaction between alcohol intake frequency and GSBMI.

In a previous study on gene-environment interactions in the UK Biobank, Tyrrell et al.
used a genetic score composed of 69 BMI-associated variants to study interactions with mea-

surements of the obesogenic environment, with focus on physical activity, diet and socioeco-

nomic status [29]. Interactions were identified with measurements of physical activity and

socioeconomic status (TDI) [29] which were consistent with the current study. TDI serves as a

proxy for environmental and lifestyle factors that are correlated with income and social posi-

tion. The study by Tyrell et al. study contrasts the current in the selection of twelve obesogenic

factors. The current study instead utilised a hypothesis-free approach to test interactions

between GSBMI and 131 factors, which allows us to contrast aspects of the same behaviour, e.g.,

between amounts of physical activity and frequency and also gives us the potential to identify

new gene-environment interactions. A drawback to this approach is the increased statistical

power required in order to correct for the family-wise error rate.
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In our primary analyses, we have investigated interactions between lifestyle factors and a

genetic score composed by 94 independent SNPs, located in different loci. SNPs were com-

bined into genetic scores that explain a greater amount of the variation in BMI compared to

the individual SNPs, in order to gain statistical power (S1 Supporting Information). These

SNPs have previously been shown to influence BMI [4]. However, combining them into a

genetic score before testing for interactions with lifestyle factors assumes that the interaction

effect of the BMI-increasing alleles are all in the same direction: e.g., that alcohol intake fre-

quency decreases the genetic effects of all SNPs rather than some genetic effects being larger

among frequent drinkers and others larger among non-drinkers. For alcohol intake frequency,

we have the statistical power to detect an interaction if interaction effects in the same direction

are present for at least 37 of the SNPs (S1 Supporting Information). However, if some SNPs

are interacting in the opposite direction, our power will decrease dramatically (S1 Supporting

Information). It is therefore possible that there are gene-environment interactions that are

masked by SNPs having interaction effects with the same environmental factor, but in opposite

directions. For this reason, we also performed follow-up analyses of individual SNPs. These

analyses revealed that the FTO-linked SNP rs1558902, in addition to interacting with alcohol

intake frequency, also interacts with average total household income and physical activity.

For BMI, as well as for other complex traits, knowledge on the biological implications of

associated genetic variation is limited, which impedes deduction of causal mechanisms under-

lying gene-environment interactions. The FTO variant, rs1558902, is associated with the

expression of two upstream genes (IRX3 and IRX5) which affect adipocyte “browning”, i.e. the

occurrence of thermogenic ‘beige’ adipocytes in white adipose tissue depots. This may partly

explain the observed interaction between rs1558902 and frequency of alcohol intake, as in
vitro experiments have shown that ethanol exposure interferes with mobilization of glucose

transporters to the adipocyte cellular membrane in response to insulin [30]. Beige adipocytes,

on the other hand, are able to take up glucose from the circulation in an insulin-independent

manner [31]. The altered lipolysis in white adipose tissue due to ethanol exposure, in combina-

tion with an altered rate of thermogenesis due to differential propensity for adipocyte brow-

ning between individuals with different rs1558902 genotypes may explain the interaction

between this SNP and frequency of alcohol intake.

Enrichment analyses from previous GWAS have also implicated central nervous system

processes to play an important role in BMI [4,5]. The central nervous system contains regions

that regulate several functions related to BMI, such as appetite, homeostasis, reward, and moti-

vation. Ethanol confers several well-known behavioural effects on humans, but also acts in a

bi-phasic manner as a central nervous system stimulant at low doses, and a general depressant

at higher doses [32]. BMI-associated genetic variants that affect BMI-related central nervous

system function may also factor into the observed interaction between alcohol consumption

frequency and GSBMI.

A possible limitation to our study is responder bias in the self-report questionnaire data.

This may be more likely for factors pertaining to self-image such as alcohol, tobacco use and

physical activity. The lack of an interviewing person, and assuring participants of the confi-

dentiality and anonymity of their data aim to reduce the likelihood of responder bias [33]. We

tested the validity of factors related to alcohol consumption and physical activity by comparing

these to data collected through a 24-hour recall questionnaire. We observe that both frequency

and amounts of alcohol consumption, as well as measurements of frequency and duration of

physical exercise, agreed well with 24-hour recall data, which supports the validity of these

measurements (S2 Supporting Information).

In this study, we primarily investigated associations, and the underlying causal mechanisms

behind gene-environment interactions are difficult to deduce from cross-sectional data alone.
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We constructed separate models for each environmental exposure or lifestyle factor. As such,

it is important to be aware that confounding effects of factors that are not included in the mod-

els, or that are unknown, may be present in the results from these tests. In order to fully correct

for confounding factors and correctly characterise causal factors, controlled experiments such

as clinical trials in controlled settings serve as the gold standard. We have attempted to correct

for confounding by including TDI and the interaction term TDI�GSBMI as covariates in all

analyses, which resulted in very little effect on the main results. To identify factors with the

highest predictive value, we also performed SLR, which showed evidence for interactions

between GSBMI and alcohol consumption frequency, physical activity, smoking, and socioeco-

nomic status all contributed independently to a predictive model for BMI.

In conclusion, the standardised collection of genetic and lifestyle data in UK Biobank has

enabled us to identify several factors that modify the effect of BMI-associated genetic variants.

The most significant interactions were observed between GSBMI and frequency of alcohol

intake, frequency of physical activity and socioeconomic status. Previous studies have reported

interactions between genetic variants at the FTO locus and environmental factors [6–9]. How-

ever, most interactions were still observed even when the FTO locus was excluded from the

genetic score, which indicates that the individual interactions are not solely dependent on FTO
variants. We can therefore conclude that the presence of genetic interactions is more general

and will be identified to a higher degree for individual SNPs once the sample size increases

even more and reaches sufficient power.
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